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ABSTRACT
This paper addresses an image labeling problem, in which it is as-
sumed that there are multiple sensors available at each pixel with
some of them possibly inactive. In addition to not being known
which sensors are active or inactive, the sensor measurements are
also obtained in random unknown order. Given these incomplete ob-
servations, we wish to identify which sensors are active at each site
and which observations were produced by each sensor. This labeling
problem extends classic image segmentation, since it allows multi-
ple labels (i.e., region overlapping). The paper provides methods
to solve this problem in two scenarios: known and unknown sen-
sor models. A new minimization algorithm, inspired by hierarchical
clustering, is introduced to minimize the energy function resulting
from the proposed inference criterion.

1. INTRODUCTION

Many image processing problems are formulated as inference prob-
lems in which we observe a set of noisy measurements and wish to
retrieve a label (image segmentation) or the true value of the under-
lying image (image restoration) [6]. In both problems, there is a one
to one correspondence between observations and image pixels.

This paper addresses a different problem, in which several ob-
servation mechanisms (sensors) are available at each pixel (multiple
observations), but only a subset of them is active. We do not know
which sensors are active at each pixel and the observations are shuf-
fled, i.e., we do not know which observation was generated by which
sensor. Several problems can be considered in this observation sce-
nario, such as retrieving an underlying original image from the set
of multiple, incomplete, and shuffled observations. In this paper, we
focus on the following problem: identifying which sensor produced
each observation. This is a labeling problem, which extends classical
image segmentation in the sense that each pixel is allowed to have
several labels, i.e., to belong to several “segments”. In fact, we wish
to find subsets of the image domain associated to the different sen-
sors, but naturally these subsets will in general not be disjoint (they
will overlap), since we allow pixels to have observations from mul-
tiple sensors. We will refer to this problem as super-segmentation.

To the best of our knowledge, the problem addressed in this pa-
per has not been previously considered in the image processing lit-
erature.

2. PROBLEM FORMULATION

Consider a set of image sites/nodes S = {s1, . . . , sn} equipped
with a neighborhood system N : S → 2S (satisfying the stan-
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dard conditions [11]: ∀ s ∈ S, s �∈ N(s), and ∀ s, s′ ∈ S, s′ ∈
N(s) ⇒ s ∈ N(s′). At each site, we have a set of observations,
Ys = {ys,1, . . . , ys,ms}, each of them being generated by a dif-
ferent mechanism (sensor). We assume that there are a total of M
observation mechanisms (sensors) but only a subset of them is active
at each site: 1 ≤ ms ≤ M . Furthermore, the order by which the
sensors are read is unknown and may be different for different sites.
If we denote by Ws = (ws,1, . . . , ws,M ) the M-tuple of outputs of
the M sensors at site s, then the observed data Ys is obtained by
shuffling a subset of Ws; formally,

Ys = AsWs (1)

where As = (as
ij) is a ms×M binary matrix made of ms randomly

chosen rows of a permutation matrix Ps (doubly stochastic binary
matrix), thus satisfying

as
ij ∈ {0, 1},

M∑
j=1

as
ij = 1, and

ns∑
i=1

as
ij ∈ {0, 1}.

Although the observations appear randomly, we assume that each
sensor tends to be active for several neighboring sites; i.e., if a sen-
sor, say z, is active at a site s, the probability of z also being active
in the neighborhood N(s) is high. This spatial dependency assump-
tion will be formalized by modeling the labels of active sensors as a
Markov random field (MRF) [6], [11].

We will consider two different problems.

1. In the first problem, we assume that the M sensors are char-
acterized by known probability distributions. The observation
ys,i is a random variable with conditional probability distri-
bution p(ys,i|xs,i), where xs,i ∈ {1, . . . , M} is the label of
the active sensor that produced the i-th observation at site s.
In this case, we have multiple sensors with unknown state of
activity.

