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Abstract—Recently developed methods for learning sparse classifiers are among the state-of-the-art in supervised learning. These

methods learn classifiers that incorporate weighted sums of basis functions with sparsity-promoting priors encouraging the weight

estimates to be either significantly large or exactly zero. From a learning-theoretic perspective, these methods control the capacity of

the learned classifier by minimizing the number of basis functions used, resulting in better generalization. This paper presents

three contributions related to learning sparse classifiers. First, we introduce a true multiclass formulation based on multinomial logistic

regression. Second, by combining a bound optimization approach with a component-wise update procedure, we derive fast exact

algorithms for learning sparse multiclass classifiers that scale favorably in both the number of training samples and the feature

dimensionality, making them applicable even to large data sets in high-dimensional feature spaces. To the best of our knowledge,

these are the first algorithms to perform exact multinomial logistic regression with a sparsity-promoting prior. Third, we show how

nontrivial generalization bounds can be derived for our classifier in the binary case. Experimental results on standard benchmark

data sets attest to the accuracy, sparsity, and efficiency of the proposed methods.

Index Terms—Supervised learning, classification, sparsity, Bayesian inference, multinomial logistic regression, bound optimization,

expectation maximization (EM), learning theory, generalization bounds.
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1 INTRODUCTION

RECENTLYdeveloped sparse classification algorithms have
quickly established themselves among the state-of-the-

art in supervised learning. This family of algorithms
includes the relevance vector machine (RVM) [35], the sparse
probit regression (SPR) algorithm [10], [11], sparse online
Gaussian processes [6], the informative vector machine (IVM)
[22], and the joint classifier and feature optimization (JCFO)
algorithm [16], [17]. These algorithms learn classifiers that
are constructed as weighted linear combinations of basis
functions; the weights are estimated in the presence of
training data. In many of these algorithms, the set of
permitted basis functions is unrestricted; e.g., they may be
the original features themselves, some nonlinear transfor-
mation of those features, or even kernels centered on the
training samples. In this latter case, the learned classifier
will be similar in flavor to a support vector machine (SVM) [5],
[38], although, in contrast to an SVM, the kernel is not
required to satisfy the Mercer condition.

Since the goal of sparse classification algorithms is to
learn as sparse a classifier as possible, the likelihood of the
weights in the presence of training data is typically
regularized by some prior belief about the weights that
promotes their sparsity. The prior is sometimes implicit—as
is the case with the automatic relevance determination (ARD)
framework [28] exploited by the RVM—but is often explicit
(as in, e.g., [11], [17], [34]). In the latter case, a common
choice of prior in this family of algorithms is the Laplacian,
which results in an l1-penalty, analogous to the LASSO
penalty for regression [34]. The sparsity-promoting nature
of the Laplacian prior is theoretically well-justified (see [9],
[12], [29], as well as references therein) and has been found
to be practically and conceptually useful in several research
areas [4], [23], [30], [41]. Another interesting property of the
Laplacian is that it is the most heavy-tailed density that is
still log-concave (though not strictly so); thus, when
combined with a concave log-likelihood, it leads to a
concave log-posterior with a unique maximum. Since we
learn classifiers under a maximum a posteriori criterion in
this paper, the existence of a unique maximum proves to be
quite advantageous.

From a learning-theoretic perspective, controlling the
capacity of the learned classifier is necessary to guarantee
good generalization performance [38]. In the context of
sparse methods, controlling the capacity of the learned
classifier is accomplished by minimizing the number of
basis functions used in constructing the decision surface.
The sparsity-promoting prior plays a key role in this process
by encouraging the weight estimates to be either signifi-
cantly large or exactly zero, which has the effect of
automatically removing irrelevant basis functions from
consideration. If the basis functions are chosen to be the
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original features themselves, this results in automatic
feature selection as a side-effect of classifier design, enabling
the classifier to effectively overcome the curse of dimension-
ality. If the basis functions are kernels, methods like JCFO
can be used to achieve sparsity in the kernel basis functions
and automatic feature selection at the same time [16], [17].

In this paper, we address three issues related to learning
sparse classifiers. First, we adopt a genuinely multiclass
formulation based on multinomial logistic regression
introducing the notation for this formulation in the next
section; strictly speaking, a multinomial logistic regression
formulation for multiclass classification is certainly not new
(for example, see [2]), but it is rarely employed in the
pattern recognition and machine learning literature.
Although not common in the current literature, such an
approach can be fruitfully extended to many other sparse
classification algorithms, such as the RVM or IVM. We
highlight this aspect of our approach in order to contrast it
with “1-versus-all” and other similar heuristics that are
frequently adopted in current practice.

Second, by combining a bound optimization approach
[7], [18], [19] with a component-wise update procedure, we
derive in Section 3 a series of new fast algorithms for
learning a sparse multiclass classifier that scale favorably in
both the number of training samples and the feature
dimensionality, making these methods applicable even to
large data sets in high-dimensional feature spaces. To the
best of our knowledge, these are the first algorithms to
perform exact multinomial logistic regression with an
explicit sparsity-promoting prior. We call the proposed
sparse multinomial logistic regression approach SMLR (pro-
nounced “smaller”). Its nonsparse counterpart, which we
formulate only for the purposes of comparison, is based on
a Gaussian prior (l2-penalty) and called RMLR (for ridge
multinomial logistic regression).

Third, in Section 4, we derive generalization bounds for
our methods based on recently published learning-theoretic
results [26], [33]. Similar in nature to the margin bounds
that are frequently used to justify the SVM [38], these
bounds can be used to provide theoretical insight into and
justification for our algorithm.

Section 5 contains a series of experimental results on
benchmark data sets that attest to the accuracy and
efficiency of these methods. We conclude, in Section 6,
with a critical discussion of our algorithms and learning-
theoretical bounds.

2 MULTINOMIAL LOGISTIC REGRESSION

The goal of a supervised learning algorithm is to leverage a
set of n training samples in order to design a classifier that
is capable of distinguishing between m classes on the basis
of an input vector of length d. In the context of a linear
classifier, the d components of the input vector xx ¼
½x1; . . . ; xd�T 2 IRd are simply the d observed features. In a
more general context, the d components of xx are the values
of d (possibly nonlinear) basis functions computed from the
observed features. In the latter case, while d is the number
of basis functions, it need not be the number of originally
observed features. For example, in a kernel classifier, the
basis functions will be kernels centered at the training

samples, meaning that d will equal n regardless of the
number of originally observed features [5], [15]. To simplify
notation and exposition, we will denote any of these choices
simply as xx and remind the reader that what follows is
equally applicable in the context of linear, nonlinear, or
kernel classification.

We adopt the common technique of representing the
class labels using a “1-of-m” encoding vector yy ¼ ½yð1Þ;
yð2Þ; . . . ; yðmÞ�T such that yðiÞ ¼ 1 if xx corresponds to an
example belonging to class i and yðiÞ ¼ 0 otherwise. The
n training samples can thus be represented as a set of
training data D ¼ fðxx1; yy1Þ; . . . ; ðxxn; yynÞg.

