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Abstract—The discovery of networks is a fundamental problem
arising in numerous fields of science and technology, including
communication systems, biology, sociology, and neuroscience. Un-
fortunately, it is often difficult, or impossible, to obtain data that
directly reveal network structure, and so one must infer a network
from incomplete data. This paper considers inferring network
structure from “co-occurrence” data: observations that identify
which network components (e.g., switches, routers, genes) carry
each transmission but do not indicate the order in which they
handle the transmission. Without order information, the number
of networks that are consistent with the data grows exponentially
with the size of the network (i.e., the number of nodes). Yet, the
basic engineering/evolutionary principles underlying most net-
works strongly suggest that not all data-consistent networks are
equally likely. In particular, nodes that co-occur in many observa-
tions are probably closely connected. With this in mind, we model
the co-occurrence observations as independent realizations of a
random walk on the network, subjected to a random permutation
to account for the lack of order information. Treating permu-
tations as missing data, we derive an expectation–maximization
(EM) algorithm for estimating the random walk parameters. The
model and EM algorithm significantly simplify the problem, but
the computational complexity of the reconstruction process does
grow exponentially in the length of each transmission path. For
networks with long paths, the exact E-step may be computation-
ally intractable. We propose a polynomial-time Monte Carlo EM
algorithm based on importance sampling and derive conditions
that ensure convergence of the algorithm with high probability.
Simulations and experiments with Internet measurements demon-
strate the promise of this approach.

Index Terms—Expectation–maximization (EM) algorithm,
graphical models, importance sampling, Markov models, network
inference, network tomography.
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I. NETWORK INFERENCE AND CO-OCCURRENCE OBSERVATIONS

T HE study of complex networked systems is an emerging
field, impacting nearly every area of engineering and

science, including the important domains of communication
systems, biology, sociology, and cognitive science. The analysis
of communication networks enables a better understanding
of routing, transmission patterns, and information flow [1],
[2]. Characteristics of biological networks provide insight
into the functional roles played by different genes, proteins,
and metabolites in biological systems [3], [4]. Social network
analysis can be used to gain a deeper understanding of inter-
actions, dynamics, and the structure of organizations [5], [6].
Functional connectivity networks of brain regions are studied
to better understand coupling and interaction between different
neuronal colonies [7], [8]. Obtaining or inferring the structure
of networks from experimental data precedes any such analysis
and is thus a basic and fundamental task, critical to many
applications.

Unfortunately, measurements that directly reveal network
structure are often beyond experimental capabilities or are
excessively expensive. This paper considers inferring network
structure from observations that identify which network com-
ponents (e.g., switches, routers, genes) carry each transmission
but do not indicate the order in which they handle the transmis-
sions. Mathematically, the underlying network structure can
be represented as a directed graph, and the vertices involved
in each transmission form a connected subgraph. The obser-
vations only reflect which subset of vertices are involved, or
“co-occur,” in each transmission; not their interconnectivity.
We refer to such observations as co-occurrences. Co-occur-
rence observations arise naturally in each of the application
areas mentioned above.

Transmissions over telecommunication networks are carried
by links and routers/switches that form a path between the
source and terminal nodes. In some cases, it is impossible to
directly observe the order in which the routers/switches handle
each transmission, since sensors are geographically distributed,
making precise time-synchronization impractical. The so-called
internally sensed network tomography problem specifically
aims at recovering network structure from unordered lists of
network elements along transmission paths [1].

Biological signal transduction networks describe funda-
mental cell functions such as growth, metabolism, differentia-
tion, and apoptosis (disintegration) [4]. Although it is possible
to test for individual, localized interactions between protein
pairs, such experiments are expensive and time-consuming.
High-throughput measurement techniques such as microarrays
have successfully been used to identify the components of dif-
ferent signal transduction pathways [9]. However, microarray
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data only reflect order information at a very coarse, unreli-
able level. Developing computational techniques for inferring
pathway orders is an active research area [10].

Co-occurrence or transactional data also appear in the con-
text of social networks, e.g., by considering which academic pa-
pers are cocited by another paper, which web pages are linked
to or from another web page, or which people were diagnosed
with a common disease on the same day. Such measurements
are readily available, but do not necessarily reflect the temporal
or other natural order of occurrence. Researchers in this area
have considered the problems of reconstructing networks from
co-occurrence data and of using the inferred network to predict
potential future co-occurrences [11].

Functional magnetic resonance imaging (fMRI) provides a
mechanism for measuring activity in the brain with high spatial
resolution. By observing which regions of the brain coactivate
while a patient is performing different tasks, we can obtain
multiple co-occurrence observations. Although fMRI offers
high spatial resolution, its limited temporal resolution makes it
impractical to obtain complete order information. Magnetoen-
cephalography and electroencephalography measure activity
in the brain with higher temporal resolution but only provide
coarse spatial resolution. Consequently, these techniques do
not allow a precise determination of which functional regions
are active during a given task. Existing techniques for obtaining
functional coactivation networks either involve brute-force
measurement or use crude correlation methods (see [7] and
references therein).

In this paper, we focus on observations arising from transmis-
sions in a network. Specifically, each co-occurrence observation
corresponds to a path1 through the network. We observe the ver-
tices comprising each path but not the order in which they appear
along the path. In certain applications, the endpoints (source and
destination) of the path may also be observed.

Our goal is to identify which pairs of vertices are directly con-
nected via an edge, thereby learning the structure of the network.
A feasible graph is one which agrees with the observations, i.e.,
a graph which contains a directed path through the vertices in
each co-occurrence observation. Given a collection of co-occur-
rence observations, a feasible graph is easily constructed by as-
signing an order—any order, in fact—to the vertices in each ob-
servation, and then inserting directed edges between vertices,
which are adjacent in the assigned order. In light of the many
possible orders for each co-occurrence observation, the number
of feasible topologies grows exponentially in the number and
size of observations. Without additional assumptions, side in-
formation, or prior knowledge, there is no reason to prefer one
feasible topology over the others.

