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Abstract. Hidden Markov models constitute a widely employed tool for
sequential data modelling; nevertheless, their use in the clustering con-
text has been poorly investigated. In this paper a novel scheme for HMM-
based sequential data clustering is proposed, inspired on the similarity-
based paradigm recently introduced in the supervised learning context.
With this approach, a new representation space is built, in which each
object is described by the vector of its similarities with respect to a pre-
determinate set of other objects. These similarities are determined using
hidden Markov models. Clustering is then performed in such a space.
By way of this, the difficult problem of clustering of sequences is thus
transposed to a more manageable format, the clustering of points (vec-
tors of features). Experimental evaluation on synthetic and real data
shows that the proposed approach largely outperforms standard HMM
clustering schemes.

1 Introduction

Unsupervised classification (or clustering) of data [1] is undoubtedly an inter-
esting and challenging research area: it could be defined as the organization of a
collection of patterns into groups, based on similarity. It is well known that data
clustering is inherently a more difficult task if compared to supervised classifica-
tion, in which classes are already identified, so that a system can be adequately
trained. This intrinsic difficulty worsens if sequential data are considered: the
structure of the underlying process is often difficult to infer, and typically differ-
ent length sequences have to be dealt with. Clustering of sequences has assumed
an increasing importance in recent years, due to its wide applicability in emer-
gent contexts like data mining and DNA genome modelling and analysis.
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Sequential data clustering methods could be generally classified into three
categories: proximity-based methods, feature-based methods and model-based meth-
ods. In the proximity-based approaches, the main effort of the clustering process
is in devising similarity or distance measures between sequences. With such mea-
sures, any standard distance-based method (as agglomerative clustering) can be
applied. Feature-based methods extract a set of features from each individual data
sequence that captures temporal information. The problem of sequence cluster-
ing is thus reduced to a more addressable point (vector of features) clustering.
Finally, model-based approaches assume an analytical model for each cluster,
and the aim of clustering is to find a set of such models that best fit the data.
Examples of models that can be employed include time series models, spectral
models, and finite state automata, as hidden Markov models (HMM) [2]. HMMs
are a widely used tool for sequence modelling, whose importance has rapidly
grown in the last decade. In the context of sequence clustering, HMMs have not
been extensively used, and only a few papers can be found in the literature: the
corresponding state of the art is presented in Section 2. The proposed approaches
mainly fall into the first (proximity-based) and in the third (model-based) cat-
egories. In this paper, an alternative HMM clustering scheme is proposed, clas-
sifiable as belonging to the feature-based class, that extends the similarity-based
paradigm [3–8]. This paradigm, which has been introduced recently for super-
vised classification purposes, differs from typical pattern recognition approaches
where objects are represented by sets (vectors) of features. In the similarity-based
paradigm, objects are described using pairwise (dis)similarities, i.e., distances
from other objects in the data set. The state of the art of the similarity-based
paradigm is reviewed in Section 2.

In this paper, we propose to extend this paradigm to the problem of clustering
sequences, using a new feature space, where each sequence is characterized by
its similarity to all other sequences. The problem is to find a suitable metric for
measuring (dis)similarities between sequences, and, as shown in [9, 10], HMMs
are a suitable tool for that purpose. In that space, clustering is then performed
using some standard techniques: the difficult task of sequence clustering is thus
transposed to a more manageable format, that of clustering points (vectors of
features). Experimental evaluation on synthetic and real data shows that this
approach largely outperforms standard HMM clustering schemes.

The rest of the paper is organized as follows: Section 2 summarizes the state
of the art in HMM-based clustering of sequences and reviews the similarity-
based paradigm. Section 3 reviews the fundamentals of hidden Markov models,
while Section 4 details the proposed strategy. Experimental results are reported
in Section 5. Finally, Section 6 is devoted to presenting conclusions and future
work directions.



2 State of the art

2.1 HMM-Based Sequence Clustering

HMMs have not been extensively employed for clustering sequences, with only
a few papers exploring this direction. More specifically, early approaches related
to speech recognition were presented in [11–13]. All these methods belong to the
proximity-based clustering class. HMMs were employed to compute similarities
between sequences, using different approaches (see for example [10, 14]), and
standard pairwise distance matrix-based approaches (as agglomerative hierar-
chical) were then used to obtain clustering. This strategy, which is considered
the standard method for HMM-based clustering of sequences, is better detailed
in the Section 3.1.

