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Bayesian Estimation of Ventricular Contours in
Angiographic Images

Mirio Teles de Figueiredo, Student Member, IEEE, and José M.N. Leitio

Abstract—This paper presents a new method for left ventricu-
lar contour determination in digital angiographic images. The
problem is formulated in a Bayesian framework, adopting as
estimation criterion the maximum a posteriori probability (MAP).
The true contour is modeled as a one-dimensional noncausal
Gauss—Markov random field and the observed image is described
as the superposition of an ideal image (deterministic function
of the real contour) with white Gaussian noise. The proposed
algorithm estimates simultaneously the contour and the model
parameters by implementing an adaptive version of the iterated
conditional modes algorithm (AICM). The convergence of this
scheme is proved and its performance evaluated on both synthetic
and real angiographic images. The method exhibits robustness
against image artifacts and the contours obtained are considered
good by expert clinicians. Being completely data-driven and fast,
the proposed algorithm is suitable for routine clinical use.

I. INTRODUCTION

NGIOGRAPHY is an invasive medical imaging modality

that allows the radiographic visualization of vessels and
cavities, through the introduction of a contrast agent. In digital
angiography, X-rays are converted into visible light by an
image intensifier and acquired by an analog video camera.
The camera output signal is then converted to digital format
and stored in a computer.

A common procedure in digital angiography is image sub-
traction. An image acquired before contrast injection is sub-
tracted from all subsequent images, the result being only the
structures one wishes to visualize. This is the origin of the
common designation of DSA (digital subtraction angiography).
All images used in the present work are DSA images.

Left ventricular angiography is an important procedure in
the evaluation of many cardiac diseases, providing valuable
information concerning anatomic and functional aspects [24],
[32]. Computer analysis of angiographic images, aiming at
objective and quantitative study of left ventricular function, has
deserved special attention in recent years [20], [23]-[26], [29],
[32]. Most of the work has been directed towards the automatic
assessment of functional aspects like ejection fraction or wall
motion. For atly of these purposes, the automatic determination
of the ventricle boundary is a necessary first step.

Most of the ventricle contour detection algorithms (for
angiography or other imaging modalities) described in the lit-
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erature (see, e.g., [3], [6], [11], [17], [24], [29], [30], [31]) are
obtained in a more or less empirical way. In recent literature on
image processing and computer vision, systematic approaches
based on Bayesian estimation criteria have been described
for problems such as image segmentation and restoration
(fundamental references are [2] and [9]). This is also a trend in
some fields of medical imaging, namely image reconstruction
([10], [12], and [27] are just a few examples).

Adopting also a Bayesian framework, this article proposes a
method for ventricular contour estimation. The type of reason-
ing is not specific of this application and can easily be adapted
to other problems, such as vessel border determination, or to
other imaging modalities.

To model the contour continuity and smoothness, a one-
dimensional noncausal Markov random field is used. The
model is established by exploring the equivalence between
Markov and Gibbs descriptions (Hammersley—Clifford theo-
rem [1], [9]). In the Gibbs formulation, the a priori probability
of the contour is written in terms of an energy-like function
which is the sum of a set of local potential functions tailored
to penalize the configurations considered less probable.

The observed image is modeled as the result of corrupting
an ideal image (which is a deterministic function of the true
contour) with additive white Gaussian noise (AWGN), not
independent of the true contour. This approach leads to an
estimator that uses the entire image and not a strictly local
edge-detector-like algorithm.

The a posteriori probability of the contour given the image,
computed according to Bayes law, is

p(Ilr)p(r)
p(I)

where p(r) is the a priori probability of the contour r, and
p(I|r) is the conditional probability of the observed image
I, given the contour. The maximum a posteriori (MAP)
probability estimate is defined as

p(r|) = €y

FUAY = arg max {p(r|I)}

= arg max {p(I|r)p(r)}. @
Note that for a given observed image, the probability p(I) is a
constant. The maximization (2) is carried out in this work by
an adaptive version of the iterated conditional modes (ICM)
algorithm [2], herein called AICM. This algorithm performs
simultaneous parameter and contour estimation. We prove that
AICM converges to the so called partial optimal solutions,
which verify a suboptimal criterion [16].

0278-0062/923$03.00 © 1992 IEEE




DE FIGUEIREDO AND LEITAO: VENTRICULAR CONTOURS IN ANGIOGRAPHIC IMAGES

This paper is related to the work of Friedland and Adam
[8]: although not explicitly adopting a Bayesian framework, a
one-dimensional Markov random field is also used in [8] to
model the ventricular contour smoothness. There are, however,
some fundamental differences: in [8], the interaction between
the image and the contour (corresponding to p(I|r) in the
Bayesian framework) is supported upon a strictly local edge
detector rather than derived from a model of the observed
data; moreover, the estimation procedure in [8] uses simulated
annealing (which is a stochastic relaxation algorithm much
more time consuming than ICM) and the model parameters
are empirically defined by trial and error instead of estimated
directly from the data. If wanted, temporal information, as
proposed in [8], can also be incorporated in the method
herein proposed by using a two-dimensional, rather than a
one-dimensional Markov random field.

