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Abstract

We propose a feature selection approach for clustering which extends Koller

and Sahami's mutual-information-based criterion to the unsupervised case. This

is achieved with the help of a mixture-based model and the corresponding

expectation-maximization algorithm. The result is a backward search scheme,

able to sort the features by order of relevance. Finally, an MDL criterion is used

to prune the sorted list of features, yielding a feature selection criterion. The

proposed approach can be classi�ed as a wrapper, since it wraps the mixture es-

timation algorithm in an outer layer that performs feature selection. Preliminary

experimental results show that the proposed method has promising performance.

1 Introduction

A great deal of research has been devoted to the feature selection (FS) problem

in supervised learning [1{3] (a.k.a. variable selection or subset selection [4]). FS is

important for a variety of reasons: it may improve the performance of classi�ers

learned from limited amounts of data; it leads to more economical (both in

storage and computation) classi�ers; in many cases, it leads to interpretable

models. However, FS for unsupervised learning has not received much attention.

In mixture-based unsupervised learning (clustering [5]), each group of data is

modelled as having been generated according to a probability distribution with

known form. Learning then consists of estimating the parameters of these distri-

butions, and is usually done via the expectation-maximization (EM) algorithm

[6{8]. Although standard EM assumes that the number of components/groups is

known, extensions which also estimate are available [9]. Of course, the number of

components can also be estimated using more standard model selection criteria

such as MDL or BIC (see [9] for references).
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Here, we address the FS problem in mixture-based clustering, by extending

the mutual-information based criterion proposed in [1] to the unsupervised con-

text. The proposed approach can be classi�ed as a wrapper [2], in the sense that

the feature selection procedure is wrapped around the EM algorithm. This wrap-

per is able to sort the variables by order of relevance, using backward search. An

MDL criterion is used to prune this sorted list leaving a set of relevant features.

Finally, let us briey review previously proposed FS methods in unsupervised

learning. In [10], a heuristic to compare the quality of di�erent feature subsets,

based on cluster separability, is suggested. A Bayesian approach used in [11]

evaluates di�erent feature subsets and numbers of clusters for multinomial mix-

tures. In [12], the clustering tendency of each feature is assessed by an entropy

index. A genetic algorithm was used in [13] for FS in k-means clustering. Finally,

[14] uses the notion of \category utility" for FS in a conceptual clustering task.

2 Mixture Based Clustering and the EM Algorithm

Mixture models allow a probabilistic approach to clustering ([6{8]) in which

model selection issues (e.g., number of clusters) can be formally addressed. Given

n i.i.d. samples Y=fy1; :::;yng, the log-likelihood of a k-component mixture is

log p(Yj�) = log

nY
i=1

p(yij�) =
nX
i=1

log

kX
m=1

�mp(yij�m); (1)

where �1; :::; �k � 0 are the mixing probabilities (
P

m
�m = 1), �m is the set of

parameters of the m-th component, and � � f�1; :::;�k; �1; :::; �kg is the full set
of parameters. Each yi is a d-dimensional vector of features [yi;1; :::; yi;d]

T , and

we assume that all the components have the same form (e.g., Gaussian).

Neither the maximum likelihood (ML) nor the maximum a posteriori (MAP)

estimates, b�ML = argmax� flog p(Yj�)g and b�MAP = argmax� flog p(Yj�) + log p(�)g,
respectively, can be found analytically. The usual alternative is the EM algorithm

[7, 8, 15, 16], which �nds local maxima of log p (Yj�) or [log p (Yj�) + log p(�)].

EM is based on seeing Y as incomplete data, the missing part being a set of n

labels Z = fz1; :::; zng, agging which component produced each sample. Each

label is a binary vector zi = [zi;1; :::; zi;k], with zi;m = 1 and zi;p = 0, for p 6= m,

meaning that yi is a sample of p(�j�m). The complete log-likelihood (i.e., given

both Y and Z) is

log p(Y ;Zj�) =
nX
i=1

kX
m=1

zi;m log [�mp(yij�m)] : (2)

The EM algorithm produces a sequence of estimates fb�(t); t = 0; 1; 2; :::g by

alternatingly applying two steps (until some convergence criterion is met):

� E-step: Compute the conditional expectation W = E[ZjY ; b�(t)], and plug it

into log p(Y ;Zj�), yielding the so-calledQ-function:Q(�; b�(t)) = log p (Y ;Wj�).