The first approach not directly linked to speech was presented by Smyth
[9] (see also the more general and more recent [15]). This approach consists in
two steps: first, it devises a pairwise distance between observed sequences, by
computing a symmetrized similarity. This similarity is obtained by training an
HMM for each sequence, so that the log-likelihood (LL) of each model, given
each sequence, can be computed. This information is used to build an LL matrix
which is then used to cluster the sequences in K groups, using a hierarchical
algorithm. In the second step, one HMM is trained for each cluster; the resulting
K models are then merged into a “composite” global HMM, where each HMM
is used to design a disjoint part of this “composite” model. This initial estimate
is then refined using the standard Baum-Welch procedure. As a result, a global
HMM modelling all the data is obtained. The number of clusters is selected using
a cross-validation method. With respect to the above mentioned taxonomy, this
approach can be classified as belonging to both the proximity-based class (a
pairwise distance is derived to initialize the model) and the model-based class
(a model for clustering data is finally obtained).

An example of an HMM-based method for sequence clustering is the one
proposed in [16], where HMMs are used as cluster prototypes. The clustering
is obtained by employing the rival penalized competitive learning (RPCL) algo-
rithm [17] (a method originally developed for point clustering) together with a
state merging strategy, aimed at finding smaller HMMs.

A relevant contribution to the model-based HMM clustering methodology
was made by Li and Biswas [18–22]). Basically, in their approach [18], the clus-
tering problem is addressed by focusing on the model selection issue, i.e. the
search for the HMM topology best representing data, and the clustering struc-
ture issue, i.e. finding the most likely number of clusters. In [19], the former
issue is addressed using the Bayesian information criterion [23], and extending
to the continuous case the Bayesian model merging approach [24]. Regarding
the latter issue, the sequence-to-HMM likelihood measure is used to enforce the
within-group similarity criterion. The optimal number of clusters is then deter-
mined maximizing the partition mutual information (PMI), which is a measure
of the inter-cluster distances. In [20], the same problems are addressed in terms
of Bayesian model selection, using BIC [23], and the Cheesman-Stutz (CS) ap-



proximation [25]. A more comprehensive version of this paper has appeared in
[22], where the method is also tested on real world ecological data. These cluster-
ing methodologies have been applied to specific domains, as physiology, ecology
and social science, where the dynamic model structure is not readily available.
Obtained results have been published in [21].

2.2 Similarity-based classification

The literature on similarity-based classification is not vast. Jain and Zongker [3]
have obtained a dissimilarity measure, for a handwritten digit recognition prob-
lem, based on deformable templates; a multidimensional scaling approach was
then used to project this dissimilarity space onto a low-dimensional space, where
a 1-nearest-neighbor (1-NN) classifier was employed to classify new objects. In
[4], Graepel et al investigate the problem of learning a classifier based on data
represented in terms of their pairwise proximities, using an approach based on
Vapnik’s structural risk minimization [26]. Jacobs and Weinshall [5] have stud-
ied distance-based classification with non-metric distance functions (i.e., that do
not verify the triangle inequality). Duin and Pekalska are very active authors in
this area3 having recently produced several papers [6–8]. Motivation and basic
features of similarity-based methods were first described in [6]; it was shown,
by experiments in two real applications, that a Bayesian classifier (the RLNC
- regularized linear normal density-based classifier) in the dissimilarity space
outperforms the nearest neighbor rule. These aspects were more thoroughly in-
vestigated in [8], where other classifiers in the dissimilarity space were studied,
namely on digit recognition and bioinformatics problems. Finally, in [7], a gen-
eralized kernel approach was introduced, dealing with classification aspects of
the dissimilarity kernels.

3 Hidden Markov Models

A discrete-time hidden Markov model λ can be viewed as a Markov model
whose states are not directly observed: instead, each state is characterized by
a probability distribution function, modelling the observations corresponding to
that state. More formally, an HMM is defined by the following entities [2]:

– S = {S1, S2, · · · , SN} the finite set of possible (hidden) states;
– the transition matrix A = {aij , 1 ≤ j ≤ N} representing the probability of

moving from state Si to state Sj ,

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N,

with aij ≥ 0,
∑N

j=1
aij = 1, and where qt denotes the state occupied by the

model at time t.

3 See http://www.ph.tn.tudelft.nl/Research/neural/index.html



– the emission matrix B = {b(o|Sj)}, indicating the probability of emission of
symbol o ∈ V when system state is Sj ; V can be a discrete alphabet or a
continuous set (e.g. V = IR), in which case b(o|Sj) is a probability density
function.