This paper is organized as follows. In Section II the non-
causal Markov random field model of the contour is pre-
sented. The observed image model is described in Section III.
Section IV contains the specification of the a priori contour
model and the derivation of the a posteriori probability.
In Section V the estimation algorithm is presented in two
steps: first, a simpler version assuming knowledge of all the
necessary parameters is described; next, the completely data-
driven scheme, including simultaneous parameter estimation,
is introduced. Tests performed on several real and synthetic
images are presented in Section VI.

II. NONCAUSAL MARKOV RANDOM FIELD CONTOUR MODEL

Noncausal Markov random fields have been used to describe
prior knowledge in several image processing problems like
restoration or segmentation [2], [9], [16], [21], [33]. This
Section presents a brief overview of this formulation and its
adequation to the problem under study.

A. Coordinate System

For the sake of analytical and computational simplicity
it is convenient to describe the ventricle border by a one-
dimensional scalar function. The particular type of description
adopted depends on the analysis procedure to be implemented
with the extracted contour.

Let the ventricular contour be described by discrete polar
coordinates, as seen in Fig. 1,

R= (R =R(6;),1=1,2,---,M)
for 8; = Omin + (s — 1) 3)

where £ = (Omax — Omin)/(M — 1). Each coordinate R; is
confined to a set of possible values A. For digital images,
A is a finite set of discrete values although, for analytical
convenience, it is sometimes assumed to be the set of real
numbers.

The polar coordinate system herein adopted is adequate
to two quantification methods called center of mass method
(CMM) and Stanford method (SM) [20]. It should be noted
that some ventricle contours can not be described in polar
coordinates; these are highly pathological cases which are
usually excluded from automatic quantitative analysis.
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Fig. 1. Ventricular contour in discrete polar coordinates.

Other coordinate systems can be adopted, like the one used
by the long axis method (LAM) [20] or the one introduced in
[17]. These are still one-dimensional scalar descriptions of the
contour and the method described in this paper could easily
be adapted to them.

If other objects are to be estimated, more adequate coordi-
nate systems have to be used, e.g., vessels can be described
by a one-dimensional vector field of center position and width
[22]; continuity and smoothness can still be modeled by a
one-dimensional noncausal Markov random field.

B. One-dimensional Markov Random Field

For each contour point (site) ¢, a set of points is termed the
neighborhood of i, V,, if

i¢V; and jeV, i€V

Vij=1.2,-M.

@

The set of all possible configurations (contours) is 2 =
{R: (ri,re, -+, 7pm) 11 € Aji = 1,2,--~,M}.

It is assumed that each contour is a sample of a one-
dimensional non-causal Markov random field, with respect to
the neighborhood system V = {V;,i = 1,2,---, M}, that is

P(ril{rj :j #1}) = P(ril{r; : j € Vi})

fori=1,2,--, M. 6)

This equation should be seen as referring to probability density
functions, if the variables are continuous, or to probability
masses if the variables are discrete.

Note that the sites near the contour extrema, e.g., i = 1
and ¢ = M, need special rules since they have neighbors from
outside the contour. The problem of assigning values to the
off-contour sites will be addressed in Section IV.

It is not trivial to verify the consistency of a given family of
conditional probabilities like (5) [9]. By consistency is meant
that Bayes law and the Kolmogorov—Chapman equations
should be verified. The equivalence between Markov and
Gibbs fields expressed by the Hammersley—Clifford theorem
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[1], [9], presented in the sequel, allows the circumvention of
this problem.

The Gibbs field definition is based on the concept of clique.
A clique is a set either with only one site or else with mutually
neighbor sites. Let C be the set of all cliques associated to a
neighborhood system V. A probability measure defined on §2
is called a Gibbs measure, with respect to a neighborhood
system V), if it has the form

p(r) = %exp{— > vc(r>}, O]
cec
where
Z = Z exp{— Z VC(T)}, Y
reQ cecC

called the partition function, is a normalizing constant [9].
Each clique potential V(r) depends only on the sites of r that
belong to C, i.e., Vo(r) = Vo({r: : ¢ € C}). If the variables
are continuous the sum over (2 in (7) should be modified to
an integral.

Hammersley—Clifford theorem states that a field is Mar-
kovian with respect to a neighborhood system V if and only
if its joint probability has the Gibbs form (6), with respect to
V [1], [9]. The local conditional probability is obtained from
the Gibbs clique potentials by

P(ril{rj:jeVi}) = Zliexp{— > VC(T)} ®

C:ieC

with

©®

Zi=Y exp{— 3 Vc(r)}.

€A C:ieC

The specification of a set of clique potentials poses no
consistency problems [9].

III. IMAGE GENERATION MECHANISM

As seen above, the MAP estimator assumes knowledge
of both the prior probability of the contour p(r) and the
probabilistic description of how an image is formed, i.e., the
conditional probability of the image given a contour, p(I|r).

Assume the image expressed in the same polar coordi-
nate system used to describe the contours, I(6;,p). Since
a digital image is intrinsically rectangular, 1(6;,p) should
be understood as I3(pcosd;, psinf;) where I; represents a
rectangularly addressable digital image. For digital images,
I(6;,p) can only be defined for a finite and discrete set of
values p € A = {1,2,---,L}, which is the same that was
previously assumed to contain the contour coordinates R;.
Figs. 2(a) and 3(a) show examples of intensities along radial
lines belonging to the image of Figs. 10 and 12 (note in
Fig. 3(a) the presence of a surgical stitch seen as a very abrupt
variation just after pixel 40).

