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Adaptive Sparse Regression

Mirio A. T. Figueiredo!

Summary

In sparse regression, the goal is to obtain an estimate of the re-
gression coefficients in which several of them are set exactly to zero.
Sparseness is a desirable feature in regression problems, for several
reasons. For example, in linear regression, sparse models are inter-
pretable, that is, we find which variables are relevant; in kernel-based
methods, like in support vector regression, sparseness leads to regres-
sion equations involving only a subset of the learning data. In all
approaches to sparse regression, it is necessary to estimate param-
eters which will ultimately control the degree of sparseness of the
obtained solution. This commonly involves cross-validation methods
which waste learning data and are time consuming. In this chap-
ter we present a sparseness inducing prior which does not involve
any (hyper)parameters that need to be adjusted or estimated. Ex-
periments with several publicly available benchmark data sets show
that the proposed approach yields state-of-the-art performance. In
particular, our method outperforms support vector regression and
performs competitively with the best alternative techniques, both in
terms of error rates and sparseness, although it involves no tuning
or adjusting of sparseness-controlling hyper-parameters.

12.1 Introduction

The goal of supervised learning is to infer a functional relationship
y = f(x), based on a set of (possibly mnoisy) training examples
D = {(x1,¥1),---,(Xn,Yn)}. Usually, the inputs are vectors, x; =
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(i1, 2i,4)7 € IR*. When y is continuous (typically y € IR), we are
in the context of regression, whereas in classification, y is of categorical na-
ture (e.g., y € {—1,1}). Usually, the structure of f(-) is assumed fixed and
the objective is to estimate a vector of parameters 3 defining it; accordingly
we write y = f(x, 8).

To achieve good generalization (i.e. to perform well on yet unseen data)
it is necessary to control the complezity of the learned function (see [5], [6],
[23] and [27], and the many references therein). In Bayesian approaches,
complexity is controlled by placing a prior on the function to be learned,
i.e., on B. This should not be confused with a generative (informative)
Bayesian approach, since it involves no explicit modelling of the joint prob-
ability p(x,y). A common choice is a zero-mean Gaussian prior, which
appears under different names, like ridge regression [11], or weight decay,
in the neural learning literature [2]. Gaussian priors are also used in non-
parametric contexts, like the Gaussian processes (GP) approach [6], [18],
[28], [29], which has roots in earlier spline models [13] and regularized radial
basis functions [22]. Very good performance has been reported for methods
based on Gaussian priors [28], [29]. Their main disadvantage is that they do
not control the structural complexity of the resulting functions. That is, if
one of the components of 8 (say, a weight in a neural network) happens to
be irrelevant, a Gaussian prior will not set it exactly to zero, thus pruning
that parameter, but to some small value.

Sparse estimates (i.e., in which irrelevant parameters are set exactly to
zero) are desirable because (in addition to other learning-theoretic reasons
[27]) they correspond to a structural simplification of the estimated func-
tion. Using Laplacian priors (equivalently, l;-penalized regularization) is
known to promote sparseness [4], [10], [25], [31]. Support vector machines
(SVM) also lead to sparse regressors without explicitly adopting a sparse-
ness inducing prior [6], [27]. Interestingly, however, it can be shown that
the SVM and /;-penalized regression are closely related [10].

Both in approaches based on Laplacian priors and in SVMs, there are
hyper-parameters which control the degree of sparseness of the obtained
estimates. These are commonly adjusted using cross-validation methods
which do not optimally utilize the available data, and are time consuming.

In this chapter, we propose an alternative approach which involves no
hyper-parameters. The key steps of our proposal are: (i) a hierarchical
Bayes interpretation of the Laplacian prior as a normal/independent dis-
tribution (as used in robust regression [14]); (ii) a Jeffreys’ non-informative
second-level hyper-prior (in the same spirit as [9]) which expresses scale-
invariance and, more importantly, is parameter-free [1]; (iii) a simple
expectation-mazimization (EM) algorithm which yields a mazimum a
posteriori (MAP) estimate of 3, and of the observation noise variance.

Our method is related to the automatic relevance determination (ARD)
concept [18], [16], which underlies the recently proposed relevance vector
machine (RVM) [3], [26]. The RVM exhibits state-of-the-art performance,
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and it seems to outperform SVMs both in terms of accuracy and sparse-
ness [3], [26]. However, we do not resort to a type-II mazimum likelihood
approximation [1] (as in ARD and RVM); rather, our modelling assump-
tions lead to a marginal a posteriori probability function on 8 whose mode
is located by a very simple EM algorithm. Related hierarchical-Bayes mod-
els were proposed in [12] and [24]; in those papers inference is carried out
by Markov chain Monte Carlo (MCMC) sampling.

Experimental evaluation of the proposed method, both with synthetic
and real data, shows that it performs competitively with (often better than)
RVM and SVM.