Previous work on related problems has involved heuristics
using frequencies of co-occurrence either to assign an order to
each path [1] or to approximate the probability of transitioning
from one vertex to another [11]. These approaches make strin-
gent assumptions and sacrifice flexibility in order to achieve
computational tractability and systematically identify a unique
solution. The frequency method introduced in [1] is based on a

1Throughout this paper, a “path” refers to a sequence of vertices
(x ; x ; . . . ; x ) such that there is an edge between each adjacent pair
of vertices, x and x , and no vertex appears more than once in the sequence.

model where paths from a particular source or to a particular
destination form a tree. This model coincides with the shortest
path routing policy. When the network provides multiple paths
between the same pair of endpoints (e.g., for load balancing) the
algorithm may fail. The cGraph algorithm of Kubica et al. [11]
inserts weighted edges between every pair of vertices, which
co-occur in some observation. This approach produces solu-
tions that are typically much denser than desired. Because both
of these methods are based on heuristics, the results they pro-
duce are not easily interpreted. Also, these heuristics do not
readily lend themselves to incorporating side information. A dif-
ferent approach, introduced by Justice and Hero [12], involves
averaging over an ensemble of feasible topologies sampled uni-
formly from the feasible set. In general, there is an enormous
number of feasible topologies (exponential in the problem di-
mensions) exhibiting a wide variety of characteristics, and it is
not clear that an average of feasible topologies will be optimal in
any sense. These observations have collectively motivated our
development of a more general approach to network reconstruc-
tion, which we simply term network inference from co-occur-
rences (NICO).

Our approach is based on a generative model where paths are
realizations of a random walk on the underlying graph. A co-oc-
currence observation is obtained by randomly shuffling each
path to account for lack of observed order information. Based
on this model, network inference reduces to estimating the pa-
rameters governing the random walk. Then, these parameter es-
timates determine the most likely order for each co-occurrence.

The following interpretation motivates our shuffled random
walk model. Imagine sitting at a particular vertex in the network
and observing a series of transmissions pass by. This vertex is
only connected to a handful of other vertices in the network,
so regardless of its final destination, a transmission arriving at
this vertex must pass through one of the neighboring vertices
next. By recording how many arriving transmissions are passed
to each neighbor over a period of time, it is possible to calcu-
late the empirical probability of transmission to each neighbor.
Obtaining such probabilities at each vertex would provide a
tremendous amount of information about the network. Unfortu-
nately, co-occurrence observations do not directly reveal tran-
sition probabilities and we, therefore, face a challenging in-
verse problem. This paper develops a formal framework for esti-
mating local transition probabilities from a collection of co-oc-
currence observations, without making any additional assump-
tions about routing behavior or properties of the underlying net-
work structure. Experimental results on simulated topologies in-
dicate that good performance is obtained for a variety of oper-
ating conditions.

A particularly novel aspect of the problem and approach in-
troduced in this article is the counterintuitive idea of recovering
temporal dynamics from nontemporal data. Models of informa-
tion flow and causal signaling are quite common in problems
where one is able to measure both where and when events occur.
However, in the problem considered here, we have no knowl-
edge of the temporal chain of events associated with each obser-
vation. We leverage correlation among the different activity pat-
terns observed across the network, together with the notion that
similar activity patterns are presumably caused by a common
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stimulus, to recover the dynamics of information flow, a seem-
ingly impossible task. Indeed, it is impossible to glean informa-
tion about dynamics from just one co-occurrence observation,
and it is only through an ensemble of patterns, which we as-
sume are generated by the same network process, that informa-
tion flow dynamics are recovered.

It is also worth mentioning that the approach discussed in
this paper differs considerably from that of learning the struc-
ture of a directed graphical model or Bayesian network, a graph
where nodes correspond to random variables and edges indi-
cate conditional independence relationships [13], [14]. A typ-
ical aim of graphical modeling is to find a graph corresponding
to a factorization of a high-dimensional distribution that pre-
dicts the observations well. In turn, these probabilistic models
do not directly reflect physical structures, and applying such an
approach in the context of this problem would ignore physical
constraints inherent to the observations: that co-occurring ver-
tices must lie along a path in the network. We note that, although
the Bayesian network paradigm does not directly fit our problem
setup, Teyssier and Koller [15] describe an approach to Bayesian
network structure learning, which is similar to the network in-
ference algorithm presented in this paper. In [15], rather than
searching over all Bayesian network structures, a search is per-
formed over all orderings of random variables in the model. This
simplifies the search procedure since it is easier to determine
the mostly likely directed acyclic graph that is consistent with a
fixed ordering.

The rest of this paper is organized as follows. In Section II, we
introduce notation and formulate the problem setup. Section III
reviews the standard approach to estimating the parameters of a
random walk when fully observed (ordered) samples are avail-
able and presents an expectation–maximization (EM) algorithm
for estimating random walk parameters from shuffled observa-
tions. A Monte Carlo variant of the EM algorithm is described
in Section IV for situations where long transmission paths make
the E-step computationally prohibitive. Section V analyzes con-
vergence of the Monte Carlo EM (MCEM) algorithm. Simula-
tion results are presented in Section VI and the paper is con-
cluded in Section VII, where ongoing work is also briefly de-
scribed.

II. PROBLEM FORMULATION

We model the network as a simple directed graph
, where is the set of ver-

tices and is the set of edges. The number
of vertices is considered known, so network inference
amounts to determining the adjacency structure of the graph;
that is, identifying whether , for every pair of vertices

.
A co-occurrence observation is a subset of vertices in

the graph that simultaneously “occur” when a particular stim-
ulus is presented to the network. For example, when a transmis-
sion is made over a communication network, a subset of routers
and switches carry the transmission from the source to the desti-
nation. This activated subset corresponds to a co-occurrence ob-
servation, with the stimulus being a transmission between that

particular source-destination pair. By repeating this procedure
times with different stimuli, we obtain observations

, where is
a length- co-occurrence, indexed in an arbitrary order.

A directed graph is said to be data consistent
with respect to observations if for each co-occurrence

there exists an ordered path
and a permutation such that

for each , and there is an edge from to

in the graph for , that is, .
Notice that network inference from ordered paths is trivial.

We can begin with an empty graph with .
Then, for each ordered observation , we update the set of
edges via for . Even if we
do not observe ordered paths, if we observe the permutation
along with each co-occurrence , we can use the permutation
to recover the correctly ordered observation and apply the same
procedure.

In practice, we do not make ordered observations and we do
not have access to the correct permutations. However, we can
obtain a feasible reconstruction by associating any permutation
(of the appropriate length) with each co-occurrence, and then
following the procedure described above. There are ways
to permute the elements of , so there may be as many as

feasible reconstructions. Clearly, for large and ,
this is a huge set to search over. Moreover, without making ad-
ditional assumptions, or adopting some additional criteria, there
is no reason to prefer one feasible reconstruction over another.