Let I = {I(6;,p) : i € {1,2,---M},p € A} be the
observed image and Io = {Io(6;,p) : i € {1,2,---M},p €
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Fig. 2. (a) Image intensity along a radial line of the ventricle of Figs. 10

and 11. (b) Likelihood function of the border position.
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Fig. 3. (a) Image intensity along a radial line of the ventricle of Figs. 12
and 13. (b) Likelihood function of the border position.

A} be an ideal image of a ventricle, with perfectly homoge-
neous contrast agent mixture and acquired without noise. The
function Io(#;, p,7:), sketched in Fig. 4, would verify

A;<sp<ri—A

I(](oi,Pyri) = { Bi sp>ri+ A7 (10)

and have some shape between r; — A and r; + A describing
the transition from the inside to the outside of the ventricle. In
(10), A; and B; model the image intensity inside and outside
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Fig. 4. Function Io(8;, p,;); ideal intensity profile along a radial section
of the ventricle image.

the ventricle, respectively, for the angle 6;. It is assumed that
A; > B;. For the sake of algorithmic simplicity an abrupt
transition is assumed, i.e.,

Ai = <Ti
Io(6:,p,m:) = {Bi <= Z > 1.

(11

To complete the observed image model, noise has to be
taken into account. In radiographic images there are three
main sources of noise: quantum noise, scattered radiation and
thermal noise [15], [24, p. 46].

* Quantum noise, present in all photoelectronic systems, is
due to the fact that the process of photon detection obeys a
Poisson law. This is particularly important in radiographic
systems given the high energy of X-ray photons. As
the mean and the variance of a Poisson distribution are
equal, this kind of noise is signal-dependent. Since we are
dealing with Poisson distributions of high mean, which
can be well approximated by Gaussian functions, quantum
noise is commonly modeled as signal-dependent additive
white Gaussian noise (AWGN) [13, pp. 273-274].

* Thermal noise, mainly due to the video camera and sub-
sequent electronic equipment, can be adequately modeled
as signal-independent AWGN (13, pp. 273-274].

* Scattered radiation is described as a deterministic de-
crease of contrast plus another quantum noise term [7],
[15].

In conclusion, the random perturbation can be taken as being
additive white Gaussian noise, with variance dependent on the
image intensity.

Given the image intensity function Io(6;, p,7;) [see (11)],
the observed image can then be modeled as

X ) — Iﬂ(gi7p’7‘i)+n4i cpsri
10(01,7/)7 7'1) = {Io(ai’p’,,.i) +np, p>r;

12

where n 4,(p) and np, (p) are white Gaussian sequences with

variances ‘7,24.- and ‘7%?,’ respectively. To avoid notational

complexity, we define the following vectors:

fi=Lo(6:,1,7:), 1o(8:,2,73), -+, Io(8;, L, m)]" (13)
9; = [1(0:,1,7:), 1(6:,2,7), -+, 1(6;, L,ry)] ", (14)

The likelihood function is found to be

L _ _ .
p(g;lr:) = (2m)™ 7 UA?103L+T1

i

DISTANCE FROM CENTER, I (PIXELS)

Fig. 5. (a) Ideal step edge with additive white Gaussian noise, (b) Likelihood
function of the step location.

1 -
ceof{-glfi-al" Q@ M- al] @9
where Q is a L x L diagonal matrix,

(16)

Q = diag (0,241-3 ‘731,-7 o

-

2 2 2 2
'aUA,v:UB,-aUBu"WaB.-) .

v

~ ~~
r; elements L—r; elements

Note that p(g;|r;) also depends on r; through vector f; and
matrix Q. Introducing (11) into (15) and taking logarithms
yields

A?  B? 0%,
T Ai
Inp(g;|r:) x 2v; g, ~ Ti(;i: - "éi +In UT&)
- 97Q7'y;
= ¢i(rs), a7n
where v; is a vector of dimension L given by
A A; A; B; B; B; 3T
"i=[+’%"",71771’%7‘ “ 21] (18)
4 94 T4; B, 7B 7B,

-~

~
r; elements L—7; elements

Fig. 5(a) shows an ideal step edge (A = 110 and B = 10)
contaminated by AWGN (o4 = op = 10). In Fig. 5(b) the
likelihood function of the step position, ¢(r) as given by (17),
is presented. Monte—Carlo simulations were performed with
this ideal step function; in all of the 200 runs executed the
maximum of (r) was located at the true point, i.e., r = 80.

Figs. 2(b) and 3(b) show the likelihood functions associated
to the real intensity profiles of Figs. 2(a) and 3(a), respectively.
It should be noted that the abrupt variation of intensity seen
in Fig. 3(a), due to a surgical stitch, does not affect much
the likelihood function; the only effect of that artifact is
a very weak local maximum at its location. This example
illustrates the robustness of the adopted likelihood function
when compared to what would be obtained with a local edge
detection operator.
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Fig. 6. (a) Simulated intensity function of the projection of a round object,
contaminated by additive white Gaussian noise. (b) Likelihood function ¥(r).
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Fig. 7. Histogram of the position of the maximum of #(r), relative to the
simulated projection of a round object, for 200 Monte—Carlo runs.

