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A Nonsmoothing Approach to the Estimation
of Vessel Contours in Angiograms

Mirio A. T. Figueiredo, Member, IEEE, and José M. N. Leitdo

Abstract— Accurate and fully automatic assessment of vessel
(stenoses) dimensions in angiographic images has been sought
as a diagnostic tool, in particular for coronary heart disease.
In this paper, we propose a new technique to estimate vessel
borders in angiographic images, a necessary first step of any
automatic analysis system. Unlike in previous approaches, the
obtained edge estimates are not artificially smoothed; this is
extremely important since quantitative analysis is the goal. An-
other important feature of the proposed technique is that no
constant background is assumed, this making it well suited for
nonsubtracted angiograms. The key aspect of our approach is
that continuity/smoothness constraints are not used to modify the
estimates directly derived from the image (which would introduce
distortion) but rather to elect (without modifying) candidate
estimates. Robustness against unknown background is provided
by the use a morphological edge operator, instead of some linear
operator (such as a matched filter) which has to assume known
background and known vessel shape.

I. INTRODUCTION

CCURATE automatic analysis of vessel morphology in

digital (or digitized) angiographic images is a valu-
able and clinically important diagnostic tool. Particularly for
coronariography, objective, verifiable, and reproducible quan-
titative analysis has been the goal of much research effort
[2]-[5]. Underlying this search is the need to accurately assess
the severity of arterial stenoses associated with coronary heart
disease. It is clear that border location is a necessary and
important first step of any automatic quantitative coronary
analysis (QCA) system. This fact is independent from the
technique adopted (densitometric or purely geometric {4]) to
measure Stenoses severity.

Current QCA systems rely on manual or automatic ves-
sel contour estimation. Accuracy and reproducibility strongly
suggest the adoption of automatic edge detection for which
several techniques have been proposed. Most of them impose
smoothness on the extracted vessel borders as a way of
achieving robustness against the inherent difficulties of the
problem which include weak contrast and a priori unknown
vessel shape and background structure. However, smoothness
is an important source of measurement errors. In this paper,
we introduce a technique to locate the contours of a vessel
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segment which does not impose smoothness constraints, thus
producing undistorted, i.e., not artificially smoothed, estimates.
Moreover, by using morphological operators rather than lin-
ear edge detectors, our scheme is adequate to nonsubtracted
angiograms since it does without any background flatness
assumption. The described algorithm is meant as the first stage
of a QCA system under development; nevertheless, it can be
adopted to other applications.

II. PREVIOUS WORK

Several techniques have been proposed to automatically
identify vessel contours in coronary angiographic images. To
cope with the difficulties inherent to the problem (unknown
image background, faint contrast, unknown vessel shape),
most approaches use prior knowledge/constraints about vessel
continuity and smoothness. Some recent examples include
dynamic programming type search, as in the works of Pope et
al. [6], Eichel et al. [7], Reiber et al. [2], and Fleagle et al. [S],
and extended Kalman filter type prediction-correction tracking,
as proposed in the work of Sun [8]. By adopting smoothness
constraints, these techniques achieve robustness at the cost
of yielding artificially smoothed (distorted) vessel edges. This
may be a serious problem if quantitative analysis is to be per-
formed with the obtained vessel edges. Diameters in a typical
coronariography can be of the order of a few pixels, with a
one-pixel deviation then being a serious relative error. As an
example, take the case of a very short but very pronounced
narrowing (stenosis) which can be severely underestimated if
any smoothness constraint is imposed on the edges fitted to
it. This is in contrast with the ventricular boundary estimation
problem in which the much larger dimensions involved give
sense to simple smoothness constraints [9].

Other types of approaches, such as those of Bresler et al.
[10], and Rossi et al. [11], are useless for coronary arteri-
ograms because they assume constant (or known) background,
and several projections, which are conditions seldom met in
a realistic clinical setting.

An exception to the smoothness assumption trend is the
work of Pappas and Lim [12], in which each vessel cross-
section is analyzed separately. However, that work presents
(from our point of view) some problems: the vessel and
background models are simplistic and unrealistic, e.g., the
background is modeled as a low-order polynomial; by per-
forming section-by-section independent analysis, smoothness
is avoided but the robustness that is typical of global ap-
proaches, i.e., in which all border points are jointly estimated,
is thrown away.

0278-0062/95$04.00 © 1995 IEEE




FIGUEIREDO AND LEITAO: ESTIMATION OF VESSEL CONTOURS IN ANGIOGRAMS 163

Matched filter techniques, as used by Nichols er al. [13],
Parker et al. [14], and Sun [8], and also first and/or second
derivative (or gradient) based approaches used by most authors
(such as [2], [5], [15]-[18], among others) can not be justified
in the presence of arbitrary background and unknown vessel
profile shape.