Physical principles governing the development of many nat-
ural and man-made networks suggest that not all feasible net-
works are equally plausible. Intuitively, if two or more ver-
tices appear together in many co-occurrences, we expect that
they are close in the underlying network topology. Likewise,
we expect that most vertices will only be directly connected to
a small fraction of the other vertices. Based on this intuition,
we propose the following probabilistic model. First, we model
the unobserved, ordered paths as independent samples of
a first-order Markov chain. The Markov chain is parameterized
by transition probabilities and ini-
tial state probabilities ; we denote by the
entire collection of Markov chain parameters. Of course, these
parameters must satisfy the normalization constraints

for each (1)

In addition, we assume that the support of the transition matrix
is determined by the adjacency structure of the underlying net-
work; i.e., if and only if .

A co-occurrence observation is generated by shuf-
fling the elements of an ordered Markov chain sample

via a permutation drawn uniformly
from , the collection of all permutations of objects. Thus,
for each , . We assume the random
permutation is independent of the Markov chain sample .
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Based on this model, we can write the likelihood of a co-occur-
rence observation conditioned on the permutation as

(2)

Since , for all , marginalization over all
permutations leads to

(3)

Finally, assuming that co-occurrence observations are indepen-
dent, and taking the logarithm, gives

(4)
Under this model, network inference consists in computing an
estimate for the Markov chain parameters ; given a prior ,
a natural criterion for estimation is the maximum a posteriori
criterion

(5)

Of course, when is a constant, independent of , this re-
duces to the maximum-likelihood criterion. With the estimate
in hand, we may determine the most likely permutation for each
co-occurrence observation according to , and obtain a feasible
reconstruction using our procedure for ordered observations de-
scribed above.

For nontrivial observations, is a complicated, non-
concave function of , so solving (5) is not a simple task. In
the next section, we derive an EM algorithm for finding local
maxima of this optimization problem, by treating the set of per-
mutations, as missing data.

III. EM ALGORITHM FOR ESTIMATING MARKOV CHAIN

PARAMETERS FROM SHUFFLED

OBSERVATIONS

A. Fully Observed Markov Chains: Notation and Estimation

Let be a set of sample paths
, independently generated by a

Markov chain with parameters [see (1)]. For later use, it
is convenient to introduce the equivalent binary represen-
tation for each sample , defined
such that for , where is

the indicator function. Since and are equivalent
representations of the same information, we will also write

, with a slight abuse of notation. With
this notation, we can write

Maximum-likelihood estimates of can be obtained from
by maximizing under the constraints in (1); the so-
lution is well known

(6)

B. Shufflings, Permutations, and the EM Algorithm

To address the case where we have a set of co-occurrences
, not ordered samples, we define the

equivalent binary representation
in a similar way as above: and

.
Equivalent to using to denote a length- permuta-

tion/shuffling, we introduce a more convenient (binary) repre-
sentation; each shuffling is represented by a permutation matrix,
which we also refer to as a shuffling matrix. Let the shuffling ma-
trix corresponding to a permutation be denoted as , where

. Thus, an ordered sequence , permutation ,
and corresponding co-occurrence are related via .

Let be the collection of permutations
that recover the ordered paths from the
corresponding shuffled co-occurrences .
Recall that the permutations are assumed to be indepen-
dent of the Markov chain parameters . We can write the com-
plete log-likelihood as follows:

(7)

(8)

where is the probability of the set of permutations ,
which is constant in our model since all permutations are
equiprobable.

To estimate from , we treat as missing data, opening
the door to the use of the EM algorithm. Notice that if we
had the complete data , we could recover via

and obtain the closed-form estimates (6).
The EM algorithm proceeds by computing the expected value
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of (w.r.t. ), conditioned on the observations
and on the current model estimate (the E-step)

(9)

where we write to denote expectation with respect to the
missing permutation variables . The model parameter esti-
mates are then updated as follows (the M-step):

(10)

These two steps are repeated cyclically until a convergence cri-
terion is met.

C. The E-Step

1) Sufficient Statistics: Rearranging (8), and dropping
(a constant), we can write

(11)

revealing that is linear with respect to the fol-
lowing simple functions.

• The first entry of each permutation :
, for and ;

• Transition indicators

for , and .
The E-step reduces to computing the conditional expectations
of and given (denoted and ), since
the expectation is a linear operator and hence it commutes with
linear functions. Noticing that and are binary-valued
yields

(12)

(13)

Finally, is obtained simply by plugging and

in the places of and in (11).
2) Computing : Since the permutations are (a priori)

equiprobable, for , we have ,

, and
. Using these facts, together with the mutual independence

among the several sequences, and Bayes law, yields

(14)

where each term is easily computed after using
to unshuffle

3) Computing : The computation of follows a

similar path as that of ; since all permutations are equiprob-
able, for ,

and ,
thus

(15)

Exact computation of the sufficient statistics and

via (14) and (15) requires enumerating all per-
mutations of . For large , this is a heavy load; Section IV
describes a Monte Carlo sampling approach for computing ap-
proximations to and .

D. The M-Step

Recall that the function is obtained by plugging
and in the places of and , respectively, in
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(11). Maximization w.r.t. , under the constraints in (1), leads
to following simple update equations:

(16)

and

E. Handling Known Endpoints

In some applications, (one or both of) the endpoints of each
path are known and only the internal nodes are shuffled. This
is the case in communication networks (i.e., internally sensed
network tomography), since the sources and destinations are
known, but not the connectivity within the network. In estima-
tion of biological networks (signal transduction pathways), a
physical stimulus (e.g., hypotonic shock) causes a sequence of
protein interactions, resulting in another observable physical re-
sponse (e.g., a change in cell wall structure) [3]; in this case, the
stimulus and response act as fixed endpoints, and our goal is to
infer the order of the sequence of protein interactions.

Observe that knowledge of the endpoints of each path im-
poses the constraints and . Under
the first constraint, estimates of the initial state probabilities are
simply given by (for all )

Thus, EM only needs to be used to estimate the transition matrix
entries. Let

denote the set of permutations of elements with fixed end-
points. As in the general case, the E-step can be computed using
summary statistics (for )

and setting . The M-step (update for )
remains unchanged.

