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Abstract—Multiplicative noise (also known as speckle noise)
models are central to the study of coherent imaging systems,
such as synthetic aperture radar and sonar, and ultrasound and
laser imaging. These models introduce two additional layers of
difficulties with respect to the standard Gaussian additive noise
scenario: 1) the noise is multiplied by (rather than added to) the
original image; 2) the noise is not Gaussian, with Rayleigh and
Gamma being commonly used densities. These two features of
multiplicative noise models preclude the direct application of
most state-of-the-art algorithms, which are designed for solving
unconstrained optimization problems where the objective has
two terms: a quadratic data term (log-likelihood), reflecting the
additive and Gaussian nature of the noise, plus a convex (possibly
nonsmooth) regularizer (e.g., a total variation or wavelet-based
regularizer/prior). In this paper, we address these difficulties by:
1) converting the multiplicative model into an additive one by
taking logarithms, as proposed by some other authors; 2) using
variable splitting to obtain an equivalent constrained problem;
and 3) dealing with this optimization problem using the aug-
mented Lagrangian framework. A set of experiments shows that
the proposed method, which we name MIDAL (multiplicative
image denoising by augmented Lagrangian), yields state-of-the-art
results both in terms of speed and denoising performance.

Index Terms—Augmented Lagrangian, Douglas–Rachford
splitting, multiplicative noise, speckled images, synthetic aperture
radar, total variation, variable splitting.

I. INTRODUCTION

M ANY special purpose imaging systems use coherent
demodulation of reflected electromagnetic or acoustic

waves; well known examples include ultrasound imaging, syn-
thetic aperture radar (SAR) and sonar (SAS), and laser imaging.
Due to the coherent nature of these image acquisition processes,
the standard additive Gaussian noise model, so prevalent in
image processing, is inadequate. Instead, multiplicative noise
models, i.e., in which the noise field is multiplied by (not added
to) the original image, provide an accurate description of these
coherent imaging systems. In these models, the noise field is
described by a non-Gaussian probability density function, with
Rayleigh and Gamma being common models.
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In this introductory section, we begin by briefly recalling
how coherent imaging acquisition processes lead to multiplica-
tive noise models; for a more detailed coverage of this topic,
the reader is referred to [24], [25], [31], [34]. We then review
previous approaches for dealing with images affected by mul-
tiplicative noise and finally briefly describe the approach pro-
posed in this paper.

A. Coherent Imaging and Multiplicative Noise

With respect to a given resolution cell of the imaging device, a
coherent system acquires the so-called in-phase and quadrature
components, which are the outputs of two demodulators with
respect to, respectively, and , where is the an-
gular frequency of the carrier signal. Usually, these two compo-
nents are collected into a complex number, with the in-phase and
quadrature components corresponding to the real and imaginary
parts, respectively [24]. The complex observation from a given
resolution cell results from the contributions of all the individual
scatterers present in that cell, which interfere in a destructive
or constructive manner, according to their spatial configuration.
When this configuration is random, it yields random fluctuations
of the complex observation, a phenomenon which is usually re-
ferred to as speckle. The statistical properties of speckle have
been widely studied and are the topic of a large body of litera-
ture [24], [25], [29], [31].

Assuming a large number of randomly distributed scatterers
and no strong specular reflectors in each resolution cell, the
complex observation is well modeled by a zero-mean complex
Gaussian circular density (i.e., the real and imaginary parts
are independent Gaussian variables with a common variance).
Consequently, the magnitude of this complex observation
follows a Rayleigh distribution and the square of the magni-
tude (the so-called intensity) is exponentially distributed [29],
[31]. The term multiplicative noise is clear from the following
observation: an exponential random variable can be written
as the product of its mean value, the so-called reflectance
(the parameter of interest to be estimated) by an exponential
variable of unit mean (the noise).

The scenario just described, known as fully developed
speckle, leads to observed intensity images with a characteristic
granular appearance, due to the very low signal to noise ratio
(SNR). Notice that the SNR, defined as the ratio between the
squared intensity mean and the intensity variance, is equal to
one (0 dB); this is a consequence of the equality between the
mean and the standard deviation of an exponential distribution.