12.2 Bayesian Linear Regression

12.2.1 Gaussian prior and ridge regression

We consider functional representations which are linear with respect to 3,
that is,

f(x,8) = BTh(x);
we will denote the dimensionality of B as k. This form includes:
(i) classical linear regression, where h(x) = [1, 21, ..., z4] ;

(ii) nonlinear regression via a set of k basis functions, in which case
h(x) = [¢1(%), ..., ox(x)]T; this is the case, for example, of radial
basis functions (with fixed basis functions), spline functions (with
fixed knots), or even free knot splines (see [21]);

(iii) kernel regression, with h(x) = [1,K(x,x1),..., K(x,x%,)]*, where
K(x,y) is some (symmetric) kernel function [6] (as in SVM and RVM
regression), though not necessarily verifying Mercer’s condition.

We follow the standard assumption that
yi = f(xi, B) +wi,

for i = 1,...,n, where [wy, ..., w,] is a set of independent zero-mean Gaus-
sian variables with variance o?. With y = [y1,...,yn), the likelihood
function is then

p(y|B) = N(y|HB,0’T),

where H is the (n x k) design matriz which depends on the x;s and on
the adopted function representation, and N (v|u,C) denotes a Gaussian
density of mean g and covariance C, evaluated at v.

With a zero-mean Gaussian prior with covariance A, that is p(B|A) =
N(B|0,A), it is well known that the posterior is still Gaussian; more
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specifically,
p(Bly) = N'(8IB, D)

with mean and mode at
B=(c*A"' +H'H)'H"y.

When A is proportional to identity, say A = p2I, this is equivalent to ridge
regression (RR) [11], although RR was proposed in a non-Bayesian context.

12.2.2 Laplacian prior, sparse Regression, and the LASSO

Let us now consider a Laplacian prior for 3,
k

e} a\k
p(Ble) =[] 5 exp{=a3i} = (3) exp{-a 18I},
where ||v||; = 3, |vi| denotes the /; norm. The posterior p(8|y) is no longer
Gaussian. The mazimum a posteriori (MAP) estimate is now given by

B = arg min{||HB — y|I} + 20% [1B]1.}, (12.1)

where ||v]|2 is the Euclidean (I2) norm. In linear regression, this is called
the LASSO (least absolute shrinkage and selection operator) [25]. The main
effect of the [; penalty is that some of the components of B may be exactly
zero. If H is an orthogonal matrix, (12.1) can be solved separately for each
Bi, leading to the soft threshold estimation rule, widely used in wavelet-
based signal/image denoising [7]. The sparseness inducing nature of the
Laplacian prior (or equivalently, of the I; penalty) has been exploited in

several other contexts [4], [31], [21], [15], [19].

12.3 Hierarchical Interpretation of the Laplacian

Let us consider an alternative model: let each 8; have a zero-mean Gaus-
sian prior p(B;|;) = N(B;|0,7;), with its own variance 7; (like in ARD
and RVM). Now, rather than adopting a type-II maximum likelihood cri-
terion (as in ARD and RVM [26]), let us consider hyper-priors for the
7;8 and integrate them out. Assuming exponential hyper-priors p(7;|y) =
(v/2) exp{—v7:/2} (for ; > 0, because these are variances) we obtain

_ _V
p(Bi) = | p(Birptri) dr = L esp{=y7 11}
This shows that the Laplacian prior is equivalent to a 2-level hierachical
model: zero-mean Gaussian priors with independent exponentially dis-
tributed variances. This equivalence has been previously exploited in robust
least absolute deviation (LAD) regression [14].
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The hierarchical decomposition of the Laplacian prior allows using the
EM algorithm to implement the LASSO criterion in (12.1) by simply re-
garding T = [11, ..., 7] as hidden/missing data. Let us define the following
diagonal matrix: Y (7) = diag(r; !, ...,7;;!). In the presence of Y (7), the
complete log-posterior (with a flat prior for o2),

logp(B,0°|y,7) x —no*logo® — |ly —HB|3 — o*BTX(T)B,  (12.2)

would be easy to maximize with respect to 8 and o2. Since this complete
log-posterior is liner with respect to Y (7), the E-step reduces to the com-
putation of the conditional expectation of Y (7), given current (at iteration

t) estimates 33(,5) and ,@(t). It can easily be shown that this leads to

Viy = E[X(7)|y,0%w),Bw)]
’Ydia‘g(|ﬂ17(t)|ila--'a|/8k,(t)|71)- (123)

Finally, the M-step consists in updating the estimates of o2 and B by
maximizing the complete log-posterior, with V() replacing the missing
Y (7). This leads to

— 1 ~
02(t+1) = EHY - Hﬂ(t)”% (12.4)
and
B(t-‘,—l) = (0%41) V) + H'H) 'Hy. (12.5)

This EM algorithm is not the most efficient way to solve (12.1); faster
special-purpose methods have been proposed in [20], [25]. Our main goal
is to open the way to the adoption of different hyper-priors that do not
corresponf to LASSO estimates.