Under a multinomial logistic regression model, the
probability that xx belongs to class i is written as

P yðiÞ ¼ 1jxx;ww
� �

¼
exp wwðiÞTxx
� �

Pm
j¼1

exp wwðjÞTxx
� � ; ð1Þ

for i 2 f1; . . . ;mg, where wwðiÞ is the weight vector corre-
sponding to class i and the superscript T denotes vector/
matrix transpose. For binary problems (m ¼ 2), this is
known as a logistic regression model; for m > 2, the usual
designation is multinomial logistic regression (or soft-max
in the neural networks literature). Because of the normal-
ization condition

Xm
i¼1

P yðiÞ ¼ 1jxx;ww
� �

¼ 1;

the weight vector for one of the classes need not be
estimated. Without loss of generality, we thus set wwðmÞ ¼ 0

and the only parameters to be learned are the weight
vectors wwðiÞ for i 2 f1; . . . ;m� 1g. For the remainder of the
paper, we use ww to denote the ðdðm� 1ÞÞ-dimensional vector
of parameters to be learned.

In a supervised learning context, the components of ww

are estimated from the training data D. To perform
maximum likelihood (ML) estimation of ww, one simply
maximizes the log-likelihood function,

‘ðwwÞ ¼
Xn
j¼1

logP yyjjxxj; ww
� �

¼
Xn
j¼1

Xm
i¼1

y
ðiÞ
j wwðiÞTxxj � log

Xm
i¼1

exp wwðiÞTxxj

� �" #
;

ð2Þ

which is typically accomplished using Newton’s method,
also known, in this case, as iteratively reweighted least squares
(IRLS). Although there are other methods for performing
this maximization, none clearly outperforms IRLS [27].
However, when the training data is separable, the function
‘ðwwÞ can be made arbitrarily large, so a prior on ww is crucial.
This motivates the adoption of a maximum a posteriori
(MAP) estimate (or penalized ML estimate),

bwwwwMAP ¼ argmax
ww

LðwwÞ ¼ argmax
ww

‘ðwwÞ þ log pðwwÞ½ �;

with pðwwÞ being some prior on the parameters ww.
Although the IRLS algorithm can be trivially modified to

accommodate a Gaussian prior on ww (see, for example, [43]),
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other priors are not so easily handled. In particular, a

sparsity-promoting Laplacian prior,

pðwwÞ / expð��kwwk1Þ; ð3Þ

where kwwk1 ¼
P

l jwlj denotes the l1 norm, can’t be used

with IRLS because it is nondifferentiable at the origin. In the

next section, we describe a bound optimization algorithm

for estimating ww that can be used with a Laplacian prior but

has the same computational cost as IRLS.

3 FAST ITERATIVE ALGORITHMS

3.1 Bound Optimization Algorithms

Consider LðwwÞ ¼ ‘ðwwÞ þ log pðwwÞ, the objective function to

be maximized. In the bound optimization approach [19],

LðwwÞ is optimized by iteratively maximizing a surrogate

function Q, thus:

bwwwwðtþ1Þ ¼ argmax
ww

QðwwjbwwwwðtÞÞ: ð4Þ

Such a procedure monotonically increases the value of the

objective function at each iteration if the surrogate function

satisfies a certain key condition, namely, that LðwwÞ �
QðwwjbwwwwðtÞÞ attains its minimum when ww ¼ bwwwwðtÞ. This can be

seen easily:

Lðbwwwwðtþ1ÞÞ ¼ Lðbwwwwðtþ1ÞÞ �Qðbwwwwðtþ1ÞjbwwwwðtÞÞ þQðbwwwwðtþ1ÞjbwwwwðtÞÞ
� LðbwwwwðtÞÞ �QðbwwwwðtÞjbwwwwðtÞÞ þQðbwwwwðtþ1ÞjbwwwwðtÞÞ
� LðbwwwwðtÞÞ �QðbwwwwðtÞjbwwwwðtÞÞ þQðbwwwwðtÞjbwwwwðtÞÞ
¼ LðbwwwwðtÞÞ;

ð5Þ

where the first inequality results from the condition that

LðwwÞ �QðwwjbwwwwðtÞÞ attains its minimum when ww ¼ bwwwwðtÞ,

while the second inequality stems from the fact that

QðwwjbwwwwðtÞÞ is maximized when ww ¼ bwwwwðtþ1Þ (see (4)). The

standard expectation-maximization (EM) algorithm for ML

estimation with missing data is a special case of this

approach, with the key condition being a consequence of

Jensen’s inequality [8], [18], [19].
As suggested in [7], [19], the bound optimization

perspective allows us to derive alternative EM-style algo-

rithms without invoking the concept of missing data. In

fact, a monotonic algorithm of the form (4) can be obtained

from any surrogate function Qðwwjww0Þ satisfying the key

condition. Finding such a surrogate function can often be

achieved by purely analytical methods (e.g., using con-

venient inequalities), which clearly separates the computa-

tional from the probabilistic modeling aspects of the

problem [7].
One way to obtain a surrogate function Qðwwjww0Þ when

LðwwÞ is concave is by using a bound on its Hessian (which,

if it exists, is negative definite) [3], [18], [19]. If the HessianH

is lower bounded, i.e., if there exists a negative definite

matrix B such that1 HðwwÞ � B for any ww, then it is easy to

prove that, for any ww0,

LðwwÞ�Lðww0Þ þ ðww� ww0ÞTgðww0Þ þ 1

2
ðww� ww0ÞTBðww� ww0Þ;

where gðww0Þ denotes the gradient of LðwwÞ computed at ww0.

Letting the right-hand side of the previous inequality be

denoted as Qðwwjww0Þ, we have LðwwÞ �Qðwwjww0Þ � 0, with

equality if and only if ww ¼ ww0. Thus, Qðwwjww0Þ is a valid

surrogate function and we obtain a monotonic algorithm by

letting

QðwwjbwwwwðtÞÞ ¼ wwT gðbwwwwðtÞÞ �BbwwwwðtÞ
� �

þ 1

2
wwTBww; ð6Þ

where terms that are irrelevant for the maximization with

respect to ww have been dropped. Maximization of this

surrogate function leads to the simple update equation

bwwwwðtþ1Þ ¼ bwwwwðtÞ �B�1gðbwwwwðtÞÞ; ð7Þ

which is similar to an IRLS iteration, but with B replacing

the Hessian. The crucial advantage is that the inverse B�1

can be precomputed once, whereas in IRLS, a different

matrix must be inverted at each iteration [3]. In the

following three subsections, we will show how this update

equation can be applied to maximum likelihood (ML)

multinomial logistic regression as an alternative to IRLS and

how simple variations can handle maximum a posteriori

(MAP) multinomial logistic regression with either a

Gaussian (l2-penalty) or Laplacian (l1-penalty) prior on the

weights.