2. In the second problem, we considered that the sensor mod-
els are unknown and may be space-dependent; i.e., it may
vary along the image. To allow inference, we make the fol-
lowing additional assumption: that observations generated by
the same sensor change slowly in space (spatial continuity).
Therefore, if s′ and s are neighboring sites and ys,i and ys′,j
are observations generated by the same sensor at those sites,
then ys,i and ys′,j have similar values with high probability;
in more formal terms,

(s′ ∈ N(s) ∧ xs,i = xs′,j) ⇒ (ys,i ≈ ys′,j). (2)

The estimation of the unknown labels xi,s can be seen as
clustering problem with a spatial prior imposed by underlying
neighborhood structure.
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Fig. 1. Label graph: horizontal grid defines the site locations, each
column represents the labels of different observations at the same
location. Many neighborhood links are not represented. Each node
in a column should be connected to all the nodes of the 4 neighboring
columns

2.1. Known models

Let L = {1, ..., M} denote the set of available sensors and xs,i ∈ L
denote the label of the sensor which generated ys,i, i.e., the i-th ob-
servation at site s. We assume that the observations Y = {ys,i, s ∈
S, i ∈ Ts}, with Ts = {1, . . . , ms}, are conditionally independent,
given the sensor labels X = {xs,i, s ∈ S, i ∈ Ts}, thus

p(Y |X) =
∏
s∈S

ns∏
i=1

p(ys,i|xs,i). (3)

Furthermore, we assume that X is a Markov random field on the
following set of sites:

R =
⋃
s∈S

{ts,1, ..., ts,ms} (4)

Each image site s contributes with ms sites to the set R (one per
observation). Therefore, each site of R is identified by a pair (s, j)
where s ∈ S and j ∈ Ts = {1, . . . , ms}. Figure 1 illustrates this
construction assuming that S is 3 × 3 grid.

A key question concerns the extension of the neighborhood sys-
tem N defined on S to the new set of sites R; let this new neighbor-
hood system be denoted as Q : R → 2R. Firstly, we should consider
that pairs of sites sharing the same node of the original set S should
be neighbors, that is,

∀s ∈ S, ∀i, j ∈ Ts, i �= j ⇒ ts,j ∈ Q(ts,i).

These links are necessary because labels at the same site of S must
be compared to guarantee that there are no repetitions. Secondly, the
nodes of R inherit the neighborhoods of the original set S, that is,
s′ ∈ N(s) ⇒ ts′,j ∈ Q(ts,i), regardless of i and j.

Under the MRF hypothesis, the label configuration X =
{xs,i, s ∈ S, i ∈ Ts} follows a Gibbs distribution

p(X) =
1

Zl
exp[−El(X)] =

1

Zl
exp

[
−
∑
C∈C

φC(XC)

]
(5)

where El is the labeling energy, C is the set of all the cliques associ-
ated with the neighborhood system Q (i.e., either singletons or sets
of mutually neighboring sites [11]), φC is the potential of clique C,
and XC is the subset of X corresponding to the sites of clique C.
Clearly, each subset of nodes of R corresponding to the same site of
S constitute a clique, as explained in the previous paragraph.

The labeling energy should be chosen in such a way that label
constraints are applied, namely,

• at any site, a sensor label cannot be repeated; formally, i �=
j ⇒ xs,i �= xs,j .

• the number of label transitions should be kept as small as pos-
sible (label continuity in space).

These two desiderata are embodied by considering the following two
types of clique potentials.

• The clique composed of the subset {ts,1, . . . , ts,ms} of sites
of R corresponding to the same node s of S are given a po-
tential that forbids label repetition:

φ{ts,1,...,ts,ms} xs,1, ..., xs,ms =

ms∑
i=1

ms∑
j=1
j �=i

ξ(xs,i − xs,j), (6)

where ξ is defined as ξ(z) = ∞, if z = 0, and ξ(z) = 0, if
z �= 0.

• The clique composed of a pair of sites of R, {ts,i, ts′,j}, such
that s′ ∈ N(s), is given the potential

φ{ts,i,ts′,j} xs,i, xs,j = −β δ(xs,i − xs′,j), (7)

where β is a positive parameter and δ is defined as δ(z) = 1,
if z = 0, and δ(z) = 0, if z �= 0.

Adding over all cliques of the two types defined in (6) and (7),
we finally obtain

El(X) =
∑
s∈S

ms∑
i=1

ms∑
j=1
j �=i

ξ(xs,i − xs,j)

−β
∑
s∈S

∑
s′∈Ns

ms∑
i=1

ms′∑
j=1

δ(xs,i, xs′,j). (8)

The posterior probability distribution p(X|Y ) ∝ p(Y |X)p(X)
can finally be obtained by combining (3) and (5), yielding p(X|Y ) ∝
exp(−E(X)), where

E(X) =
∑
s∈S

ms∑
i=1

log p(ys,i|xs,i) + El(X). (9)

A minimizer of E(X) is a maximum a posteriori (MAP) estimate of
X , given Y .