Recent work using a morphological approach to vessel ex-
traction/enhancement in medical images (magnetic resonance
angiography—MRA) is the one of Vandermeulen et al. [19],
where 3-D visualization of MRA is improved by enhancing
the contrast of blood vessels using (3-D) morphological filters
specially matched to that end. Our work departs from [19] in
that our goal is to precisely determine border locations on a
vessel segment under study, rather than to enhance the entire
vascular structure.

III. RATIONALE OF THE PROPOSED METHOD

The design goals herein adopted are: keep the robustness
inherent to global approaches, i.e., do not treat each cross-
section separately, taking advantage of contextual information
provided by the surrounding estimates, while at the same time
avoiding the distortion introduced by smoothness constraints;
also, do not assume any background or vessel shape model.

The following observations and ideas underlie our method:

1) Even at low contrast vessel segments, e.g., stenotic areas
and in the vicinity of (possibly stronger) image artifacts,
e.g., ribs, other vessels, and catheters, any edge operator
still presents a (possibly weak) local maximum at the
correct border location.

2) This maximum can be correctly picked up if the sur-
rounding contextual information is somehow adequately
taken into account.

3) Continuity (or smoothness) constraints should not be
used to modify the edge location estimates directly
derived from the image.

4) The edge operator must not be supported on any back-
ground flatness and/or additive white noise assumptions;
moreover, the exact intensity profile of the vessels cross-
sections is unknown.

The strategy followed to achieve these goals is supported
on two types of tools: morphological filters [20]-[23], and
dynamic programming [24]. It can coarsely be described as
follows:

1) We begin by considering observation 4). The constraint
of unknown background and vessel model led to the
adoption of a morphological gray scale edge operator
[21]-[23]. The reasons for choosing a morphological
(nonlinear) operator are: absence of flat background and
white noise assumptions, and lack of knowledge about
the exact vessel profile. These facts rule out any linear
operator, such as matched filters or any derivative-based
scheme. Morphological edge operators are sensitive to
the variations associated with the vessel borders, over an
arbitrary background, while exhibiting noise immunity
[22], [23].

2) For each vessel cross-section, all local maxima of the
morphological edge operator are taken as candidates to

edge points; according to observation 1), the correct
border points are contained in this set of candidates.
Dynamic programming is then used to find a least
cost path through the candidates, picking a pair from
each cross-section. The adopted cost includes continu-
ity/smoothness and morphological edge operator output
intensity terms. In this way, the prior knowledge about
the vessel continuity/smoothness is used to elect, among
several candidates, the one that best fits into the global
contour, without modifying the estimates provided by
the edge operator, i.e., without introducing distortion.
In the above-mentioned references [5]-[7], dynamic pro-
gramming is also used, although in a fundamentally different
way: minimum cost paths are found not through sets of can-
didates, but through all the pixels in an edge strength image.
Thus, the selected points may not coincide with maxima of
the edge operator and are possibly biased estimates. In our
algorithm, continuity is used only to select among several
candidates without modifying them. Other related applications
of dynamic programming in image processing can be found
in [25]-[28].

IV. THE TooOLs

A. Morphological Operators

1) Basic Operators: In this section, we describe the
adopted morphological edge operator (1-D version) after
briefly presenting the underlying basic morphological opera-
tors. Consider a real sequence x = {z;}, of infinite duration
(for simplicity). The gray scale dilation [20], [21], of sequence

x by the structuring element b = {b,, n = n;, ---, nys}, is
the sequence denoted by x @ b and defined as
x&b={ max (zi—n+by)} 0
=Ny, Mg

The gray scale erosion [20], [21], of sequence x by the
structuring element b = {b,, n = n;, ---, ns}, denoted by
x & b, is the sequence defined as

(xi—n - bn)} (2)
!

n=n;, ., n

These morphological operators are termed gray scale to dis-
tinguish them from those which involve binary signals [20],
[21]. Most gray scale morphological algorithms are built by
combining the basic operators just mentioned: erosion and
dilation.

Simpler versions of the dilation and erosion transformations
arise when the structuring element is flat and centered around
the zero index, b = {0, n = —N, ---, N}. This particular-
ization yields the following simpler gray scale morphological
operations:

1) flat dilation:
FD(X, N) :){GB{O7 n = _N’

={ _max _(zi-n)},

AN,y

» N}



2) flat erosion:

FE(x, N)=x6{0,n=-N, ---, N}

={,_min (zi-n)},

which can also be interpreted as order statistical operators (the
maximum filter and the minimum filter, respectively) [29].