3.2 Application to ML Multinomial Logistic
Regression

Let p
ðiÞ
j ðwwÞ ¼ P ðyðiÞj ¼ 1jxxj; wwÞ and then let us define the

vector ppjðwwÞ ¼ ½pð1Þj ðwwÞ; . . . ; pðm�1Þ
j ðwwÞ�T and the diagonal

matrix PPjðwwÞ ¼ diagfpð1Þj ðwwÞ; . . . ; pðm�1Þ
j ðwwÞg. For ML multi-

nomial logistic regression, the objective function LðwwÞ is just
the log-likelihood ‘ðwwÞ, as given in (2). This is a concave

function with Hessian (see [2])

HðwwÞ ¼ �
Xn
j¼1

PPjðwwÞ � ppjðwwÞ ppTj ðwwÞ
� �

� xxj xx
T
j

� �
;

where � is the Kronecker matrix product. Since the xxj are

d-dimensional and the ppjðwwÞ are ðm� 1Þ-dimensional, HðwwÞ
is a square matrix of size dðm� 1Þ. As shown in [2], the

Hessian is, in fact, lower bounded by a negative definite

matrix that does not depend on ww,

HðwwÞ � � 1

2
½ I� 11T =m� �

Xn
j¼1

xxj xx
T
j � B; ð8Þ

where 1 ¼ ½1; 1; . . . ; 1�T . The gradient of ‘ðwwÞ is also simple

to obtain in closed form:

gðwwÞ ¼
Xn
j¼1

ðyy0j � ppjðwwÞÞ � xxj; ð9Þ

where yy0j ¼ ½yð1Þj ; y
ð2Þ
j ; . . . ; y

ðm�1Þ
j �T . Finally, the bound opti-

mization iterations for ML multinomial logistic regression

have the form (7), with gðwwÞ given in (9) and B given in (8).
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3.3 Application to MAP Multinomial Logistic
Regression with Gaussian Prior

The algorithm described in the previous section is trivially
modified in the presence of a Gaussian prior on ww, as used
in ridge regression or the penalized logistic regression
method considered in [43]. In this case, the objective
function is

LðwwÞ ¼ ‘ðwwÞ � �

2
kwwk22;

where k�k22 denotes a squared Euclidean norm and � is the
inverse prior variance. The only modification of the
algorithm is that, in each iteration, we now have to
maximize

QðwwjbwwwwðtÞÞ � �

2
kwwk22;

leading to the update equation

bwwwwðtþ1Þ ¼ ðB� �IÞ�1 BbwwwwðtÞ � gðbwwwwðtÞÞ
� �

: ð10Þ

Since we can precompute ðB� �IÞ�1B and ðB� �IÞ�1, each
iteration of this bound optimization method for multi-
nomial logistic regression under a Gaussian prior is still
significantly cheaper than each IRLS iteration for ML
multinomial logistic regression.

3.4 Application to MAP Multinomial Logistic
Regression with Laplacian Prior

However, our main goal is not to use a Gaussian prior,
but a Laplacian prior, given in (3). This is nontrivial at
first glance because QðwwjbwwwwðtÞÞ � �kwwk1 cannot be max-
imized in closed form. We address this problem by
identifying a lower bound for the log-prior also. To this
end, we write jwlj ¼

ffiffiffiffi
w2
l

p
and exploit the concavity of the

square-root. In particular,

ffiffiffi
u

p
�

ffiffiffi
v

p
þ u� v

2
ffiffiffi
v

p ¼ u

2
ffiffiffi
v

p þ
ffiffiffi
v

p

2
;

with equality if and only if u ¼ v; thus, for any ww0,

� kwwk1 � � 1

2

X
l

w2
l

jw0
lj
þ
X
l

jw0
lj

 !
;

with equality if and only if ww ¼ ww0. Using this inequality, we
can obtain a surrogate function for LðwwÞ ¼ ‘ðwwÞ � �kwwk1;
after dropping all terms that are independent of ww, we now
have to maximize

wwT gðbwwwwðtÞÞ �BbwwwwðtÞ
� �

þ 1

2
wwT ðB� ��ðtÞÞww; ð11Þ

where

�ðtÞ ¼ diag bwwðtÞ
1

��� ����1

; . . . ; bwwðtÞ
dðm�1Þ

��� ����1
� �

:

The update equation for the algorithm, obtained by
maximizing (11) with respect to ww, is

bwwwwðtþ1Þ ¼ ðB� ��ðtÞÞ�1 BbwwwwðtÞ � gðbwwwwðtÞÞ
� �

: ð12Þ

A numerically more convenient (but equivalent [11]) form is

bwwwwðtþ1Þ ¼ �ðtÞ �ðtÞB�ðtÞ��I
� ��1

�ðtÞ BbwwwwðtÞ� gðbwwwwðtÞÞ
� �

; ð13Þ

where

�ðtÞ ¼ diag bwwðtÞ
1

��� ���1=2; . . . ; bwwðtÞ
dðm�1Þ

��� ���1=2n o
;

since it avoids inverse weight estimates, some of which are
expected to go zero.

Unfortunately, the matrix to be inverted at each iteration
is no longer constant and, thus, the inverse cannot be
precomputed. Consequently, we are back to the computa-
tional cost of the original IRLS algorithm. Notice, however,
that we can now perform exact MAP multinomial logistic
regression under a Laplacian prior for the same cost as the
original IRLS algorithm for ML estimation. Moreover,
unlike with the RVM and SPR approaches, we are dealing
with a concave objective function with a unique (global)
maximum and, thus, careful initialization is not required.

3.5 Component-Wise Update Procedure

The algorithm derived in the previous section scales
unfavorably with the dimension of ww. The matrix inversion
at each iteration requires OððdmÞ3Þ operations and OððdmÞ2Þ
storage. This is primarily problematic when d is very large,
either because the original number of features is very large
(as in many bioinformatics applications) or because we are
performing kernel classification with a very large training
set. We address this problem by proposing a component-
wise update procedure that avoids matrix inversions and,
thus, scales much more favorably. The key idea will be to
take the surrogate function and maximize it only with
respect to one of the components of ww, while holding the
remaining components at their current values. Under the
Laplacian prior, it turns out that the component-wise
update equation has a closed form solution with no need
for bounding the log-prior as we did in the previous section.

For any log-likelihood whose Hessian can be lower
bounded by some matrix B together with a Laplacian prior,
the function to be maximized at each iteration is

wwT gðbwwwwðtÞÞ �BbwwwwðtÞ
� �

þ 1

2
wwTBww� �kwwk1: ð14Þ

If we maximize (14) with respect to only one of the
components of ww, say wk, we obtain an update equation in

which the value of bwwðtþ1Þ
k is allowed to change from its

value in the previous estimate bwwðtÞ
k , but, for all l 6¼ k, bwwðtþ1Þ

l

is just the same as bwwðtÞ
l . This update equation guarantees

that the value of the bound function is nondecreasing at
each step, which is a weaker condition than (4), but still
sufficient to guarantee monotonicity of the resulting
algorithm. After some manipulation, we have

bwwðtþ1Þ
k ¼ soft bwwðtÞ

k � gkðbwwwwðtÞÞ
Bkk

;
��

Bkk

 !
; ð15Þ

where Bij denotes the ði; jÞ element of matrix B, gkðbwwwwðtÞÞ is
the kth element of the gradient vector gðbwwwwðtÞÞ, and

softða; �Þ ¼ signðaÞ maxf0; jaj � �g
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is the soft threshold function, well-known in the wavelets
literature [24]. The weight update equation (15) provides an
explicit criterion for whether or not to include each basis
function in the classifier, in a similar vein to the criterion
derived in [36].