F. Incorporating Prior Information

The EM algorithm can be easily modified to incorporate
conjugate priors; these are Dirichlet priors for each row

, of

(17)

which are proper priors if and only if the parameters are
nonnegative [16]. The larger relative to the other ,

, the greater our prior belief is that state is an ini-
tial state rather than the others; equivalently, the expected value
of under the Dirichlet distribution is given by

. Similarly, the larger relative to other
for , the more likely we expect, a priori, transitions from
state to state relative to transitions from to the other states.
Consider the prior distribution on the initial state distribution;
taking , for all , has a smoothing effect, as if all
of the states had some mass, regardless of the observations, in
the initial state distribution.

Due to the conjugacy of the Dirichlet priors, their incorpora-
tion into the EM algorithm only results in a minor change to the
M-step. Incorporating the prior leads to the following modified
version of the function :

(18)

Note that the prior does not involve the missing data (permu-
tations) and thus does not effect the E-step calculation. The
M-step updates become

(19)

(20)

IV. MONTE CARLO E-STEP BY IMPORTANCE SAMPLING

For long sequences, the combinatorial nature of (14) and (15)
(involving sums over all permutations of each sequence) may
render exact computation impractical. In this section, we con-
sider Monte Carlo approximate versions of the E-step, which
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avoid the combinatorial nature of its exact version. The MCEM
algorithm, based on an MC version of the E-step, was originally
proposed in [17], and used ever since by many authors (recent
work can be found in [18]–[20] and references therein).

To lighten the notation in this section, we drop the super-
script from , using simply as the current parameter esti-
mates. Moreover, we focus on a particular length- co-occur-
rence and drop the superscript ;
due to the independence of the paths, there is no loss of gener-
ality. Recall that is a (shuffled) path, and thus has no repeated
elements.

The E-step [see (12) and (13)] consists of computing
the conditional expectations and

. A naive Monte Carlo approximation
would be based on random permutations, sampled from the
uniform distribution over . However, the reason to resort to
approximation techniques in the first place is that is large,
with only a small fraction of these random permutations having
nonnegligible posterior probability, ; a very large
number of uniform samples is thus needed to obtain a good
approximation to and .

Ideally, we would sample permutations directly from the pos-
terior ; however, this would require determining its
value for all permutations. Instead, we employ importance
sampling (IS) (see, e.g., [21] and [22], for an introduction to
IS): we sample permutations, , from a distribution

, from which it is easier to sample than , then
apply a corrective reweighting to obtain approximations to
and . The IS estimates are given by

(21)

(22)

where , the correction factor (or weight) for sample , is given
by

(23)

the ratio between the desired distribution and the sampling dis-
tribution employed.

A relevant observation is that the target and sampling distri-
butions only need to be known up to normalizing factors. Given

and , for constants
and , we can use

(24)

instead of in (21) and (22); the approximations will remain
unchanged since the factor will appear both in the nu-
merator and denominator of (21) and (22), thus canceling out.

The IS framework just described is general, and the perfor-
mance of this approach is closely tied to the particular sampling
scheme employed. In particular, the more closely the shape of
the sampling distribution matches the shape of the target dis-
tribution , the better the quality of the estimate will be. Al-
though our goal is to accurately approximate the E-step suffi-
cient statistics, our primary motivation for using IS is to speed
up calculation of the E-step. The remainder of this section de-
scribes an IS scheme that is both simple to implement (fast) and
closely mimics the generative Markov model for ordered paths.
Next, we describe the IS scheme, including the derivation of
closed-form expressions for both the sampling distribution
and the sample weights . We conclude the section by men-
tioning other sampling variants.

A. Causal Sampling Scheme

Let be a sequence of binary
flags. Given a probability distribution on
the set of states , denote by the restriction of to those
elements of that have corresponding flag set to , that is

for (25)

The proposed sampling scheme is defined as follows.
Step 1) Let be initialized according to

.
Obtain one sample from according to the distri-
bution . Let the obtained sample be denoted ;
of course, one and only one element of is equal to
.

Locate the position of in ; that is, find such
that . Set .
Set (preventing from being sampled
again). Set .

Step 2) Obtain a sample from , according to the distribu-
tion , where denotes the th row of the tran-
sition matrix.
Find such that . Set . Set .

Step 3) If , then set , set ; go back to
Step 2); otherwise, stop.

1) Sampling Distribution: Before deriving the form of the
distribution , let us begin by writing the target distribution

explicitly. Using Bayes law,

(26)

since does not depend a priori on . Based on our assump-
tion that all permutations are equiprobable, we have

. Noticing that the denominator in (26) is just a nor-
malizing constant independent of , we have

(27)
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For the sake of notational economy, we will write simply
to represent . The sequential nature of the sampling
scheme suggests a factorization of the form

(28)

For Step 1) of the sampling scheme, it is clear that, for
,

(29)

For the th iteration, we have

where the indicator term simply expresses that cannot be
equal to one of the previous samples . Ob-
serve that the normalization constant for this distribution can be
expressed as

(30)

where if for some .
Thus, for the th iteration, we can write

(31)

with

Inserting (29) and (31) into (28), we finally have

(32)

Note that the third factor on the right-hand side of (32) is simply
the indicator that is a permutation, i.e., it is equal to ,
for any .

Dividing (27) by (32), we obtain the correction factor for a
permutation sample generated using this sequential scheme as

With this quantity in hand, we have all the ingredients needed
to produce IS estimates and . Notice that computing

the terms , and thus computing , is easy since these factors
are the normalization terms for the distributions , which are
already computed while performing each iteration of Step 2.
Thus, we just need to store the product of these normalizing
constants to finally obtain the weight .

2) Known Endpoints: In the case where the endpoints are
known, we fix , , and set and

in Step 1); the remainder of the procedure is unchanged. Based
on these constraints, the importance sampling weight takes a
slightly different form

(33)

B. Other Sampling Schemes

In addition to the causal sampling scheme that we have just
described, we have also developed other sampling schemes that
work in a hierarchical, rather than sequential, fashion. For the
sake of space, we refrain from describing these other sampling
schemes; detailed descriptions can be found in [23]. In partic-
ular, we have developed a two-stage hierarchical scheme and
a fully hierarchical scheme. In the two-stage method, the first
stage samples from the collection of all possible transitions oc-
curring in a path; then, the second stage samples from the distri-
bution on all arrangements of these transitions, to form a permu-
tation. In the fully hierarchical method, the first stage samples a
suitable set of transitions, say ; then, the following stage sam-
ples a suitable collection of pairs of elements of , yielding a
collection of quadruples and the procedure is repeated until
a permutation is obtained.