2) Morphological Edge Operators: Morphological  edge
operators are written in terms of the above-defined gray scale
morphological operators [20]-[23] (here we consider only
versions with flat structuring element):

1) dilation gradient:

DG(x, N) =FD(x, N) — x;
2) erosion gradient:

EG(x, N) =x — FE(x, N);
3) Beucher’s operator:

BO(x, N) = EG(x, N) + DG(x, N)
=FD(x, N) - FE(x, N);

4) van Vliet's Laplacian:

VVL(x, N) =DG(x, N) — EG(x, N)
=FD(x, N) + FE(x, N) — 2x;

5) blur and minimum operator:
BMO(x, N) = min[DG(y, N), EG(y, N)};

where y is a blurred version of x (hence, the term blur),
obtained by some low-pass filter, and min stands for the
pointwise minimum of the two involved sequences. More
detailed descriptions of these morphological operators and of
their characteristics can be found in [21] (DG, EG, BO, and
VVL), [22] (VVL), and in [23] (DG, EG, and BMO).

3) Choice of the Most Adequate Edge Operator: All of the
above-referred operators were devised to detect ideal step
edges. Their performance with different types of edges has to
be further studied. Accordingly, a set of increasingly difficult,
i.e., increasingly realistic, tests were performed with the goal
of choosing the most adequate operator among the above-
considered ones.

In the first test, an ideal vessel cross-section projection is
used. This would be the case of a vessel with a perfectly
circular (or elliptic) cross-section, observed by a noise-free
imaging system with infinite spatial resolution. The integral
projection of a circle or ellipse is given by

2A
p(t):{m T (1-0f <li-c<r
0 slt—c >,

3

where A is its area, ¢ the projection of its center, and r a
parameter which depends on the minor and major axes (in the
case of a circle, r is the radius); for details, see [12]. Such an
ideal cross-section projection profile, with ¢ = 50 and r = 20,
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Fig. 1. Intensity profile of an ideal vessel cross-section projection and the

outcomes of the five morphological edge operators considered (the vertical
dashed lines signal the true location of the boundaries).

was processed with the five morphological edge operators; the
results are reported in Fig. 1 (the vertical dashed lines signal
the true boundary locations). In this simple setting, only two
operators presented maxima at the true location of the borders:
the dilation gradient and van Vliet's Laplacian.

The DG is designed to exhibit a maximum at the “lower
side” of an ideal step edge and zero elsewhere. However,
it is easy to verify that this operator is very robust against
departures from ideality in the “upper part” of the edge, i.e.,
it still presents maxima on the “ lower side” of other types
of edges; this justifies the result here obtained. Moreover, the
location of the maximum on the “lower side” of the edge
makes the DG adequate to vessel border detection. The VVL,
being a Laplacian, is supposed to present a zero-crossing at
the location of an ideal step edge [22]; since this test considers
another shape, the zero-crossing of the VVL’s output is shifted

' towards the “upper side” of the edge. In any case, the VVL

presents a maximum at the desired location, which is clearly
due to the DG which is part of its definition (see above).
Following this considerations, it is pointless to consider these
two operators as competing candidates; dilation gradient is the
most adequate operator for our purpose. To confirm this choice
further tests were, however, performed.

A more realistic situation was used for the second test
which is exemplified in Fig. 2. The ideal cross-section was
superimposed on a ramp to simulate a nonflat background;
the result was then contaminated by additive white Gaussian
noise and low-pass filtered to model a true imaging system
(nonzero noise and finite spatial resolution). With this data
the dilation gradient presented maxima at the true border
locations; this was consistently observed for various noise
powers and (low-pass filter) bandwidths.

Tests with real cross-section profiles were also performed.
In this case, one can not be sure about the true location of the
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Fig. 2. Simulation of a more realistic situation: the ideal profile of Fig.1 is
contaminated by additive noise, superimposed on a ramp, and finally blurred.
The output produced by the dilation gradient morphological operator is shown
(the vertical dashed lines signal the true location of the boundaries).

vessel borders; however, the DG always produced maxima at,
or very near, the locations that human observers point as being
the vessel borders. One example is presented in Fig. 3, where
the vertical dashed lines signal the location of the boundaries
estimated by a human observer.

As a final comment, it should be said that the adopted
operator is the most adequate only among the considered ones;
it is, of course, not ideal and it is possible, in principle, to
devise other more special-purpose detectors. Considering the
ideal profile (3), a matched detector could be derived; however,
since true vessel profiles exhibit a great variety of different
shapes, we chose to use a simple edge detector (the dilation
gradient) with a small structuring element (N = 5) which is
robust against variations in the exact shape of the edge.

4) The Top-Hat Operator: Another morphological filter
herein used is Meyer’s top-hat operator (THO) [20], [21].
Since it is able to detect local elevations on arbitrary
background, we employ it to detect the vessel location. The
1-D version of the THO (with flat structuring element) is
defined as

THO(x, N) =x — FD(FE(x, N), N) @)
=x—{ _max {,_min | (@ionsr)}}
(5)

In Fig. 4, we present an example of what is obtained by ap-
plying this operator to a vessel cross-section intensity profile.