In the case of a multinomial logistic likelihood, B can be

precomputed according to (8) so the computational cost of
(15) is essentially that of computing one element of the
gradient vector, gðbwwwwðtÞÞ; this can be done with OðnÞ cost
according to (9), given pp. With careful programming, after
changing only one component of ww, we can again obtain the
required components of pp for computing gkðbwwwwðtÞÞ also with

OðnÞ cost. Thus, the cost of implementing (15) for one basis
function remains OðnÞ. A full sweep over all the dðm� 1Þ
components of ww has OðndmÞ cost; for large d, this can be
orders of magnitude better than the OððdmÞ3Þ cost of the
matrix inversion in (13). Another advantage of this
approach is that its memory requirement is Oðdðmþ nÞÞ;
which, depending on the relative sizes of d and n, could be

even less than what is needed for storing the training dataD.
Of course, a component-wise update equation can also

be derived under a Gaussian prior:

bwwðtþ1Þ
k ¼ Bkk

Bkk � �
bwwðtÞ
k � gkðbwwwwðtÞÞ

Bkk

 !
: ð16Þ

Note that, in this case, no strong inclusion/exclusion
criterion for basis functions remains, which is consistent
with the fact that the Gaussian is not a sparsity-promoting

prior. A related component-wise update algorithm was
proposed in [42], which is only applicable in the case of a
Gaussian prior (not a Laplacian one).

One issue that has to be addressed is the choice of
component to update at each step. Because of the concavity
of our objective function, even a simple-minded visitation
schedule is guaranteed to converge to the global maximum,

albeit perhaps not as rapidly as more sophisticated ones. In
all the experiments reported in this paper, we update the
weights in a simple cyclic fashion, with one small
modification: When weight bwwðtÞ

k is zero, it is updated with
a probability that decreases geometrically with the number
of iterations, reflecting our decreasing need to reestimate

weights for basis functions that are currently excluded.
Finally, we should point out that a component-wise

algorithm has also been recently proposed for the RVM,
with very good experimental results [36]. However, since
the objective function for learning RVM classifiers is not
concave, the component-wise update algorithm for the
RVM is not guaranteed to converge to the global maximum

and may critically depend on both the initialization and the
visitation schedule.

4 GENERALIZATION BOUNDS

The ultimate performance measure of a binary classifier2

f : IRd ! f�1;þ1g is the true risk, or expected loss, with
respect to the true joint probability distribution P ðxx; yÞ,

Rtrue½f � ¼ EP ðxx;yÞ lðy; fðxxÞÞ½ �; ð17Þ

where l : f�1;þ1g2 ! IRþ
0 is the loss function; in particular,

lðy; fðxxÞÞ is the loss incurred by deciding fðxxÞwhen the true
label is y.

Of course, Rtrue½f� is not directly computable since we do
not have access to P ðxx; yÞ, but only to a training set
D ¼ fðxx1; y1Þ; . . . ; ðxxn; ynÞg, assumed to have been generated
in an i.i.d. way following P ðxx; yÞ. In the presence of such a
training set, we can compute the empirical risk, which is the
sample version of (17),

Rsample½f;D� ¼ 1

n

Xn
i¼1

lðyi; fðxxiÞÞ: ð18Þ

One of the key goals of learning theory is to obtain upper
bounds on Rtrue½f� that hold uniformly for any P ðxx; yÞ. In
the probably approximately correct (PAC) framework [37],
such bounds are of the form

P D : Rtrue½f � � boundðf;D; �; nÞð Þ � �; ð19Þ

where the probability is over the random draw of a
training set D consisting of n i.i.d. samples from P ðxx; yÞ. In
other words, for any � chosen by the user, the true risk
Rtrue½f � will be less than the bound term in (19) with
probability ð1� �Þ. However, as the probability � becomes
smaller, the bound becomes less tight; in the limit � ! 0,
the error bound becomes trivial and uninformative, i.e.,
boundðf;D; �; nÞ becomes equal to or larger than one.

Vapnik-Chervonenkis (VC) theory is probably the best
known approach to deriving bounds [38]; however, VC
theory usually leads to very loose bounds unless one has
extremely large training sets. Other more recent approaches
include compression bounds [13] and minimum description
length (MDL) bounds [38], as well as bounds based on
Rademacher complexities [1], [26] andPAC-Bayesianbounds
[25], [33]. It has often been noted that compression andMDL
bounds are not directly applicable to sparse classification
algorithms like the RVM (e.g., [15, p. 178]), so we focus our
attention on Rademacher and PAC-Bayesian bounds.

It has been shown that sparsity alone does not guarantee
good generalization performance, especially in algorithms
that take sparsity to extremes [39], so to rigorously analyze
the generalization performance of our SMLR algorithm, we
derive two closely related upper bounds on the error rate of
binary logistic classifiers with a Laplacian prior. The first of
these bounds is based on the Rademacher complexity
results of [1], [26], while the second uses the recent PAC-
Bayesian formalism [25], [33]. In the next two sections, we
introduce some notation and outline the strategy used in
deriving the bounds. Subsequently, we shall state our
results formally.

4.1 Three Kinds of Classifiers

Consider both a point estimate bwwww of the weight vector ww and
any distribution qðwwÞ over the space of possible weight
vectors. Given a data sample xx, we define three different
kinds of classifiers for assigning a label byy to xx:

. Point Classifier (PC): This kind of classifier uses only
the point estimate bwwww, outputing a class label
according to the rule: byy ¼ signðbwwwwTxxÞ � fPCðxx; bwwwwÞ.
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2. To simplify notation, this section will only focus on binary problems,
with the two classes denoted as f�1;þ1g.



. Bayes Voting Classifier (BVC): This kind of classifier
uses a voting scheme based on qðwwÞ and outputs a
class label according to the rule:

byy ¼ sign EqðwwÞ½signðwwTxxÞ�
� �

� fBVCðxx; qÞ: ð20Þ

. Gibbs Classifier (GC): This kind of classifier draws a ww
from the distribution qðwwÞ and outputs a class label
according to the rule: byy ¼ signðwwTxxÞ � fGCðxx;wwÞ.
Note that, unlike the previous two cases, fGC is a
random variable because ww here is also a random
variable: When presented repeatedly with the same
sample xx, the GC may produce different decisions.