2.2. Unknown models

In the case where there are no a priori explicit models for the output
mechanisms, the energy function has to be built without resorting
to (3). Our approach is to keep the same labeling energy El, but
to use a data energy that simply emphasizes data continuity. More
specifically, if two neighboring observations were produced by the
same sensor, it is likely that their values are similar. This idea can
formalized as

E(X) =
∑
s∈S

∑
s′∈Ns

ms∑
i=1

ms∑
j=1

δ(xs,i − xs′,j)‖ys,i − ys′,j‖+ El(X),

(10)
where El is as given in (8).

3. ENERGY MINIMIZATION

3.1. Known Models

The minimization of (9) is similar to an image segmentation problem
with an MRF prior [6], [11], except that each site may have multi-
ple observations and multiple labels. Energy minimization (equiv-
alently, finding the MAP configuration) in MRF models is a very
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initialize label configuration: X
initialize gain matrix Δ = (δab): δab = E(Ma,b(X)) − E(X)
repeat

• find (p, q) = arg min
(a,b):a�=b

δab

• update the label configuration: X ← Mp,q(X)
• delete label q and renumber the remaining labels
• update Δ: remove the q − th line and column and

recalculate the p − th line and column
until stopping criterion is satisfied.

Table 1. Hierarchical agglomerative labeling (HAL) algorithm

active research area in computer vision, image analysis, and ma-
chine learning, and there are many available techniques: the classi-
cal Gibbs sampler with simulated annealing (GS-SA) [6] and itera-
tive conditional modes (ICM) [1]; the highest confidence first (HCF)
method [3]; graph-cut (GC) based methods [7]; methods based on
loopy belief propagation (LBP) [5], and enhancements thereof, such
as the tree-reweighted max-product (TRW-MP) algorithm [10].

Since the goal of this paper is mostly to present a proof of con-
cept, we consider simple and fast algorithms, namely ICM and HCF;
exploring more sophisticated alternatives is left for future work. In
each iteration of both ICM and HCF, a graph node (s, i) is selected;
in ICM this choice follows a given (deterministic or random) sched-
ule, while HCF has a built-in adaptive criterion to select which node
to update next. The label of this node is then chosen to minimize
the energy function, while keeping all other labels constant; this re-
quires the solution of a very simple problem, since only one variable
is allowed to change. However, this basic strategy is not adequate for
our problem, due to the presence of forbidden label configurations
at each node (recall that repeated labels are not allowed): it is not
possible to move from one legal configuration to another legal con-
figuration by changing only one label. To overcome this problem, at
each iteration, rather than selecting a side (s, i) ∈ R, we select a site
s ∈ S and minimize the energy with respect to {xs,1, . . . , xs,ms},
over all legal label configurations, by exhaustive search.

Since the number of legal configurations at site s is (M)ms =
M !/(M − ms)! (the Pochhammer symbol), this strategy may be-
come too costly if M is large and ms is not very close to 1. In future
work, we will consider recent efficient algorithms which take into
account forbidden label configurations [8].

3.2. Unknown Models

The minimization of (10) is a different problem, since there are no
a priori classes available. It does not make sense to modify the la-
bels of selected isolated sites (as in ICM or HCF). The form of (10)
suggests that we should try to “connect” (assign the same label to)
observations that are close in the space domain and in the feature
domain. This resembles single linkage hierarchical clustering [4];
this observation underlies the algorithm that we propose to mini-
mize (10), termed hierarchical agglomerative labeling (HAL). We
assume that each site (s, i) is initialized with a different label, and
proceed by merging pairs of neighboring nodes for which the obser-
vations are closest, and repeat this operation until a desired number
of labels is reached.