More sophisticated versions of the top-hat operator, aiming
at vessel enhancement in 3-D visualization of MRA, were
proposed by Vandermeulen ef al. [19]. In that work, special
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Fig. 3. True profile obtained from a coronary angiogram and, again, the
output produced by the dilation gradient morphological operator (the vertical
dashed lines signal the location of the boundaries estimated by a human
observer).
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Fig. 4. (a) Intensity profile of a true coronary cross-section. (b) Outcome of

the top-hat morphological operator (THO).

care is put on the design of a rop-hat-like filter matched to
vessel enhancement. Here, since the output of the top-hat
operator is just the input of a global optimization procedure,
and since we are dealing with separate (1-D) cross-sections,
we settle for the original version.
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Fig. 5. Graph with a layered structure.

B. Dynamic Programming and the Shortest Path Algorithm

The shortest path problem is classic in combinatorial opti-
mization; given a graph, i.e., a set of nodes linked by arcs,
each with a certain cost or length, the problem consists in
finding the least cost path (or shortest path) between each pair
of nodes [24], [30].

1) Undirected Graphs: An undirected graph G = (N, A)
is formed by a finite and nonempty set N of nodes and a
collection A of distinct node pairs from N. Each element of A,
i.e., each node pair, is called an arc. An arc involving nodes ¢
and j is denoted by (7, j) and, in the case of undirected graphs,
is viewed as an unordered pair. If (m, n) € A, it is said that
nodes m and n are adjacent. The set of all nodes adjacent to
a given node ¢ is denoted by A(¢). The number of nodes and
arcs in a graph are denoted by |N| and | A|, respectively [30].
Each arc (i, 7) has an associated cost, or length, denoted by
A;;. If the graph is undirected A;; = Aj;. A path from node
i to node j is a sequence of adjacent nodes which starts at
node 7 and ends at node j: (¢, ny, na, ---, Nk, j) with & > 0
(if ¥ = 0, the path coincides with arc (i, j)). Clearly, a path
@i, n1, no, -+, Nk, J) from ¢ to 7 is also a sequence of arcs
[(i, n1), (n1, n2), ---, (nk, 7)1. The cost of a given path is
defined as the sum of the costs of all the traversed arcs.

2) The Bellman-Ford Algorithm: Assume only connected
graphs, i.e., those with paths between any two nodes, and
consider the problem of finding the minimum cost (or shortest)
path between given node pairs. It is easy to prove that if all
arcs have positive costs, no shortest path between any two
nodes can contain the same node twice [30]. The shortest path
problem is a particular instance of the more general problem
of sequential decision making, or dynamic programming,
for which the Bellman-Ford algorithm provides an iterative
solution [24], [30].

Consider the problem of finding the shortest path from all
nodes of a graph to a special one called destination node, e.g.,
take it as node 1. Denote by z} the shortest path between
node i and the destination node. Let z¥ be the estimate of
x¥ at iteration %k of the algorithm. The kth iteration of the
Bellman-Ford algorithm is

b

7 =0

k . k—1 : p
z; = min (A +277%), i=2,3,---,|N|
jeA(z)( it IN]

(6)
Q)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 14, NO. 1, MARCH 1995

Fig. 6. Angiographic image of a portion of the coronary tree of which the
section selected for analysis is delimited by two straight lines.

The initial conditions are z¥ = 0 and z¥ = +o0, for i = 2,
3, ---, |N|. The algorithm terminates when z¥ = =1 for all
i. The Bellman-Ford algorithm converges, after at most | V|
iterations, and the shortest paths are its unique fixed points
[30].

3) A Simplified Version of the Bellman-Ford Algorithm: The
graphs we will be dealing with in this paper have a special
layered structure which is depicted in Fig. 5. There are no
arcs between nodes in the same layer, the nodes of a given
layer are connected to all nodes of the two adjacent layers, and
the extreme layers (the first and the last) have only one node
(see Fig. 5). Furthermore, we are only interested in finding
the shortest path between the two extreme nodes (denoted
as A and Q in Fig. 5). This structure can be exploited to
yield a simpler and faster scheme than the general Bellman-
Ford algorithm. It is clear that it is not necessary to perform
Bellman-Ford iterations with all nodes simultaneously. We can
start with the nodes of layer 1, which clearly converge after the
first iteration, then update the nodes of the second layer, and
so proceed to the last layer, and finally to node 2. When node
Q is reached, the shortest path from A to 2 is determined.