4.2 Strategy for Obtaining the Bounds

The strategy for obtaining the error bounds on our

classifiers is as follows:

1. The algorithms presented in this paper yield point
classifiers based on MAP point estimates bwwww of the
weight vector ww; we are thus interested in the error
rate of a PC. However, the Rademacher complexity
formalism bounds the error rate of a BVC and the
PAC-Bayesian approach bounds the error rate of a
GC. Therefore, our first step is to relate the error rate
of a PC to those of a BVC and a GC; this can be done
by restricting our attention to symmetric distribu-
tions qbwwwwðwwÞ centered on bwwww. While these results are
already known (e.g., see [15]), we provide proofs for
completeness.

2. We compute an analytical expression for the Kull-
back-Leibler divergence (KLD) between two Lapla-
cian distributions because we will later derive two
bounds, each of which depends on the KLD between
our Laplacian prior pðwwj�Þ and any Laplacian
distribution qbwwwwðwwj�Þ centered on bwwww.

3. The Rademacher and PAC-Bayesian theorems pro-
vide bounds on the error rates of a BVC and a GC,
respectively, that depend on the KLD between the
prior p and the distribution q. As originally stated,
the theorems allow q to be an arbitrary distribution
that may even depend on the observed data and that
can be chosen so as to provide as tight a bound as
possible. Because our prior pðwwj�Þ is Laplacian, we
restrict our attention to Laplacian distributions
qbwwwwðwwj�Þ so that we can use an analytical expression
for the KLD. With this restriction in place, we derive
modified statements of the bounds in both the
Rademacher and PAC-Bayesian formalisms.

4. Since the error bounds for all distributions from this
family hold simultaneously, we choose the tightest
error bound from this family. Using the previously
derived relationship between the error rate of a PC
and the error rates of a BVC and a GC, we obtain
two final error bounds for our PC.

4.3 Relationship between Error Rates of PC, BVC,
and GC

The following lemma shows that the error rates of a PC

fPCðxx; bwwwwÞ and a BVC fBVCðxx; qÞ are identical, provided that

the BVC employs a symmetric distribution qðwwÞ ¼ qbwwwwðwwÞ
that is centered on bwwww.
Lemma 1. For any sample xx, the classification decision of a BVC

fBVCðxx; qbwwwwðwwÞÞ ¼ sign

Z
signðwwTxxÞqbwwwwðwwÞdww	 


ð21Þ

is identical to that of a PC fPCðxx; bwwwwÞ ¼ signðbwwwwTxxÞ if qbwwwwðwwÞ is
a symmetric distribution with respect to bwwww, that is, if

qbwwwwðwwÞ ¼ qbwwwwðewwwwÞ, where ewwww � 2bwwww� ww is the symmetric reflec-

tion of ww about bwwww.
Proof. For every ww in the domain of the integral, ewwww is also

in the domain of the integral. Since ewwww ¼ 2bwwww� ww, we
have that wwTxxþ ewwwwTxx ¼ 2bwwwwTxx. Three cases have to be
considered:

1. Case 1: When signðwwTxxÞ ¼ �signðewwwwTxxÞ or wwTxx ¼ewwwwTxx ¼ 0, the total contribution from ww and ewwww to
the integral is 0 since

signðwwTxxÞqbwwwwðwwÞ þ signðewwwwTxxÞqbwwwwðewwwwÞ ¼ 0:

2. Case 2: When signðwwTxxÞ ¼ signðewwwwTxxÞ, since wwTxx
þewwwwTxx ¼ 2bwwwwTxx, it follows that

signðbwwwwTxxÞ ¼ signðwwTxxÞ ¼ signðewwwwTxxÞ:

Thus,

sign signðwwTxxÞqbwwwwðwwÞ þ signðewwwwTxxÞqbwwwwðewwwwÞh i
¼ signðbwwwwTxxÞ:

3. Case 3: When wwTxx ¼ 0; ewwwwTxx 6¼ 0 or wwTxx 6¼ 0;ewwwwTxx ¼ 0, we have again from wwTxxþ ewwwwTxx ¼ 2bwwwwTxx
that

sign signðwwTxxÞqbwwwwðwwÞ þ signðewwwwTxxÞqbwwwwðewwwwÞh i
¼ signðbwwwwTxxÞ:

Unless bwwww ¼ 0 (in which case the classifier is unde-
fined), Case 2 or 3 will occur for at least some of the ww in
the domain of the integral. Hence, the lemma is true. tu

The next lemma relates the error rates of a BVC and a GC:

Lemma 2. For any labeled sample ðxx; yÞ, the error rate of a BVC
using any distribution qðwwÞ is no more than twice the expected

error rate of a GC using the same distribution.

Proof. Let us first consider the expected probability that the
Gibbs classifier will predict the class of the sample xx to
be þ1:

P ðfGC ¼ þ1Þ ¼
Z

1þ signðwwTxxÞ
2

	 

qðwwÞdww

¼ 1

2
þ 1

2

Z
signðwwTxxÞqðwwÞdww:

ð22Þ

Clearly, if the BVC prediction for the label is þ1, we
know that

R
signðwwTxxÞqðwwÞdww > 0 and it follows that

P ðfGC ¼ þ1Þ > 1
2 . Conversely, if the BVC prediction is

�1, then P ðfGC ¼ �1Þ > 1
2 . Therefore, when the BVC

makes a mistake in predicting the label y of any sample xx,
it must be true that the expected probability of the GC
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making a mistake on that sample is at least 1
2 . Hence, for

any set of test samples, the error rate of a BVC is no more
than twice the expected error rate of a GC. tu

By combining Lemma 1 and Lemma 2, we conclude that

the error rate of a PC bwwww is upper bounded by twice the

expected error rate of a GC based on a symmetric

distribution qbwwwwðwwÞ centered on bwwww.
4.4 Kullback-Leibler Divergence between Two

Laplacians

A quantity that will be needed below is the Kullback-

Leibler divergence (KLD) between two Laplacian densities.

Consider our Laplacian prior pðwwj�Þ / expð��kwwk1Þ and

another distribution qbwwwwðwwj�Þ / expð�
P

i �i jwi � bwwijÞ cen-

tered on bwwww. Using the independence of the elements of ww in

both these densities, it is easy to show that

Dðqbwwwwðwwj��Þkpðwwj�ÞÞ ¼X
i

ln
�i
e �

þ � e��ijbwwij

�i
þ �jbwwij

" #
: ð23Þ

As explained below, in order to tighten the bound we

will soon derive, we may look for the �� that minimizes the

KLD in (23), given bwwww and �:

Dminðq k pÞ ¼ min
�

Dðqbwwwwðwwj��Þkpðwwj�ÞÞ: ð24Þ

A few observations show that this optimization task is

simple: First, optimization can be performed separately

with respect to each �i because (23) is a sum of functions,

each depending on only one �i; second, for those bwwi that are

zero (usually many due to the presence of the sparsity-

promoting prior), the solution is simply �i ¼ �; finally, for

those bwwi that are not zero, the solution can be found by

numerically solving a one-dimensional optimization pro-

blem with a unique minimum with respect to each �i.
An even simpler approach is to use the looser bound

Dminðq k pÞ � �kbwwwwk1, which is satisfied with equality if and

only if bwwww ¼ 0. To prove that this bound holds, consider

�i ¼ �, for all i; in this case,

Dðqbwwwwðwwj�� ¼ �1Þkpðwwj�ÞÞ ¼
X
i:bwwi 6¼0

e��jbwwijþ �jbwwij�1
� �

� �kbwwwwk1;
where the last inequality results from the fact that

expf��jbwwijg � 1 since �jbwwij � 0 and
P

i:bwwi 6¼0
jbwwij ¼ kbwwwwk1.