Since the elements of Z are binary, their conditional expectations are given by

wi;m � E
h
zi;mj Y ; b�(t)i = Pr

h
zi;m = 1jyi; b�(t)i / b�m(t) p(yijb�m(t)) (3)

(normalized such that
P

m
wi;m = 1). Notice that �m is the a priori probability

that zi;m = 1 (i.e., that yi belongs to cluster m) while wi;m is the corresponding

a posteriori probability, after observing yi.

� M-step: Update the parameter estimates, b�(t+ 1) = argmax� fQ(�; b�(t)) +
log p(�)g; in the case of MAP estimation, or without log p(�) in the ML case.

3 Feature Selection for Mixtures

3.1 Likelihood Formulation

Consider the example in Fig. 1: a 2-component bivariate Gaussian mixture. In

this example, y2 is clearly irrelevant for the \mixture nature" of the data. How-

ever, principal component analysis (PCA, one of the standard non-supervised

feature sorting methods) of this data would declare y2 as more relevant because

it explains more data variance than y1.

y
1

y
2

Fig. 1. Feature y1 is relevant to the mixture nature of the data, while y2 is not.

To address the FS problem for mixtures, we divide the available feature

set y = [y1; :::; yd] into two subsets yU and yN . Here, U and N (standing for

\useful" and \non-useful") are two disjoint sub-sets of indices such that U [N =

f1; 2; :::; dg. Our key assumption is that the non-useful features are independent

of the useful ones, and their distribution is the same for all classes/clusters, i.e.,

p(yjU;�U ;�N ) = p(yN j�N )
kX

m=1

�mp(yU j�m;U ); (4)

where �N is the set of parameters characterizing the distribution of the non-

useful features, and �U = [�1;U ; :::;�k;U ] is the set of parameters characterizing



the mixture distribution of the useful features. Notice that we only need to

specify U , because N = f1; 2; :::; dgnU . The feature selection problem is then to

�nd U and the corresponding parameter � = [�U ; �N ]. Let us highlight some

aspects of this formulation:

{ Consider maximizing the log-likelihood, given observations Y=fy1; :::;yng,

log p(YjU;�U ;�N ) =
nX
i=1

log p(yi;N j�N ) +
nX
i=1

log

kX
m=1

�mp(yi;U j�m;U ); (5)

with respect to U , �U and �N . The result would be U = f1; :::; dg (as noted
in [11]), because a mixture is a more general model and so we can never

decrease the likelihood by increasing the number of useful features. This

shows that the problem requires some model selection criterion.

{ Testing all possible 2d partitions of f1; 2; :::; dg into U and N is prohibitive,

even for moderate d. The standard alternative is to use sub-optimal methods,

such as sequential forward/backward search (SFS/SBS) schemes [3].

3.2 Connection with Feature Selection for Supervised Learning

Assume the class labels and the full feature vector follow some probability func-

tion p(z;y). A subset of features yN is non-useful/irrelevant if it is conditionally

independent of the labels, given the useful features yU (see [1]), i.e., if

p(zjy) = p(zjyU ;yN ) = p(zjyU ): (6)

Observation of the model in (4) reveals that we can look at the m-th mixture

component as being p(yj�m) = p(yU j�m;U )p(yN j�N ). The outcome of the E-

step of the EM algorithm (3), omitting the iteration counter (t) and the sample

index i for notational economy, is then

wm =
�m p(yU j�m;U )p(yN j�N )
kX

j=1

�j p(yU j�j;U )p(yN j�N )
=

�m p(yU j�m;U )
kX
j=1

�j p(yU j�j;U )
: (7)

Recalling that wm = Prob[y 2 class mjy;�], we can read (7) as: given yU , the

probability that an observation belongs to any class m is independent of yN .

This reveals the link between the likelihood (4) and the irrelevance criterion (6),

based on conditional independence.