V. THE ALGORITHM

A. Description

The proposed algorithm is based on the tools presented
in the previous section. It is composed of several steps, as
follows:

1) Step 1: A human operator defines two cross-sections
which delimit the vessel segment to be studied. These two
cross-sections, which need not be parallel, constitute the
only user input provided to the algorithm. This selection, an
example of which is shown in Fig. 6, has some restrictions:
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Fig. 7. (a) Vessel center candidates, i.e., maxima of the top-hat operator; (b)
vessel skeleton, i.e., the least cost path through the candidates, obtained by
the simplified Bellman-Ford algorithm described in the text.

there should be no bifurcations between the two end cross-
sections; there must be only one vessel of similar intensity;
and the segment should be relatively straight so that all cross-
sections are approximately perpendicular to the vessel (we will
refer to this issue again). All these conditions are usually met
in QCA.

2) Step 2: N equispaced (in angle and distance) cross-
sections of the vessel segment under study are then obtained,
producing N intensity profiles x;,4 = 1, 2, ---, N, where
x; = {z5,j = 1,2, .-+, L;}. These intensity profiles may
contain different numbers of image samples.

3) Step 3: For each cross-section, a set of center can-
didates containing all the local maxima of a 1-D top-hat
operator (THO) is determined. This set is C = {c¢;j, ¢ =
1,2,---,N; 5 =1,---, M;} where M; is the number of
center candidates found in cross-section 7. The candidates
corresponding to the vessel segment of Fig. 6 are presented
in Fig. 7(a). Notice that some candidates were generated by
background structures (such as other vessels), while some oth-
ers are caused by noise. Each center candidate is characterized
by two features: c;; = (T(ci;), P(ci;)), where T(c;;) is the
value of the THO at its location and P(c;;) is the candidates
position along the corresponding scan line.

4) Step 4: With the center candidates, a layered graph of
the type described in Section IV-B (see Fig. 5) is built as
follows: each candidate corresponds to a node; each node of
a given layer (cross-section) is connected to all nodes of the
two adjacent layers; and there are no arcs between nodes in the
same layer. The arcs connecting two nodes (say, candidates j
and k£ in consecutive cross-sections i and i+1) have a cost
function which is defined as

A, Gi+1ky = el Pleiz) — Pleiyir)|
= (T (cij) + T(cizir))- ®

This cost is tailored to increase with the distances between the
candidates and decrease with the candidates THO response
intensities. Two virtual nodes are created, one before the first
cross-section (connected via zero-weight arcs to all nodes
of the first cross-section) and the other after the last one
(connected via zero-weight arcs to all nodes of the last cross-
section); these nodes are termed A and Q and will serve as

Fig. 8. Structure of the layered graphs built with the candidates.

origin and destination of the path to be found through the
graph. The graph’s structure is depicted in Fig. 8.

5) Step 5: The minimum cost path along the graph, i.e.,
along the vessel, from A to {2, is obtained by using the
simpler version of the Bellman-Ford algorithm presented in
the previous section. The graph’s structure ensures that only
one candidate is chosen from each cross-section yielding the
so-called vessel skeleton. In Fig. 7(b), the result obtained from
the candidates of Fig. 7(a) is presented. Although some can-
didates outside the vessel had high THO response, contextual
information allowed the correct ones to be elected.
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Fig. 9. (a) Vessel border candidates which are the maxima of the dilation
gradient morphological operator; (b) vessel borders obtained from the candi-
dates as the least cost paths (found by the simplified Bellman-Ford algorithm
described in the text) through the candidates on each side of the skeleton.

Fig. 10.
algorithm.

(a) Original image. (b) Vessel contours obtained by the proposed

6) Step 6: For each cross-section, two sets of border candi-
dates are created, each containing all the maxima of a dilation
gradient (DG) applied to each side of the vessel skeleton (see
Fig. 9(a)). These sets are D = {d;;,i = 1,2, ---, N; j =
1 .-, Li} and E = {eij,77= ,L2,---,N;5=1,---, JZ},
where L; and J; are the number of border candidates found
in cross-section ¢, to each side of the skeleton. Notice that
there are more border candidates than there were center
candidates; this is due to the fact that the DG, being an edge
operator, has a differentiating nature thus being more sensitive
to noise than the top-hat operator. Each border candidate is
characterized by two features: d;; = (B(di;), P(di;)), and
e;; = (B(eij), P(eij)), where B(d;;) is the value of the DG
at its location and P(d;;) is the candidate’s position along the
corresponding scan line.

7) Step 7: These two sets of candidates are used to build
two graphs similar to the one above. The arcs connecting two
nodes (say, candidates j and & in consecutive cross-sections ¢
and ¢+1) have a cost defined by

Ay, ir1ry = BIP(diz) — P(dit1x)]

- 2(B(dij) + B(dit1x))- )
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Fig. 11.
algorithm.

