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Abstract—Characterizing object motion in a given scene is a
central problem in computer vision and image analysis. Object
motion has been recently modeled by using multiple motion
fields; this model allows characterizing typical motion patterns
and, among other possible applications, may be used to detect
abnormal events. However, the estimation of multiple fields from
video information (e.g., trajectories) is a challenging task since
we do not know which field is active at each instant of time,
for each object. This difficulty has been successfully addressed
by using iterative approaches in which the estimation of the
active field alternates with the field update, using the expectation-
maximization (EM) algorithm or variants thereof. However, the
EM method for this problem has been shown to be slow and
to yield field estimates that depend on the initialization. This
paper describes an alternative approach for the estimation of
multiple overlapping fields, using a label propagation algorithm.
The proposed algorithm, which is not iterative, is fast and has
good performance on synthetic and real data.

I. INTRODUCTION

Most video surveillance systems involve tracking objects of
interest (usually pedestrians or vehicles) in the scene, in order
to characterize their activities and detect abnormal behaviors
[15]. Several cues are used to accomplish this goal, such
as shape and motion features, or even articulated models of
the human body [12], [13]. These techniques are applicable
when the camera field of view is small and the objects
of interest are sufficiently close to the camera; in contrast,
when the surveillance camera(s) covers a wide area, it is no
longer possible to reliably extract the detailed information
required by those methods. In these scenarios, the most reliable
information is carried by the trajectories of the centers of mass
of the objects in the scene.

Several methods have been developed in the last decade
to compare trajectories and to cluster them [8], [9]. Those
methods allow the system to characterize typical behaviors
and detect unusual ones, a task for which several approaches
have been followed. Some authors compare trajectories using
dissimilarity measures, such as the Euclidean or the Hausdorff
distances [2], [6]; since the observed trajectories in general
have different lengths, these approaches require some kind of
alignment of the trajectories. This is often done using dynamic
programming methods, such as dynamic time warping [7]. The
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Fig. 1. Main goal: learn motion patterns

trajectory alignment compensates for small deformations but
it performs poorly in the presence of deformations changes.

To avoid the need for alignment, some authors have adopted
generative models. These include hidden Markov models
(HMM) [5], probabilistic landmarks [11], and the recently
proposed mixtures of motion fields (MMF) [10]. The MMF
model is based on two key observations: motion fields are
intuitive (they have a clear physical meaning) and flexible
representations; however, a single motion field is usually not
enough to model a set of diverse or complex trajectories,
possibly exhibiting intersections (as illustrated in Fig. 1). For
example, if the trajectory is generated by a single differential
equation ẋ(t) = T (x(t)), where x(t) denotes the position of
the object at time t and T (.) denotes the motion field, then
trajectory intersections would violate the uniqueness theorem
for differential equations. The use of a mixture of multiple
motion fields is therefore required and field switching has to
be considered.

The joint estimation of multiple motion fields and of the
switching probabilities was addressed using an EM iterative
algorithm [10]. That approach is time consuming and the
field estimates obtained by the EM method depend on the
initialization. This paper proposes an alternative approach by
addressing the following question: can we estimate multiple
vector fields in a fast, non-iterative way? The algorithm
should account for multiple motion fields, with a non-uniform
structure in space, and should be able to automatically select
the number of fields from the data. Furthermore, it should
avoid an iterative refinement of the solution. The algorithm



Fig. 2. Roundabout example: object trajectories

proposed in this paper meets all these desiderata: it is a non-
iterative algorithm, based on local decisions and local statistics
of the data, and it is based on label propagation.

II. OVERVIEW

Our approach is supported on the two following main
assumptions: (i) we have a large amount of data; (ii) there
are typical motion regimes at each point in the scene, i.e., the
velocity is a random vector with a small number of modes.
The first assumption is valid in most applications, since we can
easily track dozens or even hundreds of objects in the scene.
On the contrary, the second assumption is not always true, as
it depends on the underlying scenario. For example, consider
the trajectories of pedestrians in a park: we may observe a
wide variety of trajectories and the uncertainty may be high.
However, in other more structured scenarios (e.g., streets, train
stations, university campi), people tend to traverse the space in
typical paths (e.g., they walk along streets, they cross streets,
they enter and leave buildings), thus we may hope to learn
these typical paths automatically from data. The same applies
if we are surveying vehicles in structured environments (such
as roads, streets, or parking lots).