B. Improving the SNR: Multilook Acquisition

A common approach to improving the SNR in coherent
imaging consists in averaging independent observations of the
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same resolution cell (pixel). In SAR/SAS systems, this proce-
dure is called multilook ( -look, in the case of looks), and
each independent observation may be obtained by a different
segment of the sensor array. For fully developed speckle, the
resulting averages are Gamma distributed and the SNR of an

-look image is improved to .
Another way to obtain an M-look image is to apply a low

pass spatial filter (with a moving average kernel with support
size ) to a 1-look fully developed speckle image, making evi-
dent the tradeoff between SNR and spatial resolution. This type
of -look image can be understood as an estimate of the un-
derlying reflectance, under the assumption that this reflectance
is constant in the set of cells (pixels) included in the averaging
process. A great deal of research has been devoted to developing
space variant filters which average large numbers of pixels in ho-
mogeneous regions, yet avoid smoothing across reflectance dis-
continuities, in order to preserve details/edges [20]. Many other
speckle reduction techniques have been proposed; see [31] for
a comprehensive review of the literature up to 1998.

C. Estimation of Reflectance: Variational Approaches

What is usually referred to as multiplicative noise removal
is of course nothing but the estimation of the reflectance of
the underlying scene. This is an inverse problem calling for
regularization, which usually consists in assuming that the
underlying reflectance image is piecewise smooth. In image
denoising under multiplicative noise, this assumption has
been formalized, in a Bayesian estimation framework, using
Markov random field priors [7], [31]. More recently, variational
approaches using total variation (TV) regularization were
proposed [1], [27], [34], [37], [38]. In a way, these approaches
extend the spatial filtering methods referred to in the previous
subsection; instead of explicitly piecewise flat estimates, these
approaches yield piecewise smooth estimates adapted to the
structure of the underlying reflectance.

Both the variational and the Bayesian maximum a posteriori
(MAP) formulations to image denoising (under multiplicative,
Gaussian, or other noise models) lead to optimization problems
with two terms: a data fidelity term (log-likelihood) and a regu-
larizer (log-prior). Whereas in Gaussian noise models, the data
fidelity term is quadratic, quite benign from an optimization
point of view, the same is no longer true under multiplicative ob-
servations. In [1], the data fidelity term is the negative log-likeli-
hood resulting directly from the -look multiplicative model,
which, being nonconvex, raises difficulties from an optimiza-
tion point of view. Another class of approaches, which is the
one adopted in this paper, also uses the -look multiplicative
model, but yields convex data fidelity terms by formulating the
problem with respect to the logarithm of the reflectance; see
[15], [27], [34], [37], [38], and references therein. A detailed
analysis of several data fidelity terms for the multiplicative noise
model can be found in [38].

The combination of TV regularization with the log-likelihood
resulting from the multiplicative observation model leads to an
objective function with a nonquadratic term (the log-likelihood)
plus a nonsmooth term (the TV regularizer), to which some re-
search work has been recently devoted [1], [27], [34], [37], [38].

Even when the log-likelihood is convex (as in [27], [34], [37],
[38]), it does not have a Lipschitz-continuous gradient, which
is a necessary condition for the applicability (with guaranteed
convergence) of algorithms of the forward-backward splitting
(FBS) class [3], [6], [13], [41]. Methods based on the Dou-
glas–Rachford splitting (DRS), which do not require the objec-
tive function to have a Lipschitz-continuous gradient, have been
recently proposed [12], [38].

D. Proposed Approach

In this paper, we address the (unconstrained) convex opti-
mization problem which results from the -look multiplica-
tive model formulated with respect to the logarithm of the re-
flectance. As shown in [38], this is the most adequate formula-
tion to address reflectance estimation under multiplicative noise
with TV regularization. We propose an optimization algorithm
with the following building blocks:

• the original unconstrained optimization problem is first
transformed into an equivalent constrained problem, via a
variable splitting procedure;

• this constrained problem is then addressed using an aug-
mented Lagrangian method.

This paper is an elaboration of our previous work [5], where
we have addressed multiplicative noise removal also via a
variable splitting procedure. In that paper, the constrained
optimization problem was dealt with by exploiting the recent
split-Bregman approach [23], but using a splitting strategy
which is quite different from the one in [23].

It happens that the Bregman iterative methods recently pro-
posed to handle imaging inverse problems are equivalent to aug-
mented Lagrangian (AL) methods [30], as shown in [42]. We
prefer the AL perspective, rather than the Bregman iterative
view, as it is a standard and more elementary optimization tool
(covered in most textbooks on optimization). In particular, we
solve the constrained problem resulting from the variable split-
ting using an algorithm (of the AL family) known as alternating
direction method of multipliers (ADMM) [16], [21], [22].

Other authors have recently addressed the variational restora-
tion of speckled images [1], [12], [27], [34], [37], [38]. The
commonalities and differences between our approach and the
approaches followed by other authors will be discussed after
the detailed description of our method, since this discussion re-
quires notation and concepts which will be introduced in the
next section.