Thus, we can easily ensure that Dminðq k pÞ is no larger

than �kbwwwwk1, although we can often choose �� to make it even

smaller.

4.5 Rademacher Complexity Bound

Let us adopt a loss that depends on the margin ywwTxx:

lðy; wwTxxÞ ¼ lsðywwTxxÞ, where lsðaÞ ¼ minð1;maxð0; 1� a=sÞÞ.
Function lsð�Þ is ð1=sÞ-Lipschitz and dominates pointwise

the zero-one loss l0�1ðy; wwTxxÞ ¼ hð�ywwTxxÞ, where hð�Þ is

Heavyside’s function. Since our loss is bounded above by 1,

we quote a slightly refined version of a result of Meir and

Zhang [26]. We shall subsequently compute the bound for

our algorithm using (23) in conjunction with this result.

Theorem 1. Let ðxx; yÞ 2 IRd 	 f�1;þ1g be a random variable
with distribution P ðxx; yÞ and let the (random) training set
D ¼ fðxx1; y1Þ; . . . ; ðxxn; ynÞg, be a set of n samples drawn i.i.d.
from P ðxx; yÞ. Let

fSBVCðxx; qÞ � EqðwwÞ½signðwwTxxÞ�

denote the (real) value computed by a BVC before thresholding
(compare with (20)), which will be called the soft Bayes voting
classifier (SBVC). Let g > 0 and r > 0 be arbitrary para-
meters. Then, with probability at least ð1� �Þ over draws of
training sets, the following bound holds:

P ðyfSBVCðxx;qÞ < 0Þ � Rsample½fSBVC;D�

þ 2

s

ffiffiffiffiffiffiffiffiffiffiffi
2~ggðqÞ
n

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln logr

r~ggðqÞ
g þ 1

2 ln
1
�

n

s
;

where RsamplefSBVC;D is the sample mean of the loss of the
SBVC,

Rsample½fSBVC;D� ¼ 1

n

Xn
i¼1

ls yifSBVCðxi; qÞð Þ;

and ~ggðqÞ ¼ rmaxðDðq k pÞ; gÞ.

Notice that Rsample½fSBVC;D� is computed on the SBVC
rather than on the BVC. Thus, although the BVC and PC
agree, the sample losses of the PC and SBVC, as defined
above, may differ slightly. For this reason, we compute
sample loss Rsample½fSBVC;D� on the training set using Monte
Carlo approximations of fSBVCðxx; qÞ. Plugging the KLD
between two Laplacians given in (23) into the statement of
the theorem gives us a bound on the error rate of the point
classifier bwwww learned using the prior with parameter �.

4.6 PAC-Bayesian Bound

Our second result uses a PAC-Bayesian bound on the error
rate of a GC [25], [33]:

Theorem 2. Let D ¼ fðxx1; y1Þ; . . . ; ðxxn; ynÞg be as in Theorem 1.
Then, with probability at least ð1� �Þ over draws of training
sets, the following bound holds:

DBerðRtrue k RsampleÞ �
Dðq k pÞ þ ln nþ1

�

� �
n

; ð25Þ

where Rtrue is the true expected error rate of a GC based on
qðwwÞ,

Rtrue ¼ EqðwwÞ EP ðxx;yÞ½lðy; fGCðxx;wwÞÞ�
� �

;

Rsample is the expected error rate of the same classifier on the
training set,

Rsample ¼ EqðwwÞ
1

n

Xn
i¼1

lðyi; fGCðxxi; wwÞÞ
" #

;

DBerða k bÞ denotes the KLD between two Bernoulli distribu-
tions of probabilities a and b,

DBerða k bÞ � a ln
a

b
þ ð1� aÞln ð1� aÞ

ð1� bÞ ;

andDðq k pÞ denotes the KLDbetween the two densities q and p.
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For a given Rsample value, DBerðRtrue k RsampleÞ is a convex
function of Rtrue. Thus, (25) implies an upper bound on Rtrue

that is easy to obtain numerically. Note that Theorem 2
bounds the expected error rate of a GC. However, we have
shown in Lemmas 1 and 2 that the expected error rate of a
PC bwwww is less than twice that of a GC based on a symmetric
qbwwwwðwwÞ centered on bwwww. So, if we choose q to be Laplacian and,
as with the Rademacher bound, plug the KLD between
two Laplacians given in (23) into the statement of the
theorem, we get a bound on the error rate of the point
classifier bwwww learned using the prior with parameter �. In
practice, the error rate of a PC has empirically been observed
to be no larger than that of the corresponding GC (and is
often much smaller) so the factor of two is probably not
required (though this has not yet been proven).

To compute Rsample on the training set, we could again
use Monte Carlo. However, since wwTxx is the weighted sum
of a number of Laplacian random variables wi, as the
dimensionality of ww (i.e., dðm� 1Þ) increases, the distribu-
tion of wwTxx approaches a Gaussian, allowing analytical
computations. We have observed experimentally that even
dðm� 1Þ � 10 is sufficient for the Gaussian approximation
to be indistinguishable from the Monte Carlo results.

4.7 Tightening the Bounds

Having chosen a Laplacian distribution centered on our
MAP classifier, we can easily evaluate either of these
bounds. Since the bounds are simultaneously applicable for
any choice of Laplacian distribution qbwwwwðwwj��Þ centered on bwwww,
we choose �� to minimize the KLD to the prior pðwwj�Þ, as
shown in (24), so as to obtain the tightest possible bound.

4.8 Discussion

Since Dminðq k pÞ � �kbwwwwk1, these bounds show analytically
that the generalization capacity of the classifier is a function
of both the regularization parameter � and the sparsity of bwwww.
This matches our intuition regarding the nature of the
bounds: If we make a strong bet on sparsity by choosing a
large � and, in return, obtain a nonsparse bwwww, the bounds will
be loose; in contrast, if we make only a mild bet on sparsity
and, in return, obtain a sparse bwwww, the bound will be tight.

Unfortunately, the expected error rate of a GC on the
training set can be much higher than that of a PC. Thus, the
bound in Theorem 2 is made much weaker by its use of a
GC.3 Nevertheless, since the bound is on the KLD of
Bernoulli random variables, it always yields a nontrivial
(less than 1) bound on the expected error rate. This is in
contrast with bounds based on VC theory which tend to be
trivial except when the data sets are enormous.