Assuming the availability of a large number of observed tra-
jectories, we can characterize the velocity vector at each point
in the image domain by a velocity histogram. Furthermore, the
histogram provides a hint about the number of fields required
to describe the typical motions at that location. We will assume
that if an histogram has m modes, then there are m active
motion fields at that location in space. Correspondingly, we
will assume that each peak of the histogram corresponds
to one of the underlying motion fields. Figures 2 and 3
illustrate these ideas with a synthetic example; Figure 2 shows
a set of trajectories and Figure 3 shows histograms of the
velocity direction computed from the trajectories. These are
local histograms computed at the nodes of a uniform 21× 21
grid and using local information (trajectories) in the vicinity
of each node. Many histograms in this example exhibit two
peaks separated by π, corresponding to motion trajectories in
opposite directions. Other histograms have a larger number
of peaks, such as those at the intersection of the straight and
circular trajectories.

Fig. 3. Roundabout example: local histograms

The main question is: how can we associate the peaks to
motion fields and label them in a consistent way, in order to
obtain smooth vector fields?

To answer the question just formulated, we will adopt a
region growing approach. We will choose a grid node as a
seed and initialize the first motion field at this point with the
direction associated to the largest histogram peak. A new label
is created at this point. Then, we propagate the vector field
(label) to the neighboring nodes, provided that they meet the
following conditions:

• the histogram of the neighboring cell has a peak close to
the motion estimate,

• the peak was not previously assigned to any motion field
(unlabeled peak).

This corresponds to a non-iterative label propagation algo-
rithm in which each data location is visited only once, thus
it is much faster then the EM method. In the next sections,
we describe in detail the histogram computation and the label
propagation algorithm.

III. LOCAL MOTION MODELS

Consider the trajectories (extracted from a video sequence)
of S objects (e.g., pedestrians, vehicles), X =

(
x(1), ..., x(S)

)
,

where the trajectory of the k-th object, x(k), is a sequence of
Lk positions on the plane, x(k) =
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Typically, this amounts to thousands (or even tens or hundreds
of thousands) of data vectors, and our goal is to statistically
characterize this information, using a set of local histograms,
computed at the nodes of a uniform grid, as illustrated in
Figure 3.

Assuming uniform sampling with unit time steps (without
any loss of generality), let v(k)t = x

(k)
t+1 − x

(k)
t be the velocity

vector at time t for object k. We will assume that the velocity
direction,

θ
(k)
t = arctan

(
v
(k)
t

)
2(

v
(k)
t

)
1

,

is the most discriminative feature (Matlab function atan2 is
used to obtain θ

(k)
t in the range [−π, π[). Thus we will



characterize motion by a set of local models: the histograms
of θ values in the neighborhood of the image nodes ui.

Considering a dataset of trajectories, X =
(
x(1), ..., x(S)

)
,

the local (smoothed) histograms are obtained using a a Gaus-
sian kernel [16] in the spatial dimension and a von Mises
kernel [14] in the angular dimension. The von Mises density
is the analog of the Gaussian density, for random variables
defined on the circle, taking into account its 2π-periodic nature
of θ (phase wrapping). The value of the local histogram at
node ui and direction bin θj is thus given by

h(ui, θj) = γ

S∑
k=1

Lk−1∑
t=1

w
(k)
t (ui, θj) , (1)

where γ is a normalization factor and

w
(k)
t (ui, θj) = N (x

(k)
t |ui, σ

2I)M(θ
(k)
t |θj , κ) (2)

is a weighting function, where N (·|µ,R) denotes the normal
density function with mean vector µ and covariance matrix R,
and

M(θ|η, κ) = eκ cos(θ−η)

2π I0(κ)
(3)

is a von Mises density of mean η and concentration parameter
κ (with I0 denoting the modified Bessel function of zero-th
order). The local histograms for the example of Figure 2 are
shown in Figure 3. In this example, the image domain [0, 1]2

was covered by a regular grid with 21 × 21 nodes and the
direction range [−π, π[ was quantized into 64 equal bins.