To further study the behavior of this likelihood function
under model mismatch conditions the following test was
performed. A simulated intensity profile of the projection of a
round object, contaminated by AWGN (o = 20) was generated
[Fig. 6(a)]. The histogram of the positions of the maxima of
the likelihood functions, obtained by Monte—Carlo simulation
(200 runs), is presented in Fig. 7. In Fig. 6(b) an example
of +(r) for this function is depicted. It can be concluded
from this study that under this model mismatch condition the
ML estimator is not as robust but its behavior is still very
reasonable.

The set of image values along a radial line at a given angle
depends only on the contour position for that angle. This is
expressed by the conditional independence property

P(yiagjh'iﬂ'j) = p(g;|:) 'P(9j|rj)~ 19
This allows writing
M
Inp(Ilr) =Y Inp(g;lr:)
;41
= i(r), (20)

=1

as the observed image I coincides with the set of all g;.
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Fig. 8. Probable and improbable configurations.

IV. THE A POSTERIORI PROBABILTY P(r|I)
The MAP contour estimate is

FMAP _ arg max {1np(I|r) — Z VC(")}

ceC
M
= arg m,jn {— Z%(ri) + Z Vc(‘r)}. 1)
=1 cecC

As shown in Section II, the clique potentials that define the a
priori probability of the contour can be tailored to express prior
knowledge about its characteristics. Some a priori knowledge
comes from the fact that the ventricular contour is, with
high probability, a smooth line without discontinuities or very
high curvature segments. In Fig. 8, four configurations are
represented, two being probable and the other two improbable.
Squares of second-order differences,

Vo, = K*(ri — 2ri_1 +1i_2)%, (22)
can be adopted as they penalize the improbable configurations
which are characterized by a high deviation from collinearity.
In general, the adoption of a nth order difference (computed
from n + 1 values) as clique potential assumes neighborhoods
that contain 2n points, V; = {i —n,i —n + 1,---,i —
1,i + 1,---,i + n — L,i + n}. In particular the second-
order difference implies neighborhoods with 4 points V; =
{i—2i-1,i+1,i+2}

As mentioned in Section II, the off-contour neighbors of
the extreme sites need special rules. It is convenient, from the
analytical and computational points of view, to have a zero
mean field. This is achieved by the procedure next described.
Consider that the contour extrema Ro and Rjpsy; are pre-
viously known values. The coordinates R;, i = 1,2,---,M
of a given contour, illustrated in Fig. 9(a), evolve around the
straight line R; = Rp + i(Rap+1 — Ro)/(M + 1). With the
change of coordinates

Rpry1 — Ry

)v i=1,27"'7M (23)

the new values S; evolve as seen in Fig. 9(b). The field
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Fig. 9. (a) Contour coordinates R;. (b) Modified contour coordinates S;.

S = (84 = 1,2,---,M) can be given free boundary
conditions by assigning zero value to all off-contour sites.
The actual coordinates R; can easily be recovered from the
S; using (23). Note that the values of the variables S; are
confined to a new set A’ = {—L,—~L+1,---,0---,L}.

The problem can now be shifted from finding #MAF
finding $MAP Opce $MAP g found, FMAP
by inverting (23).

The functions ;(r;) are computed as ;(s; + Ry +
iR—MA}“_;Tm’). To keep a shorter notation a new function is
defined:

to
can be obtained

24

R -
i(s:) =¥ <3i + Ro + Z—MA%IRQ)

The conditional probabilities of the Markov formulation can
be obtained from the clique potentials via (8) and (9). The
following fact, concerning the local conditional probability of
a field with clique potentials that are squares of Nth order
differences can be derived from (8) and (9), [4]:

Let S be a Markovian, unidimensional field relatively to
the Nth order neighborhood system V = {V;} with V; =
{i-Ni-N+1,---,i-1i+1,---,i+ N—-1,i+ N}.
The larger cliques associated with this neighborhood system
are C; = {i,4—1,—2,---,1— N}. Let the potentials of these
larger cliques be squares of Nth order differences, that is,

N 2
Ve (8is Siz1,0 0, 8ien) = K? (Zaksi—k) , (25)
k=0
with

ar = (-1)’“(2’) fork=0,1,---,N, (26)
and zero for all the other (smaller) cliques. Suppose that the
set A’ which contains the possible values of variables S; is
the set of real numbers and that the off-contour neighbors of
the extreme sites are equal to zero. Then S is conditionally
Gaussian:

1
(S ISJ -] ) \/21‘_7
2
1
cexpd o (s Y ﬂiksk)
227 ( kev;
@7
with variance
1 (NY)?
2 _ JR—
A= 2K2 (2N)! 28
and
(V)*(=1)+
Piw = (N +i— kDI(N — i — k])!
fork=i+1,4+2,---,5£N. 29)

The joint probability of all the field sites is zero-mean
Gaussian [1]

vdet A

1 T
Wexp(—ﬁs AS)

where A (inverse of the covariance matrix) is an M x M
symmetric matrix with elements given by

A = l<i=j
Y {—ﬂij<=i¢j
It is clear that A is positive definite. Note that (30) can also
be written as (6) and that the clique potentials given by (25)
are squares of differences. As the extreme sites are set to zero,
the clique potentials can only be all zero if all the site values
are also zero.