4.9 Relationship to Previous PAC-Bayesian Error
Bounds

The PAC-Bayesian formalism has been utilized to provide
upper bounds on the generalization error of other classifi-
cation algorithms. Margin bounds due to Langford and
Shawe-Taylor [20] have been used to justify the SVM
classifier; the application of the PAC-Bayesian theorem in
our paper is similar to their derivation. In another closely
related paper, Seeger [33] provides PAC-Bayesian general-

ization bounds for Gaussian process classification and

mentions that his approach can be extended to provide
error bounds on the RVM. While our derivation is similar to

these results (especially [20]), we specifically focus on

bounds for our own SMLR algorithm, both to analyze its
generalization performance and to justify our choice of a

Laplacian prior.

5 EXPERIMENTAL RESULTS

We used a collection of benchmark data sets to evaluate the
accuracy, sparsity, and computational efficiency of our

classifier design algorithms. Being especially interested in

classification problems with large numbers of features or

training samples, the data sets were selected to vary widely
in the number of originally observed features, the training

set size n, and the number of classes m. We implemented

our own MATLAB code for the RVM (based on the original
block-wise algorithm of [35]), as well as for the proposed

algorithms.4 For the SVM, we adopted the widely used

SVM-light program.5

Table 1 describes the data sets6 and the methods used to

assess classification performance (either k-fold cross-valida-
tion or fixed training/test sets); in each case, the method is

chosen to be consistent with what has already been reported

in the literature so as to facilitate comparison. The Crabs,

Iris, and Forensic Glass data sets are well-known. AML/ALL

and Colon are standard gene expression data sets for cancer

classification and provide a good test of accuracy, sparsity,

and efficiency in the context of high feature dimensionality.

With Colon, most authors have randomly split the 62 sam-
ples into a training set of size 50 and a test set of size 12; to

enable comparison with previous results, we adopt the

same procedure and repeat this procedure 30 times. Yeast is

another gene expression data set with 208 samples of
79 features in five classes; we adopt the 8-fold cross-

validation method used by other authors with this data set.

Mines contains 22,933 samples of sonar data for detecting

underwater mines, only 119 of which are positive samples;
we use Mines to test the tightness of our generalization

bounds for large n.
We evaluated four different classifiers on six of the

seven benchmark data sets in terms of accuracy, sparsity,

and efficiency. The first three algorithms were the SVM, the
RVM, and our proposed sparse multinomial logistic regression

(SMLR), which uses a sparsity-promoting Laplacian prior

(l1-penalty). To tease out the effect of this prior, we also
evaluated the ridge multinomial logistic regression (RMLR),

which uses a Gaussian prior (l2-penalty), as in ridge

regression, thus not promoting sparsity.
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3. This limitation is not present in our first bound, which does not
depend on GC error rates.

4. The MATLAB code for RVM, SMLR, and RMLR may be obtained for
noncommercial use from the first author.

5. Available from svmlight.joachims.org.

6. Data set sources: Crabs and Forensic Glass from www.stats.ox.
ac.uk/pub/PRNN/. Iris from www.ics.uci.edu/~mlearn/MLSummary.
html. AML/ALL from www-genome.wi.mit.edu/mpr/table_AML_ALL_
samples.rtf. Colon from microarray.princeton.edu/oncology/affydata/
index.html. Yeast from www.cse.ucsc.edu/research/compbio/genex/
genex.html. Mines is not publicly available due to its sensitive nature;
for this reason, we use it only to illustrate the tightness of our error
bound on a large data set.



Because the SVM is intrinsically limited to be a kernel
classifier, we restricted our attention to kernel basis
functions with the RVM, SMLR, and RMLR; the specific
form of the kernel in each case was chosen to coincide with
previously chosen kernels, so as to allow comparison with
other published results. Kernel parameters were selected by
cross-validation for the SVM; the best parameters for the
SVM were then used for all the other methods. The
regularization parameter for each method was chosen by
cross-validation on the training samples.

Since the standard SVM and RVM are formulated for
binary problems, the “1-versus-all” approach was used for
multiclass problems with these algorithms. Table 2 indi-
cates which type of kernel was used for each problem and
summarizes the results obtained by these four methods.

In terms of accuracy, we see that SMLR outperforms the
other three methods on all six data sets (for Crabs, the RVM
exhibits the same accuracy; for Colon, the SVM exhibits the
same accuracy). The difference is largest on data sets that
are difficult to separate, like Forensic Glass.

In terms of sparsity, we first observe that SMLR yields
much sparser classifiers than RMLR, although the differ-
ence is negligible with Forensic Glass. In particular, RMLR
never prunes any of the kernel basis functions. We also
notice that SMLR classifiers are usually sparser than SVMs,
although Forensic Glass again represents an exception. We
believe this is due to the fact that our method encourages
sparsity only when it helps the classifier; in cases like
Forensic Glass, in which the classification performance can
be improved by retaining more basis functions, our method
does so. Note that the included basis functions are still
penalized, so this is not a case of simple overfitting. Finally,

we see that the RVM consistently keeps the fewest number

of basis functions, even when this is to its detriment; this

seems to demonstrate a systematic under-fitting.
In terms of running time, it is difficult to provide precise

values because RVM, SMLR, and RMLR were implemented

using nonoptimized MATLAB code, while the SVM-light

implementation of the SVM uses highly optimized C code.

Nevertheless, we will make three observations. First, despite

the implementation difference, the running time of SMLR on

these data sets was generally around twice that of the

optimized SVM, with two notable exceptions: 1) On

problems that involve repeated reestimation (like Colon,

with 30 random training/test splits), the convergence of our

method is sped up by initialization with the previous MAP

estimate,7 for example, ourmethodwas twice as fast as SVM-

light on the Colon data set, and 2) onmulticlass problems, the

two running times are not directly comparable because our

method produces a true multiclass classifier rather than a

series of “1-versus-all” binary classifiers.
Second, while we do not present results here, we also

tested general purpose optimization algorithms—specifi-

cally, conjugate-gradient (CG) and Broyden-Fletcher-Gold-

farb-Shanno (BFGS) [18]—for maximizing our SMLR
objective function. Since our objective function includes a
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7. For kernel classifiers, it may be noted that the basis functions change
during cross-validation. In this case, we initialize weights associated with
the basis functions that are common to the previous iteration to the earlier
MAP estimate and initialize the remaining (new) weights to zero. Since our
objective function is concave, the MAP classifier learned by our algorithm is
independent of initialization. Thus, this choice of initialization does not
affect the reported statistics concerning the accuracy of our algorithm.

TABLE 1
Characteristics of the Several Benchmark Data Sets Used in Our Experiments

yIn this case, we mean not 30-fold cross-validation, but 30 different random 50/12 training/test splits.

TABLE 2
Total Number of Classification Errors and Average Number of Retained Kernel Basis Functions (in Parentheses, Rounded

to the Nearest Integer) for Various Classifiers on Six of the Seven Benchmark Data Sets Described in Table 1

The second row indicates the kernel that was used in each test; the last row indicates the maximum possible value attainable in each column.



nondifferentiable term kbwwwwk1, we used the following smooth
approximation:

jwlj 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

l þ 10�10

q
:

Even with this smooth approximation, these methods
exhibited running times orders of magnitude longer than
those we observe with the proposed algorithms. While
preconditioning might improve the convergence rate of CG,
it is not the principal focus of the paper, so we have not
pursued this further.