Of course we can also associate a velocity estimate to
each histogram position and orientation (ui, θj). This can be
done by averaging all the displacements v

(k)
t weighted by

w
(k)
t (ui, θj).

v(ui, θj) =

∑S
k=1

∑Lk−1
t=1 w

(k)
t (ui, αj) v

(k)
t∑S

k=1

∑Lk−1
t=1 w
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. (4)

The weights take into account the distance of x(k)
t to the node

ui and motion direction.

IV. MULTIPLE MOTION FIELDS ESTIMATION

Let us consider Figure 3 again. When we have multiple
motion fields in the vicinity of a node ui, the corresponding
histogram presents multiple peaks. The number of peaks is
therefore an estimate of the number of motion fields that are
active at a given location (the typical motion directions at
that location). Let Ωi be the set of directions associated to
the local maxima of the histogram h(ui, θ), as a function of
θ. We now have one challenging problem: we would like to
estimate a set of K motion fields from this information. This
is an unsupervised labeling problem, since we do not have
pre-defined classes associated to the labels. We would like to
assign a label l ∈ {1, . . . ,K} (with K itself unknown) to
each histogram peak α ∈ Ωi. A criterion must be defined to
assign histogram peaks to different vector fields (labeling). In
this paper we will assume that each vector field is smooth

and direction changes in pedestrian trajectories correspond to
switching between motion fields.

The labeling problem described in the previous paragraphs
can be formulated as the minimization of an objective function.
Let us denote by (αi, ui, li), for i = 1, . . . , P , the sequence of
all the histogram peaks, the corresponding nodes, and assigned
labels. We can define a cost function which depends on all the
absolute differences between peaks associated to neighboring
nodes with the same label,

C(l1, ..., lP ) =
∑

i, j : li = lj
uj ∈ N(ui)

min
k∈Z

|αi − αj + 2 k π| (5)

=
∑
i∼j

min
k∈Z

|αi − αj + 2 k π| I(li = lj)

where N(ui) is the set of nodes which are neighbors of ui

according to some neighborhood criterion (e.g., 4-connected),
i ∼ j is a shorthand for ui ∈ N(uj) (which, of course,
implies that uj ∈ N(ui), because neighborhood relations are
symmetric), the 2 k π term accounts for the circular nature of
angular differences (e.g., for a very small ε, any angle of the
form 2 k π± ε is very close to 0), and I denotes the indicator
function, that is I(A) = 1, if A is true, and I(A) = 0, if A is
false.

Clearly, the maximum number of fields should also be
specified; otherwise, we could trivially minimize C by simply
increasing the number of fields.

The minimization of (5), with respect to the set of labels
li, i = 1, ..., P , is a hard combinatorial problem, which
could be addressed using classical methods, such as relaxation
labeling [4] or simulated annealing with Gibbs sampling [3], or
with newer tools such as graph cuts [1]. All these approaches
are suboptimal and require predefinition of C.

Since we wish to obtain a non-iterative solution for the
problem, we will adopt a label propagation approach, which
can also be interpreted as a message passing algorithm. The
proposed algorithm works as follows. First, we select one node
and one peak of the histogram at that node, (u, α), as a seed,
and assign a label to it. This initializes a set R of pairs (u, α)
such that the nodes form a connected region and the peaks
share the same label. Then, we propagate the labels of the
boundary nodes to their neighbors, provided they meet three
conditions next described. Let (u, α) be a member of R and
(w, β) be a candidate pair consisting of a grid node, such that
w ∈ N(u), and an histogram peak. The label of (u, α) is
propagated to (w, β) if the following conditions are met:

• mink |α− β + 2πk| < T ;
• (w, β) had not been previously given any label.

The region R grows until there are no more nodes and peaks
meeting these conditions. When that happens, another seed
is selected among the still unlabeled pairs, and the growing
process is repeated. The algorithms stops when all the peaks
are labeled.