(a) Original image. (b) Vessel contours obtained by the proposed

Fig. 12.
algorithm.

(a) Original image. (b) Vessel contours obtained by the proposed

Fig. 13.
algorithm.

(a) Original image. (b) Vessel contours obtained by the proposed

This cost increases with the distances between the candidates
and decreases with the candidate’s DG strengths. As above,
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Fig. 14.
algorithm.

(a) Original image. (b) Vessel contours obtained by the proposed

Fig. 15. (a) Original DSA image. (b) Vessel contours obtained by the
proposed algorithm.

virtual nodes are created to serve as origin and destination of
the paths to be found through the graphs. The structure of the
obtained graphs are again similar to the one depicted in Fig. 8.

8) Step 8: Using again the simple version of the Bellman-
Ford algorithm, two minimum cost paths are obtained which
are the final vessel borders estimates; these are shown in
Fig. 9(b).

B. Some Remarks

A few remarks concerning the proposed scheme should be

made:

» Notice that the continuity terms of the cost functions
(8) and (9) use L; norms (absolute value of the differ-
ence) which contribute to the nonsmoothing nature of the
proposed estimator. This is due to the intimate relation
between L; (robust) estimation and (step preserving)
median filtering (see, e.g., [29]).

» The THO basically detects elevations smaller than its
structuring element; therefore, care has to be put on the
choice of its dimension V. This is especially important in
areas where the cross-sections are not perpendicular to the

Fig. 16. (a) Original DSA image. (b) Vessel contours obtained by the
proposed algorithm.

Fig. 17. (a) Original DSA image. (b) Vessel contours obtained by the
proposed algorithm.

Fig. 18. Edges estimated on simulated phantoms with constant diameters of
14, 18, 22, and 30 pixels, respectively.

vessel, since there it appears wider than it really is. The
simplest solution is to use a large value for N; the only
drawback is that the larger the THO structuring element
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TABLE 1
RESULTS OF THE SIMULATED PHANTOM TESTS OF FIG. 18

true diameter 14 18 22 30
mear: :stimated diameter || 14.2 | 18.1 | 22.2 | 29.9
standard deviation 0.41 10.44 | 0.40 | 0.41

is, the more center candidates will obviously be generated.
However, the sole consequence will be a higher burden
on the (modified) Bellman-Ford algorithm since it will be
dealing with a larger graph. Another option would be to
use a more specialized 2-D THO (as in [19]) which, at
the cost of a higher complexity, would generate a much
better candidate set. There is clearly a trade-off between
the performance of the operator used to generate the
candidates and the load put upon the global optimization
step; we chose to keep the first step as simple as possible.

» Concerning border detection, the issue of nonperpendic-
ularity of the cross-sections is not as important; in fact,
whichever the orientation of the vessel relatively to the
1-D dilation gradient is, its intensity profile will always
present the same type of shape (only its width will vary).
The DG, being a differential type local operator, will
generate border candidates at the true border locations
independently of its orientation (of course, within rea-
sonable limits). Once the vessel borders are estimated,
perpendicular cross-sections must be obtained for mea-
suring purposes (geometric width and video-densitometric
cross-section area).

VI. IMPLEMENTATION AND EXAMPLES

The method was implemented and tested on a common
workstation where it typically takes from 2 to 10 s, thus being
perfectly compatible with routine use. The computation time
strongly depends on the total number of candidates produced
by the morphological operators. Typically, we have 50 to 150
cross-sections, 5 to 50 center candidates and border candidates
(at each side) per cross-section. This leads to graphs with 250
to 7500 nodes and the fast computation times achieved are due
to the simpler version of the Bellman-Ford algorithm used.

In all the examples next presented, the parameters « in (8)
and B in (9) were kept constant and both equal to 2.0. We
found that, for a very wide range of situations, these values
lead to good resuits; moreover, the obtained borders do not
depend strongly on these parameters and values between 1.0
and 5.0 lead (almost always) to similar results. The widths
of the dilation gradient and top-hat operators were also kept
constant at N = 5 and N = 23, respectively. Figs. 10-17
present eight examples illustrating the proposed technique in
several types of situations, using real angiographic images:

» Nonsubtracted angiograms, acquired from cine-film, are
presented in Figs. 10-14. Images from digital subtrac-
tion angiography (DSA) are used in the examples of
Figs. 15-17. Notice that DSA images, due to the back-
ground subtraction operation, present higher contrast, but
also stronger noise.
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Fig. 19. Cross-sectional intensity profiles of one of the simulated phantoms
of Fig. 18 and of a true catheter image.

Fig. 20.
contours; and (c) candidates from which the contours were obtained.

(a) Simulated phantom with several abrupt stenoses; (b) estimated

« In Figs. 10~12, three rather conventional situations are
presented showing smooth stenoses which were easily
detected by the algorithm.