It is interesting to note that the mean of (27), with the
Bix given by (29), is equal to the Lagrange polynomial
interpolation of order 2V — 1, based on the 2N neighbors [4].

If the variables s; are confined to a finite and discrete set
(like A’ = {—L,---,0,---, L}), similar results can be derived,
with the conditional and joint distributions being not Gaussian
but discrete distributions with a Gaussian envelope.

In conclusion, note the following.

a) The contour is modeled by a one-dimensional noncausal
Markov random field, with respect to the second order neigh-
borhood system V = {V; = {i — 2,i — 1,i + 1,5 + 2},i =
1,2,---,M}.

b) The contour model is decomposed into a zero mean
Gauss—Markov random field (with free, i.e., zero, boundary
conditions) S, plus a deterministic part which is a function of
the contour extrema Ry and Rpsi:

— Ry

_ Rar41
R; =84+ Ro+ ZT—!T’

p(s) = (30)

GD

i=1,2--, M.

(32)

Since the contour coordinates are known to belong to a finite
discrete set of values, the Gaussian assumption is obviously
not correct. This is, however, a common approximation when
the number of possible values is large and the discretization
step is small [2].
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c) The values, Ry and Rpsy;, defined by the user, are
assumed, as far as the estimation problem is concerned, as
previously known constants.

d) There are three kinds of cliques associated with the
adopted neighborhood system, C? = {i+ 1,4,i — 1}, C! =
{3,3 — 1}e C? = {i}. The clique potentials are

Vea(s) = Tz (sis = 281 + 5ic1)? (33)
Vea(s) = 0 (34)
Voo (s) = 0 (35)

where the factor 57 was introduced by using (27) and (28)
so that the conditional probability of a contour point given its
neighbors is Gaussian with variance A2,

P(8il8i-2, Si-1,8i+1, 8i42) =

2
eXP{—%f(Si — H(~si—2 +4si-1 + 4841 — 8i42)) }

V272 ’
(36)
e) The MAP estimate of field S is
sMAP — arg max {lnp(s|I)}
M
= argmin {- doeils)+ ) Vc(s)}- 37)
i=1 cec
and the MAP estimate of field R is given by
X . Ryy1—-Ro .
FMAP = GMAP 4 Ro it P, =12 M.
(38)

f) The functions ;(s;) can be seen as one site clique poten-
tials. Thus, the a posterior probability is also Markov—Gibbs
with the clique potentials given by

ng (8) = 1217(1‘1‘ - 27"i_1 -+ 7'1‘_2)2 » (39)
VCP‘l (s)=0 (40)
VEa(8) = ~i(s:) @1

and the a posteriori local conditional probability is as given
by (42) below.

which are completely unknown a priori. Simulated anneal-
ing [9], [14] could be adopted at the cost of an immense
computational burden, not compatible with routine use. As
an alternative, we will adopt the deterministic relaxation algo-
rithm known as iterated conditional modes (ICM), proposed by
Besag [2]. This algorithm belongs to the class of optimization
techniques known as coordinate descent (ascent) methods (19,
pp- 227-230)}.

The function to be minimized also depends on a set of
unknown parameters that must be estimated if a completely
data-driven algorithm is to be obtained. Simultaneous estima-
tion of parameters (studied in, e.g., [2] and [16]) is a very
important feature of a system designed for routine users with
no previous knowledge about its values. This is even more
true in the problem under study since a contour with M points
possesses 4M + 1 parameters.

Let © = {A,-,Bi,aAi,oB‘.,z' = 1,2,-~,M} be the set
of unknown parameters of p(I|r) (see (20), and (17)). These
parameters will be considered unknown but deterministic.
Parameter A of p(s) [or p(r)], being the variance of the contour
[see (30)], expresses prior knowledge about its degree of
smoothness. Its estimation criterion must thus show preference
for low values, corresponding to smooth contours. An adaptive
process should not freely estimate A from the data but rather
make a compromise between adequation to the data and
obedience to the preference for low values. Had we placed
the estimation problem under a regularization framework this
would be the issue of choosing the regularization parameter
[28]. Under a Bayesian framework, a natural method is to
impose an a priori distribution on the parameter, instead
of considering it completely unknown. We assume the prior
probability

p(A) o exp{ —a/\2} 43)

where a is a parameter that specifies the degree of preference
for low values. Other distributions could be considered; this
one is simple, leads to a computationally easy estimator and
to good results. The role of parameter a implies that it should
not be estimated from the data but rather used to tune the
behavior of the algorithm.