Let us now formalize the proposed algorithm. Initially, each of
the
∑

s∈S ms sites of S is given a different label. Let X be a label
configuration and consider the operation of merging labels a and b
(with b > a), meaning that every occurrence of b will be replaced
by a; this operation, which will be denoted by X ′ = Ma,b(X), is
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Fig. 2. 1D and 2D data obtained with multiple, incomplete and shuf-
fle sensors

formally defined by

X ′ = Ma,b(X) ⇔ x′
s,i =

a if xs,i = b,
xs,i otherwise.

(11)

Now, let Δ = (δab) be a gain matrix, where δab represents the en-
ergy reduction associated with the merging of a and b; i.e., the ele-
ments of the gain matrix are defined by

δab = E Ma,b(X) − E(X). (12)

After computing Δ we find the pair of labels yielding the largest
energy decrease if merged (i.e., the minimum off-diagonal element
of Δ),

(p, q) = arg min
(a,b):a�=b

δab, (13)

and perform the corresponding merging. Notice that for a pair of
labels to be merged, two conditions have to be satisfied: (a) the
resulting configuration is legal (no repeated labels at each site of
S), otherwise E Ma,b(X) would be infinity; (b) at least a pair of
neighboring sites had different labels before the merging, otherwise
no energy reduction would be possible. Naturally, after each merg-
ing operation (which decreases the number of labels by 1), the set of
labels should be renumbered and matrix Δ should also be rearranged
to reflect this renumbering, and the procedure repeated. Fortunately,
we do not have to recalculate all the elements of Δ, but only the
p − th line and the p − th column. All the other elements of Δ are
updated by adding an appropriate constant: δ′i,j = δi,j + C. The
algorithm is stopped if a pre-specified number of labels is reached or
if the amount of energy decrease falls below some threshold. Finally,
the HAL algorithm is summarized in Table 1.

4. RESULTS

The proposed model was tested with 1D data (sequences of length
40) and 2D data (20 × 20 grids), assuming known and unknown
sensor models. The number of sensors available at each site was
manually defined and the data was generated using Gaussian models,
with label-dependent means ys,i ∼ N(xs,i, σ

2), where σ = 0.2, as
shown in Fig. 2. In Fig. 2 (right), different observation mechanisms
are shown with different colors to facilitate the interpretation of 3D
visualization. This information (color labeling) is of course not given
to the algorithm.

In the first set of experiments we assume that the sensor model
is known and used the modified ICM and HCF algorithms proposed
to minimize (9). The results of HCF are shown in Fig. 3. In Fig. 3
(right) we represented each of the three labels by one primary color
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Fig. 3. Data labeling with HCF method (known sensor models)

(RGB) and multiple labels at the same site are represented by a mix-
ture of the corresponding colors. The ICM method achieves identical
results but requires a much larger number of iterations. Both meth-
ods solve the problems well, without labeling errors.

The second experiment used the same data, now assuming un-
known observation models. In this case, ICM does not work well, as
can be seen in Fig. 4 (1st row); the algorithm gets trapped in local
minima and cannot improve the solution by changing the labels at
a single site. Much better results are achieved with HCF and with
the proposed hierarchical agglomerative labeling (HAL) method de-
scribed in this paper. This is shown in Fig. 4 (2nd and 3rd rows). The
labeling results are strongly dependent on the order in which the la-
bels are updated. Both the HAL and HCF algorithms have their own
built-in criteria to select which labels to update, and both happen to
adopt a region growing strategy leading to coherent regions. On the
contrary, the ICM methods adopts a random schedule, which makes
it converge towards poor local minima of the energy.

5. CONCLUSIONS

We have addressed a class of problems where we assume that each
pixel is observed by multiple sensors, some of which are active and
some are not. We have a (maybe space-varying) number of observa-
tions and we do not know which observations correspond to which
sensors. We formulated two labeling problems for two different sce-
narios: (a) the sensor models are known; (b) the sensor models are
unknown. These two problems were addressed in a Markov random
field framework, using iterative estimation techniques. Modified ver-
sions of the ICM and HCF algorithms methods were proposed and
shown to perform well in scenario (a). For scenario (b), we proposed
and successfully applied a method inspired by hierarchical agglom-
eration of regions.

Several extensions will be addressed in future work. An obvi-
ous extension is the restoration of images assuming multiple, incom-
plete, and shuffled observations at each site. The application of these
algorithms in the context of surveillance, namely in the estimation of
multiple vector fields [9], will be addressed in another paper.
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