A detailed comparison of these sampling schemes with the
causal sampler described above is presented in [23]. Empiri-
cally, we find that the causal sampler performs the best (lowest
approximation error for a fixed number of importance samples),
and so we use this sampling scheme for the remainder of this
paper. Moreover, our original motivation for resorting to Monte
Carlo methods was to improve the speed of computation of our
algorithm. The causal sampling scheme has complexity that is
linear in the length of the path to be sampled, and hence very
clearly meets our needs.

V. MONOTONICITY AND CONVERGENCE

Well-known convergence results due to Wu and Boyles
[24], [25] guarantee convergence of our EM algorithm when
the E-step calculation is performed exactly. By choosing

in the M-step, our iterates satisfy
the monotonicity property

(34)

The marginal log-likelihood (4) is continuous in its parameters
and it is bounded above. In this setting, the monotonicity prop-

erty (34) guarantees that each exact EM update monotonically
increases the marginal log-likelihood, so the EM iterates con-
verge to a local maximum.

When Monte Carlo methods are used in the E-step, mono-
tonicity is no longer guaranteed since the M-step solves

, where is defined analogously to
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but with terms and replaced by and ,
their corresponding importance sampling approximations. Con-
sequently, care must be taken to ensure that approximates

well enough so that the EM algorithm is not swamped with
error from the Monte Carlo estimates.

To illustrate this issue, consider the following synthetic ex-
ample. We generate 40 co-occurrence observations by taking a
random walk on a graph with 140 vertices. Each co-occurrence
has between four and eight vertices. Fig. 1(a) plots

for the exact E-step, along with and
for the MCEM algorithm using only ten importance samples

per co-occurrence. Although increases at each

iteration, clearly does not and the monotonicity
property does not hold. This is apparent in Fig. 1(b), where
the dashed–dotted line shows the progress of the marginal
log-likelihood (our optimization criterion) for the ten-sample
MCEM algorithm. When enough importance samples are
used, the MCEM algorithm performs comparably to the exact
EM algorithm; see the dashed line in Fig. 1(b) corresponding
to an MCEM algorithm using 1000 importance samples per
co-occurrence. All three instances of the EM algorithm used in
this example start from the same initialization.

Recently, researchers have considered the question of how
many importance samples should be used in a Monte Carlo
E-step [18]–[20], [26]. The goal is to balance monotonicity and
computational efficiency by using enough samples to have a
good chance at monotonicity while not using excessively many
samples. Booth et al. [20] argue that if the same number of im-
portance samples is used at each EM iteration, then the algo-
rithm will eventually be swamped by Monte Carlo error and will
not converge. They also suggest requiring that a convergence
criterion be satisfied on multiple successive iterations since the
criterion may be met prematurely due to poor Monte Carlo ap-
proximations.

Fort and Moulines consider asymptotic convergence of
MCEM in [19]. In particular, they prove consistency of
the MCEM for curved exponential families using various
forms of the ergodic theorem for Markov chains under the
assumption that the number of Monte Carlo samples grows
at a suitable rate with respect to the number of EM itera-
tions. Caffo et al. [26] propose a method for automatically
adapting the number of Monte Carlo samples used at each
EM iteration. Let and

. Recall that importance
samples are used to calculate the terms in . The algorithm
of Caffo et al. is based on a central limit theorem-like approx-

imation in which they show that
converges in distribution to the standard normal. Observe that
the monotonicity property (34) is equivalent to the condition

. Although cannot be computed without
computing the exact sufficient statistics and ,

we can compute . Their scheme then amounts to in-

creasing the number of Monte Carlo samples until
for a user-specified . Then, applying an asymptotic stan-
dard normal tail approximation, they obtain a statement of the

Fig. 1. Example with simulated observations illustrating that the MCEM al-
gorithm may not result in monotonic increase of the marginal log-likelihood if
too few Monte Carlo samples are used. The solid line in (a) is Q(��� ; ��� ) for

exact EM iterations, the dashed line isQ(��� ; ��� ), and the dashed–dotted line

is Q(��� ; ��� ) for MCEM iterations using only ten samples. Even though Q
increases monotonically, Q may not be monotonic for the MCEM algorithm.
(b) Marginal log-likelihood for exact EM iterates and for two versions of the
MCEM. MCEM performance closely resembles that of the exact EM algorithm
when sufficiently many importance samples are used.

form . Based on this
statement they claim that monotonicity holds with probability
at least . They further remark that if a different is
chosen at each iteration, so that , then, by the

Borel–Cantelli lemma, , so

there exists a such that for all
with probability ; i.e., eventually every EM update is

monotonic. Of course, in practice, the algorithm is terminated
after a finite number of iterations, so we may never reach the
stage where all iterates are monotonic.

Notice that for the monotonicity condition to
truly hold in the above framework, the events

and
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must occur simultaneously. Because the probabilistic bound
above only addresses one of these events, we refer to this type
of result as guaranteeing an -probably approximately
monotonic update (PAM). More generally, an -PAM result
states that with probability at least , the update will be

-approximately monotonic; i.e.,

implies , because, by definition, .
Rather than resorting to asymptotic approximations to obtain

such a result, we can take advantage of the specific form of
in our problem to obtain the finite-sample PAM result presented
next. Recall that independent importance samples are drawn for
each co-occurrence observation in the Monte Carlo E-step. De-
note by the number of importance samples used to com-
pute sufficient statistics for observation . The computational
complexity of the exact E-step computation for this observation
requires operations [enumerating all permutations of ],
and thus increases with the size of the co-occurrence. Similarly,
we should expect that larger observations will require more im-
portance samples for two reasons: 1) there are more sufficient
statistics associated with this observation ( in total) and 2)
there are more ways to shuffle these observations.

In the previous section, we derived closed-form expressions
for the importance sample weights ,
where is the target distribution and is the importance sam-
pling distribution. A key assumption was made that is abso-
lutely continuous with respect to ; that is, for
every permutation with . We adopt the conven-
tion so that for such samples. This guarantees
that . The bounds below depend on the quality of our
importance sample estimators as gauged by

(35)

Because the set is finite, and have
finite support, and the maximum is well defined (finite). If
matches the target distribution well, then should not be
very large.

There is one other subtlety that we must introduce for our
bounds. Because the terms of have factors and

, in practice, we typically bound and away from
zero to ensure that does not go to . This is easily ac-
complished with a Dirichlet prior, as discussed after the theorem
below. Thus, for the theorem, we will assume that
and for some . The upper bound
on ensures it is still possible to satisfy the constraints (1).