The simultaneous estimation of the contour and the param-
eters can be expressed by the criterion [16]

o Oyk RN
(8%,0%,2\") = arg';l’lg,f\p(s,l, A|©). 44)

Since this optimality criterion is extremely difficult to imple-
ment, a weaker one,

V. ESTIMATION ALGORITHM s" = argmaxp(s, I|©", X") 45
As expressed in (37), the computation of the MAP estimate 0* = arg max p(s*,I|©, ") (46)
involves the minimization of a nonconvex function of many N . -
variables. The main difficulty arises from the functions @;(s;) A" = argmaxp(s”, 1167, A")p(}), @47
8i— L(=si_g +45;_1 + 4811 — 8i42))
p(s,-|s,-_2,s,~_1,si+1,s,-+2,I) (xexp{-( : 6( 22 as ) +‘Pi(3i) . (42)
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called the partial optimal solution, is adopted [16]. The so-
lutions to this optimization problem have the following prop-
erties:

* 8* is a MAP estimate based on I, ©*, and \*. Note
that p(s, I|®*a A*) = p(sII, e, )‘*) p(Il@*, ’\*)’ and
p(I]©*, A*) does not depend on s.

* ©* is a ML estimate based on S* and I as is clear from
(46).

* )\* is a MAP estimate based on S*. In fact,

" = argmaxp(s”, 1107, \)p()
= arg miixp(s*|@‘, A)p(I|8*, 0%, N)p(A)
= argmaxp(s”|\)p(}) = argmax p(Als™)  (48)

since p(I|s*,©*,)) does not depend on X, and
p(s*|©*,A) does not depend on ©*.

An adaptive version of ICM (AICM), similar to the one
proposed by Besag [2], will be applied. As we prove in the
Appendix, the only stationary points of this iterative process
are the above mentioned partial optimal solutions.

The algorithm will be presented in two steps: 1) contour
estimation assuming known parameters (ICM); 2) modification
of ICM to include simultaneous parameter estimation (AICM).

A. ICM with Known Parameters

Consider a visiting schedule to the field sites {ni,ns,ns,
-++,my,---}. Typical schedules include the cyclic visit to
all the contour sites and the cyclic visit with alternating
directions. In this last case, which is the one adopted herein,
the algorithm coincides with the Aitken double sweep method
[19, pp. 227-230]. At time ¢, variable s; (for k = n,) is
replaced by the value that maximizes the local a posteriori
conditional distribution (8)

sk(t+1) = argmax P(sil{s;(t) : j € Vi}, T)

= arg max {Zik exp (— Z VCp(s)) } 49)
C:keC
which does not depend on the local partition function Zj.
Introducing (42), we get (50) below. Any line search tech-
nique can be used to solve (50). In the implementation here
described we adopted the golden section search algorithm [19,
pp. 199-200].
The algorithm is initialized, as proposed in [2], with the
maximum likelihood (ML) estimate

which can be computed separately for each variable s;.
Writing P(s|I) as

P(s|l) = P(sil{s;(t) : 5 # 1}, 1)
- P({s;:j #i}I)
where the second factor is the joint conditional (on I) prob-

ability of all the sites other than 7, and knowing, from the
Markovian property, that

P(sil{s;(t) : 5 # i}, I) = P(sil{s;(t) : 5 € Vi}, 1),
(53)

(2

it is clear that each ICM step increases P(3|I) until a coordi-
natewise (possibly local) maximum is reached [2].

B. ICM with Parameter Estimation—AICM

Consider a visiting schedule to the field sites.

Step 0) Initialization:

Step 0.1) Parameter Initialization: Note that it is not nec-
essary to provide an initial estimate of A because the ML
estimate of the contour does not depend on that parameter. As
for {A;, Bi,04,,08,,i = 1,2,---, M}, two values rp € A
and rr € A can be defined such that

Probability of (r; > rp) =1 V,;
Probability of (r; <rp) =1 V,.
Reasonable initial estimates can be computed using only image

values located to the left of p and to the right of ¢ (adequate
values are rp = 15 and 7 = L — 15):

AN = % > gilo) (54)
=1
. ' 1 L
B (D) = —— —— p;F 9i(p) (55)
() 0= (st - )’ (56)
p=1
—\ ML 1 L N 2
(72) @= mpgp (9:0) - BM™)". 67

Step 0.2) Contour Initialization: Based on the preceding pa-
rameter values, determine the ML contour estimate according
to (51).

Step 1) Update the parameter estimates according to

M
—0) = ML _ (a. A
s(t=0) =8 =argmped eils), 6D 6 = argmax {p(5, 116)} (58)
_1l(_ - 2
Sk(t + 1) = arg IE‘ZX{‘Pk(Sk) _ (Sk 6 ( sk—?(t) + 43}:—21;2) + 4Sk+l(t) 3k+2(t))) } (50)
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.

Fig. 10. Left ventricle ML contour estimate used to initialize the AICM algorithm.

Fig. 11.

and

A = argmax {p(5]A)p(N)} (59)

where § is the present contour estimate. Equation (17), together
with the conditional independence property (19), leads to the
following exact ML estimates:

- (60)
r; =1
X 1 L
B =— > e (61)
U= (t)+1
(@) @0 =13 (ate) - A7) (62
1 p=1
L
(@) 0= % (s0-8). @

Contour obtained after 8 AICM.

From (30),

Vdet A 1 7
p(s|A) = — exp{——zs As}.
/(271_)‘2))] 2X

This leads to

(64)

A =arg m;ixp(éb\)p(/\)

M 2 Lo, 2
=argm§x{—-7ln/\ -5 AS — alX } (65)

Solving for A? leads to

T —M + VM? + 8as5T As
= o .