3.3 A Feature Usefulness Measure for Unsupervised Learning

In practice, there are no strictly non-useful features, but features exhibiting some

degree of \non-usefulness". A natural measure of the degree of independence, as

suggested in [1], is the expected value of the Kullback-Leibler divergence (KLD,



or relative entropy [17]). The KLD between two probability mass functions p1(x)

and p2(x), over a common (discrete) probability space 
, is

DKL[p1(x) k p2(x)] =
X
x2 


p1(x) log
p1(x)

p2(x)
;

and satis�es DKL[p1(x) k p2(x)] � 0, and DKL[p1(x) k p2(x)] = 0, if and only if

p1(x) = p2(x), for all x 2 
. The relationship between conditional independence

as stated in (6) and the KLD is given by the following implication

p(zjyU ;yN ) = p(zjyU ) ) DKL[p(zjyU ;yN )) k p(zjyU ))] = 0; (8)

for all values of yU and yN . To obtain a measure of usefulness of a feature set,

we have to average this measure over all possible feature values, according to

their distribution [1]. In practice, both the KLD and its average over the feature

space are approximated by their sample versions on the training samples.

In unsupervised learning we only have the feature samples Y = fy1; :::;yng,
but no labels Z = fz1; :::; zng. However, after running the EM algorithm we have

their expected values W = fwi;m; m = 1; :::; k; i = 1; :::; ng. To build a sample-

based feature usefulness measure, assume that W was obtained using the full

feature set, and let b� be the corresponding parameter vector. Now let V(N) =

fvi;m(N); m = 1; :::; k; i = 1; :::; ng be the expected label values obtained using

only the features in the corresponding useful subset U = f1; :::; dgnN , that is,

vi;m(N) = b�m p(yi;U jb�m;U )

0@ kX
j=1

b�j p(yi;U jb�j;U )
1A�1 : (9)

Then, a natural measure of the \non-usefulness" of the features in N is

� (N) =
1

n

nX
i=1

kX
m=1

wi;m log
wi;m

vi;m(N)
; (10)

which is the sample mean of KLDs between the expected class labels obtained

with and without the features in N . A low value of � (N) indicates that yN is

\almost" conditionally independent of the expected class labels, given yU .

4 A Sequential Backward Feature Sorting Algorithm

4.1 The Algorithm

Of course, evaluating � (N) for all 2d possible subsets is unfeasible, even for

moderate values of d. Instead, we propose a sequential backward search (SBS)

scheme (Fig. 2) which starts with the full set of features set and removes them

one by one in the order of irrelevance (according to the criterion (10)). This

algorithm will produce an ordered set I = fi1; :::; idg, which is a permutation of

f1; 2; :::; dg corresponding to a sorting of the features by increasing usefulness.



Input: Training data Y = fy(1)
; :::; y(n)g

Output: Set I of sorted feature indices.

Initialization:

I  f g

U  f1; 2; :::; dg

Run EM with all the features to get W = fwi;m; m = 1; :::; k; i = 1; :::; ng

while jIj < d do

�min  +1

for i 2 U do

I
0

i  fig [ I

Compute � (I 0

i) according to (10)

if � (I 0

i) < �min then

�min  � (I 0

i)

imin  i

end if

end for

I  fiming [ I

U  Unfiming

Update W by running EM using only the features in U .

end while

Fig. 2. Feature sorting algorithm. Notice that the sets used in the algorithm are ordered

sets and the set union preserves that ordering (e.g., fcg [ fb; ag = fc; b; ag 6= fa; b; cg).

4.2 An Illustrative Example: Trunk's Data

To illustrate the algorithm, we use the problem suggested by Trunk [18]: two

equiprobable d-variate Gaussian classes, with identity covariance and means

�1 = [1; 1=
p
2; 1=

p
3; :::; 1=

p
d]T and �2 = ��1. Clearly, these features are al-

ready sorted in order of usefulness, and so any feature sorting scheme can be

evaluated by how much it agrees with this ordering. In [3] (for supervised learn-

ing) a measure of the quality of the sorted set I = fi1; :::; idg was de�ned as

Q(I) =
1

d� 1

d�1X
i=1

jI i1 \ f1; :::; igj+ jId
i+1 \ fi+ 1; :::; dgj
d

;

where Ib
a
= fia; ia+1; :::; ibg. Note that Q(I) is a measure of agreement between