We have the following finite-sample PAM result for our
MCEM algorithm.

Theorem 1: Let and be given and assume there
exists such that and
for all and . If

(36)

importance samples are used for the th observation, then

with probability greater than .

The proof of Theorem 1 appears in the Appendix. Because

by definition, the theorem guarantees that

with probability greater than .

Remark 1: If the EM algorithm is initialized with
(i.e., all entries initialized with positive values), then all finite
iterates will also be bounded away from zero. However, the it-
erates may tend arbitrarily close to zero, violating the assump-
tion of the theorem. This problem can be resolved by using a
Dirichlet prior with , for all , effectively adding
a bit of mass to all possible transitions (see Section III-F for dis-
cussion of priors). For example, taking has the effect of
assuming one observation of each and every transition. The prior
places a small amount of mass on every transition, and results
in EM iterates that satisfy the lower bound .
Recalling the M-step formula using the Dirichlet prior (19) and
taking for all produces

where the inequality follows by noting that the minimum of
the numerator is and the denominator is bounded above by

. The latter can be seen since all the summands of
lie in the set , and for each , at

most one is nonzero. A similar bounding
argument shows that when for all

. Observe that the incorporation of the prior does not alter
the proof of Theorem 1 since the prior terms (i.e., log of the

Dirichlet prior) in and are independent of
the sufficient statistics and thus cancel each other out. Note that
this choice of prior results in the following requirement on the
number of importance samples

(37)
Finally, we also point out that if two vertices and do not
co-occur in any of the observations, then one can set ,
effectively eliminating it from further consideration. This will
not affect the EM algorithm or the bounds above. However, if
one suspects that the observations do not necessarily reflect all
possible paths, then it may be sensible to use the Dirichlet prior
in such situations.

Recall that exact E-step computation requires opera-
tions for the th observation. The bound above stipulates that
the number of importance samples required is proportional
to . Generating one importance sample using the
causal sampling scheme requires operations, and thus, the
computational complexity of a PAM Monte Carlo update only
depends on , which clearly demonstrates that the
computational complexity of the Monte Carlo E-step depends
polynomially on in comparison to exponential dependence
for the exact E-step.

To put this result in perspective, observe that the value of
given by (36) is roughly a factor of away from the value
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we would expect based on an asymptotic variance calculation.
Ignoring constants and log terms, for fixed , we have

since independent sets of importance samples are used to
calculate sufficient statistics for different observations. It is
easily shown that the variance of an individual approximate
statistic or decays according to the parametric rate;

i.e., . In total, there are sufficient
statistics for the th observation, and they are all potentially
correlated since they are functions of the same set of importance
samples. Then, we have

To drive down to a constant level, independent of

and , we need . The additional factor of in
our bound is essentially an artifact from the union bound.

Note that if we use different at each EM iteration, chosen
such that , then by the Borel–Cantelli lemma,

one can argue that . In other words,
eventually all EM iterates result in a monotonic increase of the
marginal log-likelihood.

In addition to demonstrating that the MCEM algorithm has
polynomial computational complexity, this bound gives a useful
guideline for determining how many importance samples should
be used. However, because they involve worst case analysis, the
number of samples dictated by this bound tends to be on the
conservative side. For example, in the Internet experiments de-
scribed in Section VI, and the average path length
is 17 hops. Theorem 1 suggests that roughly ten billion impor-
tance samples should be used per observation. However, in our
experiments, we find that the algorithm exhibits reasonable per-
formance on this data set using as few as 2000 samples per ob-
servation. Of course, in practice, the only way to know the value
of is to enumerate all permutations, so this bound cannot be
used as an explicit guideline.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our NICO al-
gorithm on simulated data and on data gathered from the public
Internet. In the results reported below, network reconstructions
are obtained by first estimating an initial state distribution and
probability transition matrix via the EM algorithm. Then, we
compute the most likely order of each observation according to
the inferred model and use this ordering to reconstruct a feasible
network. The EM algorithm cannot be guaranteed to converge to
a global maximum (the marginal log-likelihood is not concave)
and there may even be multiple global maxima. To address this

issue, we rerun the EM algorithm from multiple random initial-
izations and report the collective results.

We compare the performance of our algorithm with that of
the frequency method (FM), defined in [1] and mentioned in
Section I. The FM also reconstructs a network topology by esti-
mating an order of the vertices in each observation. This method
individually determines each path ordering independently by
sorting the elements in the path according to how correlated each
vertex is with the endpoints of the path. It is possible that mul-
tiple vertices may receive identical FM scores, in which case
their sorting would be arbitrary (one could exchange elements
with identical scores without violating the FM criteria). In fact,
we observe this phenomenon in many of our experiments. Ties
are resolved by choosing a random order for elements with iden-
tical scores. Multiple restarts are also performed using the FM,
yielding a collection of feasible solutions.

The quality of a network reconstruction is determined by a
quantity we term the edge symmetric difference error. Because
the nodes in the network have unique labels, the goal of any
reconstruction scheme is to determine which vertices are con-
nected by an edge. The edge symmetric difference error is de-
fined as the sum of the number of false positives (edges ap-
pearing in the reconstructed network that do not exist in the true
network) and the number of false negatives (edges in the true
network not appearing in the reconstructed network).

A. Simulated Networks

Our synthetic data are obtained as described next. A network
is generated according to a random geometric graph model: 50
vertices are thrown at random in the unit square, and two vertices
are connected with an edge if the Euclidean distance between
them is less than or equal to . This threshold guar-
antees that the graph is connected with high probability [27].
Groups of nodes are randomly chosen as sources and destina-
tions, transmission paths are generated between each source-
destination pair according to either a shortest path or random
routing model, and then, co-occurrence observations are formed
from each path. We keep the number of sources fixed at five
and vary the number of destinations between five and 40, to see
how the number of observations affects performance. Each ex-
periment is repeated on 100 different topologies, rerunning both
NICO and the FM from ten different random seeds per topology.
Exact E-step calculation is used for observations with

, and causal importance sampling (2000 samples) is used for
longer paths. The longest observation in our data was obtained
by random routing and has (notice that ).
No prior is used in any of the results reported here. In our ex-
perience, we found little practical difference between the MLE
and the MAP estimate based on a Dirichlet prior with ,
as discussed in Remark 1.