(66)

The second derivative, at the point given by (66), is negative
proving that it is in fact a maximum.

Step 2) Perform one ICM iteration using the present contour
parameter estimates. One iteration of ICM is a full sweep over
all the contour sites.



DE FIGUEIREDO AND LEITAO: VENTRICULAR CONTOURS IN ANGIOGRAPHIC IMAGES 425

Fig. 12. Left ventricle ML contour estimate used to initialize the AICM

algorithm.

Step 3) Check stopping condition; if not met, go back to
Step 1). In our implementation, the stopping condition is

M
Dlsi(t+1) = si(t)] < u (67)
=1

where p is the stopping threshold.

V1. IMPLEMENTATION AND RESULTS

The algorithm above described was implemented on a
SIEMENS DIGITRON digital angiography equipment using
Intel’s FORTRAN-86 and Siemens User’s Library. In all of
the following examples the contours are defined by 100 points,
on 512 x 512 pixels, 10 bits per pixel, images. Parameter «a
was set to 10% and the stopping condition constant ;1 was set
to 1.

The program starts by asking the user to define the contour
extrema and the approximate position of center of the ventricle.
From these 3 points the coordinate system can be set up
and all the related parameters (Rg, Ras+1, Omins Omax, and
&) computed. The initialization procedure, including image
selection by the user, takes about 30 s. The computing time per
iteration is about 0.5 s; convergence has always been attained
after a maximum of 8 ~ 10 iterations (4 ~ 5 s).

Fig. 10 presents an initial maximum likelihood contour
estimate of a left ventricle. Given the good quality of this
image the initial estimate is reasonable, with serious errors
in just a few points. The result after 8 AICM iterations is
presented in Fig. 11. In the example of Fig. 12, the initial
estimate is very irregular. A serious error due to a surgical
stitch is seen. Fig. 13 contains the contour estimate obtained
after 9 iterations. Fig. 14 shows the evolution of A? along
the AICM iterations of the previous examples, showing the
convergence behavior of the algorithm.

Two tests performed with synthetic images are next pre-
sented. In the first one, an image formed by an ellipse of
intensity 150 over a background of intensity 100 was corrupted
by AWGN with standard deviation ¢ = 10. The ML contour
estimate, presented in Fig. 15, is good, and no changes occur
after the first iteration, shown in Fig. 16. As the real values

Fig. 13. Contour obtained after 9 iterations of AICM.

- - - Example of Fig. 10and 11

—— Example of Fig. 12and 13

ITERATION

Fig. 14. Evolution of X2 along the AICM iterations that led to the estimates
of Figs. 11 and 13.

Fig. 15. Synthetic image (ellipse intensity = 130, background intensity
= 100) corrupted by AWGN of standard deviation & = 10. ML contour
estimate used to initialize the AICM algorithm.

of the intensities and noise standard deviations are known,
it is interesting to examine the estimated values of these
parameters. In Fig. 17 the estimates A; and B; are represented
along the contour sites ¢ = 1,---.100. As expected, these
estimates are distributed around the true values which are 150
and 100, respectively. Fig. 18 shows the estimates of o 4, and
o, distributed around the actual value o = 10.
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Fig. 16. Synthetic image (ellipse intensity = 150, background intensity
= 100) corrupted by AWGN of standard deviation o = 10. Contour estimate
after just one iteration.

160 A

150| - m/\’\/w/‘\’\’\/\/fv v *v/\\A/k/’“\//\“\,r"W\/\—J

140

B;
1001 AL ApA AN A A NN A

10 20 30 40 50 60 70 80 90 100

Contour sites, i

Fig. 17. Estimates of the mean intensities 1; and B, along the contour sites

of Fig. 16.

The second test was performed with noise standard devi-
ation ¢ = 25. Fig. 19 presents the ML contour estimate,
showing some degree of irregularity. The contour resulting
from 8 AICM iterations is shown in Fig. 20. The estimates A,
and Bi, seen in Fig. 21, are distributed around the true values
(150 and 100, respectively) but with greater dispersion than
in the previous example. This is not surprising as it is well
known that the standard deviation of the sample mean of a
Gaussian variable is proportional to the standard deviation of
the underlying distribution. Shown in Fig. 22 are the estimates
of the noise variance along the contour, still distributed around
the true value (o = 25) but also with higher spread.

Finally, three more tests performed on real DSA images
are presented in Figs. 23-25. Shown in Figs. 23(a), 24(a),
and 25(a) are the ML estimates used to initialize the AICM
algorithm. Figs. 23(b), 24(b), and 25(b) present the contours
obtained after 4, 10, and 9 iterations, respectively. These
examples witness the behavior of the algorithm; notice the
catheter visible in all images and the faint contrast at the
ventricle border.

VII. CONCLUSION

In this paper a new method for left ventricular contour de-
termination in digital angiographic images was presented. The

14 —

“ w\f\ﬂ\f W w JW

0 10 20 30 40 50 60
Contour sites, i

15,

| | 55, o
Ay Moo

0 10 20 30 40 50 60 70 80 90 100
Contour sites, i

Estimates of the standard deviations o4, and g, along the contour
sites of Fig. 16.

Fig. 19. Synthetic image corrupted by AWGN of standard deviation ¢ = 23.