Third, whether we choose to use component-wise
updating or not depends somewhat on the specific values
of d, m, and n. In particular, if n > ðdmÞ2, it may not be
worth using the component-wise update algorithm; this
was true for Crabs and Mines, so we used the non-
component-wise bound optimization algorithm of Section
3.4 and adopted an adaptive over-relaxation technique [32].
The over-relaxation approach effectively speeds up the
block update algorithm and makes it comparable to quasi-
Newton methods.

In terms of feature selection, because our approach can
be formulated directly on the features themselves (without
a kernel), we can use the sparsity-promoting nature of
SMLR to perform automatic feature selection. This is
especially useful when the number of features is large, as
is the case with the AML/ALL and Colon data sets. For
instance, using SMLR directly on the features of AML/ALL,
we obtain only 1 error on the independent test set, using
only 81 of the 7,129 original features. In contrast, when we
repeat the test with RMLR, we get three errors and retain all
7,129 features. Using SMLR directly on the features of Colon,
we obtain an average of 2.5 errors on the 30 test sets, using
an average of 15 of the 2,000 original features.

In terms of generalization bounds, let us recall that the
bounds we presented are always less than 1, in contrast
with VC-based bounds, which are typically much greater
than 1 unless n is extremely large. While nontrivial, our
bounds are not tight for small n; for instance, the general-
ization bound on the linear classifier (no kernels) for the
AML/ALL data set is 26=34. However, they become tight as
n grows; the plot in Fig. 1 suggests that the bound for the
large Mines data set may even be tight enough to select the
value of the prior parameter � in place of cross-validation.

6 DISCUSSION

6.1 Generalization Bounds

As shown in Fig. 1, for large samples, the generalization
bounds we present may be helpful in choosing the
regularization parameter for our algorithms. Nevertheless,
we would like to emphasize that these bounds (just like
most other learning-theoretical bounds) should be consid-
ered with caution. Similar in nature to the margin bounds
that are frequently used to justify the SVM, the bounds we
derive show that, if a small training set error is obtained,
then a small kbwwwwk1 is sufficient to provide good generalization
guarantees (via an upper bound on the error rate).
However, if kbwwwwk1 is large, the bounds derived in this paper
become loose and, hence, no longer provide reliable
estimates of generalization performance. Thus, just like

the margin bounds, the results we derive do not provide
necessary conditions for good generalization: Even if kbwwwwk1 is
large (or, in the case of the SVM, if the margin separating
the classes is small), good generalization may be possible. In
the past, margin bounds have been criticized on these
grounds (see [14] for an elegant example); similar criticisms
remain valid about our bounds also.

While they are theoretically interesting, our bounds
provide only partial justification to our algorithm; we have
chosen to present the bounds because they share the same
properties and drawbacks as the bounds used to justify the
SVM but are significantly tighter. One important, but
difficult, direction for future research is to develop bounds
that remain tight even when kbwwwwk1 becomes large.

6.2 How Much Sparsity?
Cross-Validation versus ARD

It may be noted from the experimental results in Section 5
that we choose our regularization parameter � based on a
frequentist cross-validation approach. While Bayesian auto-

matic relevance determination (ARD) methods have been
advocated for sparse classification algorithms (most nota-
bly, for the RVM), in our experience, this often results in
systematic under-fitting. More precisely, using ARD meth-
ods, too few basis functions are retained in the learned
classifier, even when this proves detrimental to classifica-
tion accuracy. For instance, in our experimental results, the
RVM consistently chose the fewest number of basis
functions, but, because SMLR tuned its level of sparsity
by cross-validation, it usually achieved somewhat superior
generalization. In recent work, this observation about the
RVM has been studied systematically and addressed rather
elegantly via approximate cross-validation methods [31].

6.3 MAP versus Fully Bayesian Classification

Our algorithm learns the maximum a posteriori classifier,
which is only a point estimate from the posterior. Thus, in
comparison to fully Bayesian classification, our algorithms
might (in principle) provide less accurate estimates of the
posterior class membership probabilities for new test
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Fig. 1. Plot of the test error rate and generalization error bound for the

Mines data set as a function of the prior parameter �.



samples; further, like other MAP classifiers, our algorithm
does not provide error bars on the classification probabilities.

Exact fully Bayesian classification, although simple in
principle, cannot be performed analytically because it
involves an intractable expectation. This expectation can
be approximated by resorting to Markov chain Monte Carlo
sampling algorithms. However, in practice, one often
prefers approximate strategies, such as the type-II max-
imum likelihood approach adopted in the RVM [35] or
other approximate methods such as those adopted in
Gaussian process classifiers [6] or the IVM [22]. Although
these methods provide error bars (which our method
doesn’t and which may be important in some situations),
the accuracy of our method is superior to the SVM and
RVM (though perhaps not significantly so). Indeed, the
widely used SVM algorithm also yields a point classifier
and turns out to be competitive with these approximate
Bayesian methods.

6.4 Visitation Schedule for Component-Wise
Updating

We have not made a large effort to optimize the visitation
schedule in our component-wise update procedure and
smarter choices may strongly improve its convergence rate.
As one preliminary modification, we have developed an
adaptive visitation schedule that maximizes the increase in
log-likelihood resulting from reestimating a single weight
estimate. While computing the increase in log-likelihood is
efficient, this computation must be carried out for each basis
function in order to select a single basis function to be
updated. This ends up being of comparable cost to the
simple approach of cycling through the whole basis set
presented earlier. Hence, we do not report results on the
adaptive visitation schedule except to mention that it may
prove to be advantageous when we have extremely large
basis sets (of the order of tens of thousands of basis
functions). Such a situation may prevent us from running
our algorithm until convergence and we may be interested
in stopping the algorithms after a fixed number of
iterations. We believe that the development of good
heuristics for the visitation schedule is an important
direction for future research.

6.5 Final Points

First, we note that the objective function we optimize while
learning an SMLR classifier is concave. This is not the case
for the RVM or methods using Jeffreys priors [10], [11]. This
concavity has significant benefits for identification of
unique maxima, for efficient computational implementa-
tion, and for derivation of useful generalization bounds.

Second, many other sparse classification algorithms
(including the RVM and Gaussian processes) can also be
formulated for multiclass problems, but we expect our
computational cost to scale more favorably.

Third, the component-wise update procedure we de-
scribed provides a natural mechanism for determining the
inclusion and exclusion of basis functions; in the context of
SMLR, the intuition behind traditional forward-backward
feature selection heuristics is placed on a rigorous theore-
tical footing.

Fourth, although we restricted our attention to kernel
basis functions and selected our kernel parameters to
optimize the performance of the SVM, we observe that
neither the SVM nor the RVM outperformed SMLR on any
of the benchmark data sets we examined; the statistical
significance of any difference remains uncertain, however.
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