Fig. 2 plots edge symmetric difference performance for
synthetic data generated using: 1) shortest path routing and
2) random routing. The edge symmetric difference error is
computed between the inferred network and the graph obtained
from correctly ordered observations. Of the ten solutions cor-
responding to different NICO initializations, we use the one
based on parameter estimates yielding the highest likelihood
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Fig. 2. Edge symmetric differences between inferred networks and the network
one would obtain using co-occurrence measurements arranged in the correct
order. Performance is averaged over 100 different network configurations. For
each configuration, ten NICO and FM solutions are obtained via different initial-
izations. We then choose the NICO solution yielding the largest likelihood, and
compare with both the sparsest and clairvoyant best FM solution. (a) Shortest
path routes. (b) Random routes.

score. For this simulation, the most likely NICO solution also
always resulted in the best edge symmetric difference error.

The FM does not provide a similar mechanism for ranking
different solutions. A possible heuristic would be to choose the
sparsest solution (with fewest edges). The figures show perfor-
mance for both this heuristic, and clairvoyantly choosing the
best (lowest error) solution of the ten. In fact, using the sparsest
solution does better than just choosing an FM solution at random
but not as well as using the clairvoyant best. In these simula-
tions, NICO consistently outperforms the FM.

Notice that both algorithms exhibit their worst performance
at an intermediate number of destinations. When very few des-
tinations are used, the measured topology closely resembles a
tree, regardless of the underlying routing mechanism. Relative

frequencies of co-occurrence accurately reflect the network dis-
tance of each internal vertex from the path endpoints. At the
other extreme, when many destinations are used, there is sig-
nificant overlap among the co-occurrence observations, which
aids in localizing vertices. In general, the FM seems to be much
more sensitive to the amount of data available.

As expected, the FM generally performs better on shortest
path data than it does on random routes. When routes are gener-
ated randomly, the corresponding topology is less tree-like and
pairwise co-occurrence frequencies do not reflect network dis-
tances. Because NICO is not based on a particular routing par-
adigm, it performs similarly in both scenarios, possibly even a
little better when routing is random.

B. Internet Data

We have also studied the performance of our algorithm
on co-occurrence observations gathered from the Internet.
Using traceroute, we have collected data describing roughly
250 router-level paths from sources at the University of
Wisconsin-Madison, the Instituto Superior Técnico, Lisbon,
Portugal, and Rice University, Houston, TX, to 83 servers
affiliated with corporations, universities, and governments
around the world. Our motivation for using this type of data is
twofold. First, traceroute allows us to measure the true order
of elements in each path so that we have a ground truth to
validate our results against. Second, and more importantly, the
data comes from a real network where, presumably, paths are
not generated according to a first-order Markov model. This
allows us to gauge the robustness of the proposed model and
to evaluate how well it generalizes to realistic scenarios. The
ground truth network contains a total of 1105 nodes and 1317
edges, and the longest observed path has length 27.

For this data set, we rerun FM and NICO each from 50
random initializations and look at performance across all
solutions rather than focusing on the maximum likelihood or
clairvoyant best. The exact E-step is used to compute sufficient
statistics for paths of up to nine hops. For paths longer than
nine hops, we use the causal importance sampling described in
Section IV-A, with 2000 samples per observation.

Minimum, median, and maximum edge symmetric difference
errors are shown in Fig. 3. Both algorithms have seemingly high
error rates, as there are roughly 1300 links in the true network.
However, keep in mind that both algorithms are attempting to fill
in the entries of a roughly 1100 1100 matrix. For 50 networks
constructed by choosing a random order for the elements of each
observation, the average edge symmetric difference error was
4300, so both algorithms are indeed doing considerably better
than random guessing. NICO performance is again noticeably
better than that of the FM; the NICO average error is better than
that of the best FM reconstruction, and the worst case NICO
reconstruction is on par with the average FM performance. We
also note that the number of false positives and false negatives
in a reconstruction using either scheme tend to be roughly equal
(each constituting half of the edge symmetric difference error).

Fig. 4 shows statistics for the number of edges in the recon-
structed networks. There is an interesting correlation between
the number of edges and reconstruction accuracy in this ex-
ample. As seen above, the typical NICO reconstruction is more
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Fig. 3. Edge symmetric difference error comparison of NICO and FM on In-
ternet data. The reported values come from 50 random initializations of each
algorithm.

Fig. 4. Number of edges in networks reconstructed using each method. The
median number of edges per reconstruction is 1329 for NICO and 1426 for FM.
The true network has 1317 edges, and so it appears that NICO does a better job
of capturing the complexity of the true network.

accurate, in terms of edge errors, than an FM reconstruction.
NICO also consistently returns a sparser estimate. The median
number of links in a NICO reconstruction is 1329, whereas the
median number of links in an FM reconstruction is 1426. There
are 1317 edges in the true network, so in this sense the NICO re-
constructions more accurately reflect the inherent level of com-
plexity in the true network.

Marginal log-likelihood values for each of the 50 NICO esti-
mates are depicted in Fig. 5. The marginal log-likelihood, given
by (4), is the cost function being optimized by the EM algo-
rithm. In contrast to the experiments with simulated data re-
ported above, there is no exact correlation between higher mar-
ginal likelihood values and lower edge symmetric difference
error for this example. The topology with the highest likelihood
value results in an edge symmetric difference error of 627. This
is better than the clairvoyant best FM error, but only average for
NICO. The three repetitions that returned a topology with the
lowest symmetric difference error had the next highest likeli-
hood value, as indicated by the three hollow circles in the figure.

Fig. 5. Marginal log-likelihood values for different random initializations of
NICO, sorted in ascending order. The three hollow circles correspond to the
solutions that achieve the lowest edge symmetric difference error of all NICO
trials. The dashed line shows the marginal log-likelihood value computed using
the true path orders to estimate a Markov transition matrix. Most NICO solutions
have higher marginal log-likelihood than the true topology, suggesting that our
generative model does not accurately describe Internet topology data.

The dashed line shows the likelihood value based on a transi-
tion matrix estimated using the true path orders as measured by
traceroute. Notice that the majority of the NICO solutions have
a higher marginal likelihood than the true topology. This sug-
gests that our generative model may not be the best match for
Internet topology data. Still the overall performance of our al-
gorithm is encouraging.

VII. DISCUSSION AND ONGOING RESEARCH

This paper presents a novel approach to network inference
from co-occurrence observations. A co-occurrence observation
reflects which vertices are activated by a particular transmission
through the network, but not the order in which they are acti-
vated. We model transmission paths as random walks on the un-
derlying graph structure. Co-occurrence observations are mod-
eled as i.i.d. samples of the random walk subjected to a random
permutation that accounts for the lack of observed path order.
Treating the random permutations as latent variables we derive
an EM algorithm for efficiently computing maximum–likeli-
hood or maximum a posteriori estimates of the random walk
parameters (initial state distribution and transition matrix).