The output of the algorithm depends, of course, on the
initialization of the regions (the seeds), on the order used to



test the neighboring nodes and peaks, and on the value of the
threshold T . In this paper we adopt a simple approach: as
seeds, we select the nodes with lowest entropy histograms
and the peaks with highest value. In the growing process,
the neighboring nodes are visited in a random order. Other
strategies could be chosen, such as a greedy strategy in which
we would choose the neighbor node and peak (w, β) with
smallest cost according to (5).

The next section presents some experimental results.

V. RESULTS

The proposed algorithm was applied to estimate multiple
motion fields from real and synthetic data. In the first case,
the object trajectories were extracted from video sequences,
while in the second case they were generated by a stochastic
model. The trajectories were normalized to fit inside the unit
square [0, 1]2 and the motion fields are defined on a regular
grid of 21 × 21 nodes. The orientation of the velocity vector
was quantized into 64 bins and the kernel parameters were
chosen as follows: σ = 1/42 and κ = 128. The maximum
peak deviation was T = 2 in synthetic examples and T = 1
in the case of real data.

The algorithm was programmed in MATLAB without any
special care to speed optimization. We have used two lists of
nodes, termed “open” and “closed”. The open list stores the
indices of the nodes which meet the smoothness conditions
and that should be labeled in future. The closed list includes
the nodes which were already tested and labeled.

A. Synthetic data

Two synthetic experiments will be described. The first
experiment uses trajectories generated by two motions regimes
(circular and linear) without any switching between these
motion regimes. It should be stressed that there is spatial
overlap between both types of trajectories. Fig 4 shows the
trajectories and local histograms as well as the estimated fields.
The algorithm manages to separate both fields well, despite
their spatial overlap.

The second synthetic experiment simulates the motion of
vehicles in roundabout. Each vehicle enters in the roundabout
through one of the four entries and may leave in any of
the four exits with a given probability. The trajectories for
this example were shown before (Figure 2) and the field
estimates are displayed in Figure 5. The algorithm found 9
motion fields. A post-processing step automatically merged
non-overlapping fields with the same direction, yielding the 5
fields shown in Figure 5. We obtained 1 circular field, and 4
linear (entering/leaving) fields, associated to the 4 entries/exits.

We conclude from these examples that the label propagation
algorithm is able to determine the number of fields and to
estimate overlapping motion fields generated by simple syn-
thetic models. The next section considers a more challenging
problem with real data.

(a) (b)

(c) (d)

Fig. 4. Two overlapping fields: (a) trajectories, (b) local histograms, (c,d)
estimated fields

(a)

(b) (c)

(d) (e)

Fig. 5. The synthetic roundabout experiment: estimated fields.

B. University campus

This example was used as a benchmark in other works with
multiple vector fields [10]. The data consists of 144 pedestrian
trajectories (17284 points) obtained with a surveillance camera
at the campus of a university (Figure 6(a)). The images were
geometrically transformed to compensate for the perspective



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 6. campus example: (a) original image, (b) bird eye view, (c) object
trajectories, (d) local histograms, (e-l) estimated fields

projection distortion using an homography (Figure 6(b)). The
trajectories and corresponding histograms are shown in Figures
6(c) and 6(d).

The labeling algorithm generates a large number of fields,
but most of them have a very small support (less than five
nodes). The estimated fields were ordered according to their
support area and Figure 6 shows the first 8, which represent
typical motion patterns in this campus. Although these fields
seem to match the data well, an objective quantitative evalu-
ation of the model performance should be done. This issue is
addressed in the next section.

C. Quantitative evaluation

To assess the performance of the proposed algorithm, we
measure the ability of the estimated model to predict the
object position one step ahead. There is one difficulty in this
approach: we do not know which field is active at each instant
of time. This difficulty is sidestepped by choosing the field that
leads to the smallest prediction error.