– π = {πi}, the initial state probability distribution,

πi = P [q1 = Si], 1 ≤ i ≤ N

with πi ≥ 0 and
∑N

i=1
πi = 1.

For convenience, we represent an HMM by a triplet λ = (A,B,π).
Learning the HMM parameters, given a set of observed sequences {Oi}, is

usually performed using the well-known Baum-Welch algorithm [2], which is able
to determine the parameters maximizing the likelihood P ({Oi}|λ). One of the
steps of the Baum-Welch algorithm is an evaluation step, where it is required
to compute P (O|λ), given a model λ and a sequence O; this can be computed
using the forward-backward procedure [2].

3.1 Standard HMM-based clustering of sequences

The standard proximity-based method for clustering sequences using HMMs can
be sumarized by the following algorithm. Consider a given a set of N sequences
{O1...ON} to be clustered; the algorithm performs the following steps:

1. Train one HMM λi for each sequence Oi.
2. Compute the distance matrix D = {D(Oi,Oj)}, representing a similarity

measure between sequences or between models; this is typically obtained
from the forward probability P (Oj |λi), or by devising a measure of dis-
tances between models. In the past, few authors have proposed approaches
to computing these distances: early approaches were based on the Euclidean
distance of the discrete observation probability, others on entropy, or on
co-emission probability of two models, or, very recently, on the Bayes prob-
ability of error (see [14] and the references therein).

3. Use a pairwise distance-matrix-based method (e.g., an agglomerative method)
to perform the clustering.

4 Proposed Strategy

The idea at the basis of the proposed approach is conceptually simple: to build a
new representation space, using the similarity values between sequences obtained
via the HMMs, and to perform the clustering in that space. Similarity values al-
low discrimination, since this quantity is high for similar objects/sequences, i.e.,
belonging to the same group, and low for objects of different clusters. Therefore,
we can interpret the similarity measure D(O,Oi) between a sequence O and
another “reference” sequence Oi as a “feature” of the sequence O. This fact



suggests the construction of a feature vector for O by taking the similarities be-
tween O and a set of reference sequences R = {Ok}, so that O is characterized
by a pattern (i.e., a set of features) {D(O,Ok), Ok ∈ R}.

More formally, given a set of sequences T = {O1...ON} to be clustered, the
proposed approach can be briefly described as follows:

– let R = {P1, ...,PR} be a set of R “reference” or “representative” objects;
these objects may belong to the set of sequences (R ⊆ T ) or may be other-
wise defined. In a basic case it could be R = T .

– train one HMM λr for each sequence Pr ∈ R;
– represent each sequence Oi of the data set by the set of similarities DR(Oi) to

the elements of the representative set R, computed with the HMMs λ1...λR

as:

DR(Oi) =











D(Oi,P1)
D(Oi,P2)

...
D(Oi,PR)











=
1

Ti











log P (Oi|λ1)
log P (Oi|λ2)

...
log P (Oi|λR)











(1)

where Ti is the length of the sequence Oi.
– perform clustering in IR|R|, where |R| denotes the cardinality of R, using

any general technique (not necessarily hierarchical) appropriate for clustering
points in an Euclidean space.

In the simplest case, the representative set R is the whole data set T , resulting in
a similarity space of dimensionality N . Even if computationally heavy for large
data sets, it is interesting to analyze the discriminative power of such a space.

5 Experimental results

In this section, the proposed technique is compared with the standard HMM
clustering scheme presented in Section 3. Once the likelihood similarity matrix
is obtained, clustering (step 3) is performed by using three algorithms:

– two variants of the agglomerative hierarchical clustering techniques: the com-

plete link scheme, and the Ward scheme [1].
– a non parametric, pairwise distance-based clustering technique, called clus-

tering by friends [27]: this technique produces a partition of the data using
only the similarity matrix. The partition is obtained by iteratively applying a
two-step transformation to the proximity matrix. The first step of the trans-
formation represents each point by its relation to all other data points, and
the second step re-estimates the pairwise distances using a proximity mea-
sure on these representations. Using these transformations, the algorithm
partitions the data into two clusters. To partition the data into more than
two clusters, the method has to be applied several times, recursively.