+ The examples of Figs. 14 and 15 show abrupt stenoses,
i.e., the vessel border exhibits sharp steps. This type
of stenoses could never be correctly determined by any
smoothing approach.

« The ability of the proposed technique to ignore
weaker/smaller vessels is evidenced in the examples of
Figs. 13, 16, and 17. These smaller vessels can even
cross the main vessel, as is the case in Figs. 13 and 17.
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Fig. 21.  Width estimated along the simulated phantom of Fig. 20.

All the contour estimates presented were considered, by
expert cardiologists, as correctly obtained.

In the last two examples, we use simulated phantoms
(synthetic images) aiming at providing quantitative results.
Fig. 18 shows four ideal straight “vessels” (with diameters
14, 18, 22, and 30 pixels) and the corresponding detected
borders; quantitative results (in terms of mean estimated width
and standard deviation) are presented in Table I. The im-
ages were contaminated by additive noise (standard deviation
equal to 10 gray levels) and blurred by a 9 x 9 Gaussian-
shaped low-passed filter. These conditions were adjusted to
obtain cross-section intensity profiles similar to those exhibited
by true catheters in real images. For comparison purposes,
Fig. 19 presents cross-sectional intensity profiles of one of the
simulated phantoms and of a true catheter.

The last example includes simulated “stenoses” of several
widths (20, 14, 11, 7, and 11, respectively, from top to
bottom); the image was degraded in the same way as
the images of Fig. 18. In Fig. 20(a), the original image
is presented; Fig. 20(b) displays the final estimated edges
obtained from the border candidates of Fig. 20(c). The
estimated widths along the simulated phantom are plotted
in Fig. 21. This example aims at putting in evidence the
ability of the proposed technique to follow abrupt changes
(which could not be achieved by any smoothing approach),
and to precisely measure stenoses widths.

We point out that the examples and results presented in this
section are not a full validation study; the purpose was only
to illustrate the behavior of the algorithm (both qualitatively
and quantitatively) in several situations.

VII. CONCLUDING REMARKS

Any vessel border estimation technique aiming at being
used for QCA must undergo careful validation, Of particular
importance is the study of the sensitivity of the method to
image characteristics, since the quality of angiographic images
spans a very wide range of levels [5]. The scope of this paper
does not include such a validation, which is under way by
using both phantoms and in vivo studies; our aim is rather
to describe the concepts and tools that make up the proposed
method. Of special interest, from our point of view, is the
demonstration of how a dynamic programming type strategy
can be used to obtain robust, albeit nondistorted, estimates. The
particular edge operator adopted does not affect this aspect of

the approach; other choices can easily be adopted to replace
the dilation gradient. Nevertheless, we have shown that this
morphological operator performs well and is adequate to the
problem’s specific characteristics.

ACKNOWLEDGMENT

The work here reported was developed in cooperation
with Drs. R. Seabra-Gomes, T. Real, and J. Baptista from
Hospital de Santa Cruz and Instituto do Coracéo. The authors
acknowledge their fruitful and insightful help.

REFERENCES

[1] M. Figueiredo and J. Leitdo, “An unbiased technique for automatic

estimation of vessel contours in angiograms,” in Proc. IEEE Nucl.

Sci. Sympos. Med. Imag. Conf., San Francisco, CA, pp. 1251-1254,

1993.

J. Reiber, C. Kooijman, C. Slager, J. Gerbrands, J. Schuurbiers, A.

Boer, W. Wijns, P. Serruys, and P. Hugennholtz, “Coronary artery

dimensions from cineangiograms—Methodology and validation of a

computer assisted analysis procedure,” IEEE Trans. Med. Imag., vol.

MI-3, pp. 131-141, 1984.

[3] J. Reiber and P. Serruys, Advances in Quantitative Coronary Arteriog-
raphy. Dordrecht, The Netherlands: Kluwer Academic Publ., 1993.

, “Quantitative coronary arteriography,” in Cardiac Imaging, M.

Marcus, D. Skorton, H. Schelbert, G. Wolf, and E. Braunwald, Eds.

Philadelphia, PA: W. B. Saunders Co., 1991, pp. 211-280.

S. Fleagle, M. Johnson, C. Wilbricht, D. Skorton, R. Wilson, C. White,

M. Marcus, and S. Collins, “Automated analysis of coronary arterial

morphology in cineangiograms: Geometric and physiologic validation

in humans,” IEEE Trans. Med. Imag., vol. 8, pp. 387-400, 1989.

[6] D. Pope, D. Parker, D. Gustafson, and P. Clayton, “Dynamic search

algorithms in left ventricular border recognition and analysis of coronary

arteries,” in Proc. Comput. in Cardiol., pp. 71-75, 1984,

P. Eichel, E. Delp, K. Koral, and A. Buda, “A method for a fully

automatic definition of coronary arterial edges from cineangiograms,”

IEEE Trans. Med. Imag., vol. 7, pp. 313-320, 1988.