I and the optimal feature ordering f1; 2; :::; dg, with Q(I) = 1 meaning perfect

agreement. Fig. 3 plots Q(I) versus the sample set size, for d = 20, averaged

over 5 data sets for each sample size. Remarkably, these values are extremely

similar to those reported in [3], although here we are in an unsupervised learning

scenario. Finally, the �min values are a measure of the relevance of each feature;

in Fig. 3 we plot these values for the case of 500 samples per class.
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Fig. 3. Trunk data example. Left: feature sorting quality versus training set size. Right:

feature relevance averaged over 20 data sets (vertical bars are � 1 standard dev.).

5 Feature Selection by MDL

5.1 The Criterion

Having features sorted by order of relevance, we may now look for the best place

to cut this sorted list, for a given data set. To this end, we return to the likelihood

formulation (4), and to a comment made above: maximizing the likelihood leads

to the selection of a full feature set. To avoid this over-�tting, we resort to the

minimum description length (MDL) principle [19], criterion:

bU = argmin
U

(
min
�U ;�N

f� log p(YjU;�U ;�N )g+ j�U j+ j�N j
2

log(n)

)
; (11)

where log p(YjU;�U ;�N ) is given in (5) and j�U j and j�N j are the total numbers
of parameters in �U and �N , respectively. Notice that the inner minimization

simply corresponds to the ML estimate of �U and �N for a given U , obtained by

the EM algorithm for �U and by simple maximum likelihood estimates in the case

of �N . The numbers of parameters j�U j and j�U j depend on the particular form of

p(yN j�N ) and p(yU j�m;U ). For example, with Gaussian mixtures with arbitrary

mean and covariance, j�U j = k(3u + u2)=2. With p(yN j�N ) also a Gaussian

density with arbitrary mean and covariance, j�N j = (3(d� u) + (d� u)2)=2.

This MDL criterion is used to select which features to keep, by searching for

the solution of (11) among the following set of candidate subsets, produced by

the feature sorting algorithm of Fig. 2: fIq1 = fi1; :::; iqg; q = 1; :::; dg.

5.2 Illustrative Example

We illustrate the behavior of the feature selection algorithm with a simple syn-

thetic example. Consider a three-component mixture in 8 dimensions with com-

ponent means�1 = [3; 0; 0; 0; :::; 0]T ,�2 = [0; 3; 0; 0; :::; 0]T , �3 = [0; 0; 3; 0; :::; 0]T ,



and identity covariance matrices. Clearly, only the �rst three features are rel-

evant to the mixture, features 4 to 8 are simply \noise". We have applied the

feature sorting algorithm described above to 40 sets of 450 samples of this mix-

ture (150 per class) and features 1, 2, and 3 were always placed ahead of the

others in the sorted feature list. Next, we used the criterion in (11) to select the

\optimal" number of features, and three features were always selected; the left

plot in Fig. 4 shows the mean description length curve for the 40 tests, with �
one standard deviation bars. Since we have the true class labels for this data, we

have computed error rates, which are plotted on the right side of Fig. 4 (again,

mean over 40 test, � one standard deviation bars); notice that the minimum

error rate is achieved for the true number of relevant features; observe also that

with too few or too many features, the obtained classi�er becomes more instable

(larger error bars).
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Fig. 4. MDL-based feature selection example. Left: description length, (11), as a func-

tion of the number of \useful" features (mean curve for 40 tests, � one standard

deviation). Right plot: mean error rate (also for 40 tests, � one standard deviation).

6 Concluding Remarks

We have presented an approach to feature sorting and selection for mixture-based

clustering. Tests on synthetic data show that the method is promising. Of course

the method has yet to be extensively tested on real data, but assessing the quality

of a feature selection method for unsupervised learning with real data is not an

obvious task. Future developments will include extending the method to also

estimate the number of clusters, by wrapping the feature selection procedure

around a mixture-�tting algorithm that estimates the number of components

(such as the one in [9]). Also, searching strategies other than backward search

(e.g., oating search [3]) will be considered in future work.
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