12.4 The Jeffreys Hyper-Prior

One question remains: how to adjust -y, which is the main parameter
controlling the degree of sparseness of the estimates? Our proposal is to
remove v from the model, by replacing the exponential hyper-prior by a
non-informative Jeffreys hyper-prior

p(rs) o< 7; " (12.6)

This prior expresses ignorance with respect to scale (see [9], [1]) and, most
importantly, it is parameter-free. Of course this is no longer equivalent
to a Laplacian prior on 3, but to some other prior [9]. As will be shown
experimentally, this prior strongly induces sparseness and yields state-of-
the-art performance in regression applications. Computationally, this choice
leads to a minor modification of the EM algorithm described above: matrix
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V) is now given by

Vi = diag(|Bu,w) % - B ™) (12.7)
(instead of Eq. (12.3)). Notice the absence of parameter ~.
Since several of the components of 5 are expected to go to zero, it is not

convenient to deal with V ;) as defined in Eq. (12.7). However, defining a
new diagonal matrix

U(t) = dia‘g(|ﬂ1,(t)|7 ey |/Bk,(t)|)7
we can re-write Eq. (12.5) in the M-step as

B(t 1) = U (0 @I+ UyH HU)) ' Uy Hy. (12.8)

This form of the algorithm avoids the inversion of the elements of B(t).
Moreover, it is not necessary to invert the matrix, but simply to solve
the corresponding linear system, whose dimension is only the number of
non-zero elements in Uy,.

12.5 Experiments

Our first example illustrates the use of the proposed method for variable
selection in standard linear regression. Consider a sequence of 20 true (s,
having from 1 to 20 non-zero components (out of 20): from [3,0,0, ..., 0] to
[3,3,...,3]. For each B, we obtain 100 random (50 x 20) design matrices,
following the procedure in [25], and for each of these, we obtain data points
with unit noise variance. Fig. 12.1 shows the mean number of estimated
non-zero components, as a function of the true number. Our method ex-
hibits a very good ability to find the correct number of nonzero components
in @, in an adaptive manner.

Table 12.1. Relative (%) improvement in modelling error of several mehods.

Method B. | By
Proposed method | 28% | 74%
LASSO (CV) | 13% | 69%
LASSO (GCV) | 30% | 65%
Subset selection | 13% | 77%

We now consider two of the experimental setups used in [25]: B, =
[3,1.5,0,0,2,0,0,0], with o = 3, and 3, = [5,0,0,0,0,0,0,0], with o = 2.
In both cases, n = 20, and the design matrices are generated as in
[25]. In Table 12.1, we compare the relative modelling error (ME =
E[||H,3 — HpJ|?]) improvement (with respect to the least squares solu-
tion) of our method and of several methods studied in [25]. Our method
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Figure 12.1. Mean number of nonzero components in ,@ versus the number of
nonzero components in 3 (the dotted line is the identity).

performs comparably with the best method for each case (LASSO tuned by
generalized cross-validation, for 8,, and subset selection, for 3,), although
it involves no tuning or adjustment of parameters, and is computationally
faster.

We now study the performance of our method in kernel regression, using
Gaussian kernels, i.e., K(x,x;) = exp{—||x — x;||*/(2h?)}. We begin by
considering the synthetic example studied in [3] and [26], where the true
function is y = sin(z)/z (see Fig. 12.2). To compare our results to the RVM
and the variational RVM (VRVM), we ran the algorithm on 25 generations
of the noisy data. The results are summarized in Table 12.2 (which also
includes the SVM results from [3]). Of course the results depend on the

1.2
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0.2F

0 A
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Figure 12.2. Kernel regression. Dotted line: true function y = sin(z)/z. Dots:
50 noisy observations (o = 0.1). Solid line: the estimated function. Circles: data
points corresponding to the non-zero parameters.
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Table 12.2. Mean root squared errors and mean number of kernels for the
“sin(z)/z” function example.

Method MSE | No. kernels
New method | 0.0455 7.0
SVM 0.0519 28.0
RVM 0.0494 6.9
VRVM 0.0494 7.4

Table 12.3. Mean root squared errors and mean number of kernels for the “Boston
housing” example.

Method MSE | No. kernels

New method | 9.98 45.2
SVM 10.29 235.2
RVM 10.17 41.1

VRVM 10.36 40.9

choice of kernel width h (as do the RVM and SVM results), which was
adjusted by cross validation.

Finally, we have also applied our method to the well-known Boston hous-
ing data-set (20 random partitions of the full data-set into 481 training
samples and 25 test samples); Table 12.3 shows the results, again versus
SVM, RVM, and VRVM regression (as reported in [3]). In these tests, our
method performs better than RVM, VRVM, and SVM regression, although
it doesn’t require any tuning.

12.6 Concluding remarks

We have introduced a new sparseness inducing prior for regression problems
which is related to the Laplacian prior. Its main feature is the absence of any
hyper-parameters to be adjusted or estimated. Experiments have shown
state-of-the-art performance, although the method involves no tuning or
adjusting of sparseness-controlling hyper-parameters.

It is possible to apply the approach herein described to classification
problems (i.e., when the response variable is of categorical nature) using
a generalized linear model [17]. In [8] we show how a very simple EM
algorithm can be used to address the classification case, leading also to
state-of-the-art performance.

One of the weak points of our approach (which is only problematic in
kernel-based methods) is the need to solve a linear system in the M-step,
whose computational requirements make it impractical to use with very
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large data sets. This issue is of current interest to researchers in kernel-
based methods (e.g., [30]), and we also intend to focus on it.
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