We defined a prediction signal-to-noise-ratio (SNR, in dB)
as follows

SNR(dB) = 10 log10
Ev

Er
, (6)

where Ev is the energy of the observed motion vectors

Ev =
S∑

k=1

Lk∑
t=2

∥x(k)
t − x

(k)
t−1∥2 , (7)

and Er is the energy of the (minimum) prediction residue

Er =
S∑

k=1

Lk∑
t=2

min
p

(ϵ
(k)
t )2 , (8)

ϵ
(k)
t = ∥x(k)

t − x
(k)
t−1 − Tp(x

(k)
t−1)∥ (9)

where Tp denotes the p−th vector field obtained by inter-
polating the motion vectors defined at the grid nodes using
splines. The interpolation details can be found in [10]. The
SNR measure is simple and takes into account the use of
multiple fields.

The prediction errors for the campus example are shown in
Figure 7. Each target position has a color. Green corresponds
to very small residues (ϵ(k)t < 0.001), yellow to middle size
residues (0.001 ≤ ϵ

(k)
t < 0.005) and red to large residues

(ϵ(k)t ≥ 0.005). The image domain was normalized to fit the
interval [0, 1]2. We conclude from this example that very good
prediction is achieved in most of the observed positions with
a small amount of large errors. It is also interesting to observe
the prediction gain, defined by

G
(k)
t =

∥x(k)
t − x

(k)
t−1∥2

minp (ϵ
(k)
t )2

; (10)

Figure 8 shows the prediction gain for each target position in
the data set. We use a color code as before to visualize the gain
magnitude. We apply a green label if the prediction error meets
the condition G

(k)
t > 10, a yellow label if the prediction gain



Fig. 7. Distribution of prediction error (color code: green if ϵ
(k)
t < 0.001,

yellow if 0.001 ≤ ϵ
(k)
t < 0.005, red if ϵ(k)t ≥ 0.005)

Fig. 8. Distribution of prediction gain (color code: green if G
(k)
t > 102,

yellow if 2 ≤ G
(k)
t < 10, red if G(k)

t ≤ 2)

lies in the interval 2 ≥ G
(k)
t > 10, and red label if G(k)

t ≤ 2.
Most of the positions in the data set receive green or yellow
labels. Isolated trajectories which do not follow typical trends
have worse prediction gains as expected.

The SNR results for the three examples are shown in table
I. We consider two algorithms: the fast algorithm (termed
fast multiple vector fields estimation – FMVFE) and the EM
method. In the EM tests we used 20 iterations and 2, 5 and 8
fields respectively defined by the user while the fast algorithm
estimates the number of fields in an automatic way. The
proposed algorithm achieves very good scores and performs
well even in the challenging example of the university campus.
However, the best results are achieved with the EM method
through a slow recursive fine tuning of the fields estimates.

It should be stressed that the proposed algorithm is much
faster than the EM method as shown in table II. The FMVT
time does not include the preprocessing step (histogram com-
putation) which takes 9.34, 11.29, 90.62 s in these examples.
However this step can easily be done in real time.

TABLE I
EVALUATION OF THE FAST MULTIPLE VECTOR FIELDS (FMVF)

ALGORITHM AND EXPECTATION-MAXIMIZATION (EM) ESTIMATION
ACCORDING TO SNR (DB).

SNR (dB) FMVF EM
2 fields 31.4 36.1
roundabout 22.7 23.7
campus 10.9 15.1

TABLE II
COMPUTATION TIME OF THE FAST MULTIPLE VECTOR FIELDS (FMVF)

ALGORITHM AND EXPECTATION-MAXIMIZATION (EM) METHOD.

CPU (sec) FMVF EM
2 fields 0.05 100.29
roundabout 0.09 569.75
campus 1.96 5984.25

VI. CONCLUSIONS

This paper presented a fast algorithm for the estimation of
multiple velocity fields from object trajectories in the image.
The algorithm is based on a local characterization of the veloc-
ity vector at a set of nodes, followed by a label propagation
process which enforces global coherence within each field.
The algorithm is fast, non-iterative (each site is visited only
once) and deals with multiple overlapping fields. Experimental
results show that good performances are achieved in synthetic
and real examples.
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