Regarding the proposed approach, after obtaining the similarity representation
with R = T (i.e. by using all sequences as representatives), we have used three
clustering algorithms:



– again the hierarchical agglomerative complete link and Ward methods, where
distance is the Euclidean metrics in the similarity space: this is performed
to compare the two representations with the same algorithms;

– standard K-means algorithm [1].

Clustering accuracies were measured on synthetic and real data. Regarding
the synthetic case, we consider a 3-class problem, where sequences were generated
from the three HMMs defined in Fig. 1. The data set is composed of 30 sequences
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Fig. 1. Generative HMMs for synthetic data testing: A is the transition matrix, π is
the initial state probability, and B contains the parameters of the emission density
(Gaussians with the indicated means and variances).

(of length 400) from each of the three classes; the dimensionality of the similarity
vectors is thus N = 90. Notice that this clustering task is not easy, as the three
HMMs are very similar to each other, only differing slightly in the variances of
the emission densities. The accuracy of clustering can be quantitatively assessed,
by computing the number of errors: a clustering error occurs if a sequence is
assigned to a cluster in which the majority of the sequences are from another
class. Results are presented in Table 1, averaged over 10 repetitions. From this
table it is possible to notice that the proposed methodology largely outperforms
standard clustering approaches: the best performing algorithm is the partitional
k-means on the similarity space, which produces an almost perfect clustering.
In order to have a better insight into the discriminative power of the proposed
feature space, we also computed the supervised classification results on this
synthetic example. Decisions were taken using the standard maximum likelihood

(ML) approach, where an unknown sequence is assigned to the class whose model
shows the highest likelihood. Note that this classification scheme does not make
use of the similarity space introduced in this paper, and represents the supervised



Table 1. Clustering results on synthetic experiments.

Standard classification

ML classification 94.78%

Standard clustering

Aggl. complete link 64.89%
Aggl. Ward 71.33%

Clus. by Friends 70.11%

Clustering on similarity space ST

Aggl. complete link 95.44%
Aggl. Ward 97.89%

k-means 98.33%

counterpart of the standard clustering approach proposed in Section 3.1. The
classification error is computed using the standard leave one out (LOO) scheme
[28]. It is important to note that clustering results in the similarity space are
better than the classification results, confirming the high discrimination ability
of the similarity space.

The real data experiment regards 2D shape recognition, where shapes were
modelled as proposed in [29]; briefly, object contours are described using curva-
ture, and these curvature sequences are modelled using HMMs with Gaussian
mixtures as emission probabilities. The object database used is the one from
Sebastian et al. [30], and is shown in Fig. 2. In this case, only the number of
clusters is known. The clustering algorithms try to group the shapes into differ-
ent clusters, based on their similarity. Results, averaged over 10 repetitions, are
presented in Table 2. From these tables it is evident that the proposed represen-
tation permits greater discrimination, resulting in a increasing of the clustering
accuracies. Also in this case, the ML classification accuracy was computed, using

Fig. 2. Objects set used for testing.



Table 2. Clustering results on real experiments.

Standard classification

ML classification 81.55%

Standard clustering

Aggl. complete link 78.69%
Aggl. Ward 22.86%

Clus. by Friends 70.0%

Clustering on the similarity space ST

Aggl. complete link 63.10%
Aggl. Ward 77.62%

k-means 88.21%

the LOO scheme. From table 2 it is possible to note that the clustering results are
better than the classification performances, confirming the high discriminative
potentiality of the proposed similarity space.

6 Conclusions

In this paper, a scheme for sequence clustering, based on hidden Markov mod-
elling and the similarity-based paradigm, was proposed. The approach builds
features in which each sequence is represented by the vector of its similarities to
a predefined set of reference sequences. A standard point clustering method is
then performed on those representations. As a consequence, the difficult process
of clustering sequences is cast into a simpler problem of clustering points, for
which well established techniques have been proposed. Experimental evaluation
on synthetic and real problems has shown that the proposed approach largely
outperforms the standard HMM-based clustering approaches.

The main drawback of this approach is the high dimensionality of the re-
sulting feature space, which is equal to the cardinality of the data set. This is
obviously a problem, and represents a central topic for future investigation. We
have previously addressed this issue in the context of similarity-based super-
vised learning [31]. In this unsupervised context, one idea could be to use some
linear reduction techniques, in order to reduce the dimensionality of the space.
Another idea is to directly address the problem of adequately choosing the rep-
resentatives: this problem could be casted in the context of feature selection for
unsupervised where the prototypes to be chosen are the features to be selected.
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