The complexity of the EM algorithm is dominated by
the E-step calculation, which is exponential in the length of
the longest transmission path. To handle large networks, we
describe fast approximation methods based on importance
sampling and Monte Carlo techniques. We derive concen-
tration-style bounds on the accuracy of the Monte Carlo
approximation. These bounds prescribe how many impor-
tance samples must be used to ensure a monotonic increase
in the log-likelihood, thereby guaranteeing convergence of
the algorithm with high probability. The resulting MCEM
computational complexity only depends polynomially on the
length of the longest path.

To obtain a network reconstruction, we determine the most
likely order for each co-occurrence observation according to the



4066 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 9, SEPTEMBER 2008

Markov chain parameter estimates, and then insert edges in the
graph based on these ordered transmission paths. This procedure
always produces a feasible reconstruction. The parameter esti-
mates produced by the EM algorithm may be useful for other
tasks such as guiding an expert to alternative reconstructions
by assigning likelihoods to different permutations, or predicting
unobserved paths through the network as in [12]. One could also
analyze properties of an ensemble of solutions obtained by run-
ning the EM algorithm from different initializations, and then
posit a new set of experiments to be conducted based on this
analysis.

The transition matrix parameter can be interpreted as es-
timates of the probability that a transmission will be passed
from vertex to , conditioned on the path reaching ; that is,

. In particular, they are not es-
timates of the probability of a link existing from to . Since

is a stochastic matrix, each row must sum to , and so if
vertex is connected to many other nodes, then the unit mass
is being spread over more entries. We can obtain joint probabil-
ities via Bayes theorem

where is the stationary distribution of the chain (not
necessarily equal to the initial state distribution). These joint
probabilities (appropriately scaled versions of the transition ma-
trix entries) more accurately reflect the likelihood of there being
an edge from to , based on our estimates.

Our future work involves extending and generalizing both al-
gorithmic and theoretical aspects of this work. In our experi-
ments, we found that our current model leads to reasonable In-
ternet reconstructions, but we feel there is room for improve-
ment. For example, the structure of Internet paths may depend
strongly on the destination of the traffic. In fact, one could par-
tition the co-occurrence data into source-dependent (or destina-
tion-dependent) subsets and learn different Markov models for
each subset (see, e.g., [28]). However, if two or more sources
(respectively, destinations) have similar routes, then one could
potentially obtain a better overall estimate by pooling observa-
tions from the sources. We are currently investigating models
based on “mixtures of random walks” to account for this added
level of dependency. Nevertheless, although the source-depen-
dent model more accurately reflects how routing is performed
in actual communication systems, there are scenarios where a
single transition matrix estimate is preferable. For example, a
more holistic characterization of network routing is valuable if
one is interested in predicting the route between a source and
destination that was not previously observed, or if one is inter-
ested in predicting the endpoints of a route given only the acti-
vated internal routers [12].

Co-occurrence observations naturally arise from transmission
paths in communication network applications and, to a degree,
in biological, social, and brain networks as well. However the
physical mechanisms driving interactions in the latter three ap-
plications may also correspond to more general connected sub-
graph structures such as trees or directed acyclic graphs. Ex-
tending our methods in this fashion is easily accomplished in

theory, however the computational complexity may be signifi-
cantly increased when more general structures are considered.

In this paper, we have also restricted our attention to noise-
free observations. We are also interested in extending our al-
gorithm to handle the case where observations reflect a soft
probability that a given vertex occurred in the path rather than
hard, “active” or “not active,” binary observations. This exten-
sion is relevant in many applications including the inference of
signal transduction networks (in systems biology) where co-oc-
currence observations are themselves the result of inference pro-
cedures run on experimental data.

APPENDIX

PROOF OF THEOREM 1

There are two main steps in the proof of Theorem 1. First,
we derive a concentration inequality for the importance sample
approximations and . Then, we use the inequality to

construct a bound for .
Recall the expressions (21) and (22) for importance sample

approximations calculated in the Monte Carlo E-step. Both are

of the general form , where

and , and they are approximating
. The permutations are i.i.d.

samples from the distribution . Note that , so
standard concentration results, such as Hoeffding’s inequality
or McDiarmid’s bounded-differences inequality, do not directly
apply; e.g., consider the case

(38)

(39)

We can, however, show that yields an asymptotically con-
sistent estimate of . Observe that

(40)

(41)

since is a probability distribution on , and

(42)

(43)

(44)

It follows from the strong law of large numbers that as
.

The following finite-sample concentration inequality demon-
strates that the approximation error decays exponentially
in the number of importance samples .

Proposition 1: Let be a sequence of i.i.d. random
variables with and . Assume that
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and , and set . Then,

with probability greater than ,

(45)

Proof: From the definitions of and , .
Applying Hoeffding’s inequality [29] yields that for any

(46)

and for any

(47)

Define the event
. By the union bound, for any

. The complement of implies that for

(48)

(49)

(50)

It follows that , and so

. Since

, if , then ,
and the proposition holds trivially. Thus, without loss of gen-
erality, we consider the case , or equivalently,

. This restriction on implies ,

and so we have . Set
to obtain the desired result.

We apply Proposition 1 to the Monte Carlo approximations
and as follows. Recall that the Monte Carlo

weights are bounded according to , with as de-
fined in (35). Define the event

This is a union over events, each of which
holds with probability at most according to Proposition 1. By

the union bound, it follows that . Next, let
denote the event that

and observe that , therefore
. Let and let be a value to

be determined later. For each , set

(51)

so that

(52)

Then, with probability greater than ,

(53)
Recall that are indicator variables satisfying

and . Multiplying each
term in (53) by the appropriate sum of indicators, rearranging
terms, and recalling that importance sample estimates for
different observations are statistically independent, we have
that with probability greater than ,

which implies that with probability greater than ,

Finally, set and multiply through by
. Then, with probability greater than ,

(54)
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To complete the proof, observe that

(55)

By assumption, for each . It follows
that

(56)

Similarly, for each .
Apply these bounds in (55) to find that the right-hand side of
(55) is no greater than the left-hand side of (54). Set

(57)

Then, with probability greater than
. Solve for in (57) and plug the resulting value back

into(51) with to obtain the desired result.
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