[8] Y. Sun, “Automated identification of vessel contours in coronary arte-
riograms by an adaptive tracking algorithm,” IEEE Trans. Med. Imag.,
vol. 8, pp. 78-88, 1989.

[2

[4]

[5

17

[9]1 M. Figueiredo and J. Leitdao, “Bayesian estimation of ventricular con-
tours in angiographic images,” IEEE Trans. Med. Imag., vol. 11, pp.
416429, 1992.

[10] Y. Bresler and A. Macowski, “Three-dimensional reconstruction from

projections with incomplete and noisy data by object estimation,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-35, pp. 1139-1152,
1987.

[11] D. Rossi and A. Willsky, “Reconstruction from projections based on
detection and estimation of objects,” IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-32, pp. 886-906, 1984.

[12] T. Pappas and J. Lim, “A new method for estimation of coronary

artery dimensions in angiograms,” IEEE Trans. Acoust., Speech, Signal

Process., vol. 36, pp. 1501-1513, 1988.

A. Nichols, C. Gabrieli, J. Fenoglio, and P. Esser, “Quantification of

relative coronary artery stenosis by cinevideodensitometric analysis of

coronary arteriograms,” Circ., vol. 69, pp. 512-522, 1984.

[14] D. Parker, D. Pope, J. Petersen, P. Clayton, and D. Gustafson, “Quanti-
tation in cardiac videodensitometry,” in Proc. Comput. in Cardiol., pp.
119-122, 1984.

, “Automated evaluation of vessel diameters from arteriograms,”

in Proc. Comput. in Cardiol., pp. 215-218, 1982,

E. Alderman, L. Berte, D. Harrison, and W. Sanders, “Quantitation of

coronary artery dimensions using digital image processing,” in Digital

Radiography, W. Brody, Ed. New York: SPIE, 1982.

P. Doriot, Y. Pochon, and L. Rasoamanambelo, “Densitometry of

coronary arteries—An improved physical model,” in Proc. Comput. in

Cardiol., pp. 145-148, 1985.

{18] M. LeFree, M. Simon, G. Mancini, and R. Vogel, “Digital radiographic

assessment of coronary arterial geometric diameter and videodensito-

metric cross-sectional area,” in Proc. SPIE 626, pp. 334-341, 1986.

D. Vandermeulen, D. Delaere, P. Suetens, H. Bosmans, and G. Marchal,

“Local filtering and global optimization methods for 3-D magnetic

resonance angiography (MRA) image enhancement,” in Visualization

in Biomedical Computing, R. Robb, Ed. Chapel Hill, NC: SPIE, 1992,

pp. 274-288.

(13)

[15]

{16]

[17]

[19]



172

[20)
[213

[22}

[23)
[24]

{25]

J. Serra, Image Analysis and Mathematical Morphology. New York:
Academic Press, 1988.

P. Maragos and R. Schafer, “Morphological systems for multidimen-
sional signal processing,” Proc. IEEE, vol. 78, pp. 690-710, 1990.

L. van Vliet, I. Young, and G. Beckers, “A nonlinear Laplace operator
as edge detector in noisy images,” Comput. Vision, Graphics, and Image
Process., vol. 45, pp. 167-195, 1989.

J. Lee, R. Haralick, and L. Shapiro, “Morphologic edge detection,” IEEE
J. Robotics Automat., vol. RA-3, pp. 142-156, 1987.

R. Beliman, Dynamic Programming. Princeton: Princeton University
Press, 1957.

A. Amini, T. Weymouth, and R. Jain, “Using dynamic programming
for solving variational problems in vision,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 12, pp. 855-867, 1990.

[26]

[27]

(28}

(291
(301

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 14, NO. 1, MARCH 1995

J. Dias and J. Leitdio, “Wall position and thickness estimation from two-
dimensional echocardiograms,” in Proc. IEEE Nucl. Sci. Sympos. Med.
Imag. Conf., San Francisco, pp. 1246-1249, 1993.

D. Geiger and J. Vlontsos, “Matching elastic contours,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vision and Pattern Recog., New York, pp.
602-604, 1993.

D. Geiger and A. Gupta, “Detecting and tracking the left and right
heart ventricles via dynamic programming,” in Medical Imaging 1994:
Image Processing, M. Loew, Ed. Newport Beach, CA: SPIE, 1994,
pp. 391-402.

I. Pitas and A. Venetsanopoulos, “Order statistics in digital image
processing,” Proc. IEEE, vol. 80, pp. 1893-1921, 1992.

D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation.
Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989.