The paper is organized as follows. Section II formulates the
problem, including the detailed description of the multiplica-
tive noise model and the TV regularization we adopt to estimate
the reflectance image. Section III reviews the variable splitting
and the augmented Lagrangian optimization methods, which are
the basic tools with which our approach is built. Section IV
introduces the proposed algorithm by direct application of the
basic tools introduced in Section III. Section V discusses re-
lated work. Section VI reports the results of a series of ex-
periments aiming at comparing the proposed algorithm with
previous state-of-the-art competitors. Finally, Section VII con-
cludes the paper.

Authorized licensed use limited to: Instituto de Telecomunicacoes. Downloaded on July 21,2010 at 17:21:12 UTC from IEEE Xplore.  Restrictions apply. 



1722 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 7, JULY 2010

II. PROBLEM FORMULATION

Let denote an -pixel observed image, assumed
to be a sample of a random image , the mean of which is
the underlying (unknown) reflectance image , that is,

. Adopting a conditionally independent multiplica-
tive noise model, we have

for (1)

where is an image of independent and identically dis-
tributed (iid) random variables with unit mean, , fol-
lowing a common probability density function . In the case
of -look fully developed speckle noise, is a Gamma den-
sity

(2)

which has expected value and variance

Accordingly, we define the signal-to-noise ratio (SNR) associ-
ated to a random variable , for , as

SNR (3)

An additive noise model is obtained by taking logarithms of
(1) [15], [27], [34], [37], [38]. For an arbitrary pixel of the image
(dropping the pixel subscript for simplicity), the observation
model becomes

(4)

The density of the random variable is

(5)

thus

(6)

Invoking the conditional independence assumption, we are fi-
nally lead to

(7)

(8)

where is a constant (irrelevant for estimation purposes).
Using the MAP criterion (which is equivalent to a regulariza-

tion method), the original image is inferred by solving an un-
constrained minimization problem with the form

(9)

where is the objective function given by

(10)

(11)

In (11), is an irrelevant additive constant, is the negative of
the log-prior (the regularizer), and is the so-called regulariza-
tion parameter.

In this work, we adopt the standard isotropic discrete TV reg-
ularizer [8], that is

(12)

where and denote the horizontal and vertical first
order differences at pixel , respectively.

Each term of (11), corresponding to the neg-
ative log-likelihood, is strictly convex and coercive, thus, so is
their sum. Since the TV regularizer is also convex (though not
strictly so), the objective function possesses a unique mini-
mizer [13], which is a fundamental property, in terms of opti-
mization. In contrast, the formulation of the problem in terms
of the original variables (rather than their logarithm) leads to
a nonconvex optimization problem [1], [34]. As seen in [1], the
uniqueness of the minimizer of that nonconvex objective is not
guaranteed in general.

In this paper, we will address problem (9) using variable split-
ting and augmented Lagrangian optimization. In the next sec-
tion, we briefly review these tools, before presenting our ap-
proach in detail.

III. BASIC TOOLS

A. Variable Splitting

Consider an unconstrained optimization problem in which the
objective function is the sum of two functions, one of which is
written as a composition

(13)

Variable splitting is a very simple procedure that consists in
creating a new variable, say , to serve as the argument of ,
under the constraint that . The idea is to consider the
constrained problem

(14)

which is clearly equivalent to the unconstrained problem (13).
Notice that in the feasible set , the objective
function in (14) coincides with that in (13).

The rationale behind variable splitting is that it may be easier
to solve the constrained problem (14) than it is to solve its un-
constrained counterpart (13). This idea has been recently used
in several image processing problems [4], [23], [27], [40].

A variable splitting method was used in [40] to obtain a fast
algorithm for TV-based image restoration. Variable splitting
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was also used in [4] to handle problems involving compound
regularizers; i.e., where instead of a single regularizer as in
(11), one has a linear combination of two (or more) regularizers

. In [4], [27], and [40], the constrained problem
(14) is attacked by a quadratic penalty approach, i.e., by solving

(15)

by alternating minimization with respect to and , while
slowly taking to very large values (a continuation process), to
force the solution of (15) to approach that of (14), which in turn
is equivalent to (13). The rationale behind these methods is that
each step of this alternating minimization may be much easier
than the original unconstrained problem (13). The drawback
is that as becomes very large, the intermediate minimization
problems become increasingly ill-conditioned, thus, causing
numerical problems (see [30], Chapter 17).