ML contour estimate used to initialize the AICM algorithm.

Fig. 20. Synthetic image corrupted by white Gaussian noise of standard
deviation o = 25. Contour obtained after 8 iterations of AICM.

problem was formulated in a Bayesian estimation framework
based on statistical models of prior knowledge and of the
observation mechanism. The a priori smoothness constraint
on the contour was expressed in terms of the Gibbs potentials
of a one-dimensional noncausal Markov random field. The
observation mechanism model was used to derive a likelihood
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Fig. 21. Estimates of the mean intensities .4, and B3, along the contour sites

of Fig. 20.
M\/\’V/\/\IV\fM\/\fW\/@WV\/AMf\/“‘A\N
U .
/ ™ '/\ M/\A va 4
0 \Nso \/;v so/\j\io/\Aloo o (b)

10 20 30 40 bl

Contour sites. 1 Fig. 24. (a) ML contour estimate. (b) Contour after 10 iterations of the

Fig. 22.  Estimates of the standard deviations o 4, and o g, along the contour AICM algorithm.

sites of Fig. 20.

(b)
Fig. 25. (a) ML contour estimate. (b) Contour after 9 iterations of the AICM

Fig. 23. (a) ML contour estimate. (b) Contour after 4 iterations of the algorithm.
AICM algorithm.

function of the boundary position along each radial section of model mismatch and image artifacts. Based on these two
the ventricle. This function was shown to be robust against models (the Gibbs prior and the observation mechanism) a
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MAP estimation criterion was adopted. The maximization of
the a posteriori probability is implemented by an adaptive
version of ICM, herein called AICM, that performs simulta-
neous contour and parameter estimation. The algorithm is thus
completely data-driven. We proved that this method converges
to a class of solutions called partial optimal solutions. The
method exhibits immunity against image artifacts like catheters
or surgical stitches and the results were found good by expert
clinicians. The short computation times are compatible with
routine clinical use.

APPENDIX

In this Appendix it is shown that partial optimal solutions
(POS) are the only stationary points of the adaptive version
of ICM proposed (AICM).

Let partial optimal solutions be defined as verifying

o = argmgxp(s*,[le,/\‘) (A1)
A" = argmaxp(s”, 116%, \)p(3) (A2)
8" = arg mg.xp(s,ﬂ@‘, A%). (A3)

The AICM algorithm, described in detail in Section V, can
be rewritten as follows.

- Assume some initial estimates ©(©, 5® and A(©®,

* At each iteration update the estimates according to

6+D) = arg maxp(5,116,11) (A4)

AGHD) = arg mf,xp(é(i), 1160, /\)p()\) (A5)
307D such that p(s<i+l),1|e<i>, A(">)

> p(s9, 1160, A0) (A6)

where the last inequality is justified by the fact that each ICM
step is guaranteed not to decrease the a posteriori probability.

We first show that the POS are stationary points of the
algorithm. Assume that at some iteration n, the process is
at a POS, ie., (3,6(M 3(") = (s*,0*,)*) that verifies
(A.1), (A.2), and (A.3). Then

O+l = grg maxp(s", 1|0, )") = ©" = 6™ (A7)

At = arg mf.xp(s*,ﬂe*, Mp(\) = 2* =" (A8g)

and

3t = g% = 3™ (A.9)
because if s* is a coordinatewise maximum, ICM can not
go further up. This proves that POS are stationary points of
AICM. Note that the maximizations relative to © and A are
global since exact ML estimates are computed; however, the
maximum relative to s is coordinatewise (possibly local) since
it is a result of ICM. Recall that ICM performs coordinate
ascent on the posterior probability.

To prove that all stationary points of AICM are POS we
start by assuming that the iterative process reaches a stationary

point at some iteration n, i.e., O+ = §() A(n+1) = J(n),
and 3**V = 3™ This can only be so if

6+ = §(™) = arg mgxp(ﬁ("),l|®, 5\(")) (A.10)

At = ) = argmfxp(é("),ﬂé("),)\)p(/\) (A.11)

3D = 5™ — arg mgxp(s,ﬂ(:)("),:\(")) (A.12)

where again the maximum w.r.t. the contour 8 is a coordinate-
wise (possibly local) maximum. Conditions (A.10), (A.11),
and (A.12), being similar to (A.1), (A.2), and (A.3), define a
POS.

Some resemblance with the well-known expectation—maxi-
mization (EM) algorithm (see [S] or [18]) can be found. EM
is also an iterative and adaptive algorithm aiming at ML pa-
rameter estimation from incomplete data. In each iteration, the
data are completed by computing the conditional expectation
of the missing part based on the observed part and on the
present parameter estimate (E step); the complete data is then
used to compute a ML estimate of the parameters (M step).
This process is shown to converge to the ML estimate of the
parameters given the observed data [S], [18]. Interpreting the
image as the observed data and the true contour as the missing
data makes the relation between EM and AICM evident. There
is, however, a fundamental difference in the fact that the
contour (missing data) estimate produced at each iteration
is not a conditional expectation. The conditional expectation
nature of the F step is a fundamental part of the proof of
convergence of EM; hence, this resemblance can not be used
to prove convergence of AICM.
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