A similar variable splitting approach underlies the recently
proposed split-Bregman methods [23]; however, instead of
using a quadratic penalty technique, those methods attack the
constrained problem directly using a Bregman iterative algo-
rithm [42]. It has been shown that, when is a linear function,
i.e., the constraints in (14) are linear (e.g., ), the
Bregman iterative algorithm is equivalent to the augmented
Lagrangian method (AL) [42], which is briefly reviewed in the
following subsection.

B. Augmented Lagrangian

In this brief review of the AL method, we closely follow [30],
which the reader should consult for more details. Consider an
equality constrained optimization problem (of which (14) is a
particular instance, if is linear)

(16)

where and , i.e., there are linear equality
constraints. The so-called augmented Lagrangian function for
this problem is defined as

(17)

where is a vector of Lagrange multipliers and is
the penalty parameter.

The so-called augmented Lagrangian method (ALM), also
known as the method of multipliers [26], [33], consists in mini-
mizing with respect to , keeping fixed, and then
updating .

Algorithm ALM

1.Set , choose , and .
2.repeat
3.
4.
5.
6.until stopping criterion is satisfied.

Although it is possible (even recommended) to update the
value of in each iteration [2], [30], we will not consider that
option here. Importantly, unlike in the quadratic penalty method,
it is not necessary to take to infinity to guarantee that the ALM
converges to the solution of the constrained problem (16).

Notice that (after a straightforward complete-the-squares pro-
cedure) the terms added to in the definition of the aug-
mented Lagrangian in (17) can be written as a single
quadratic term, leading to the following alternative form for the
ALM algorithm:

Algorithm ALM (version II)

1.Set , choose , , and .
2.repeat
3.
4.
5.
6.until stopping criterion is satisfied.

This form of the ALM algorithm makes clear its equivalence
with the Bregman iterative method (see [42]).

It has been shown that, with adequate initializations, the ALM
algorithm generates the same sequence as a proximal point al-
gorithm (PPA) applied to the Lagrange dual of problem (16); for
further details, see [28], [35], and references therein. Moreover,
the sequence converges to a solution of this dual problem
and all cluster points of the sequence are solutions of the
(primal) problem (16) [28].

C. Augmented Lagrangian for Variable Splitting

We now show how ALM can be used to address problem (14),
in the particular case where (i.e., is the identity
function). This problem can be written in the form (16) using
the following definitions:

(18)

and

(19)

With these definitions in place, steps 3 and 4 of the ALM (ver-
sion II) can be written as follows:

(20)

(21)

The minimization (20) is not trivial since, in general, it in-
volves nonseparable quadratic and possibly nonsmooth terms.
A natural solution is to use a nonlinear block-Gauss-Seidel
(NLBGS) technique, in which (20) is solved by alternating
minimization with respect to and . Of course this raises
several questions: for a given , how much computational
effort should be spent in approximating the solution of (20)?
Does this NLBGS procedure converge? Taking just one step
of this NLBGS scheme in each iteration of ALM leads to
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an algorithm known as the alternating direction method of
multipliers (ADMM) [16], [21], [22] (see also [17], [35], [38]):

Algorithm ADMM

1.Set , choose , , and .
2.repeat
3.
4.
5.
6.
7.until stopping criterion is satisfied.

For later reference, we now recall the theorem by Eckstein
and Bertsekas [16] in which convergence of (a generalized ver-
sion of) ADMM is shown. This theorem applies to problems of
the form (13) with , i.e.,

(22)

of which (14) is the constrained optimization reformulation.
Theorem 1 (Eckstein-Bertsekas, [16]): Consider problem

(22), where has full column rank and
and are closed, proper,

convex functions. Consider arbitrary and .
Let and be
two sequences such that

and

Consider three sequences ,
, and that satisfy

Then, if (22) has a solution, say , the sequence to . If
(22) does not have a solution, then at least one of the sequences

or diverges.
Notice that the ADMM algorithm defined previously gener-

ates sequences , , and which satisfy the condi-
tions in Theorem 1 in a strict sense (i.e., with ). One
of the important consequences of this theorem is that it shows
that it is not necessary to exactly solve the minimizations in lines
3 and 4 of ADMM; as long as the sequence of errors are abso-
lutely summable, convergence is not compromised.

The proof of Theorem 1 is based on the equivalence between
ADMM and the so-called Douglas–Rachford splitting method
(DRSM) applied to the dual of problem (22). The DRSM was re-
cently used for image recovery problems in [12]. For recent and
comprehensive reviews of ALM, ADMM, DRSM, and their re-
lationship with Bregman and split-Bregman methods, see [17],
[35].

IV. PROPOSED APPROACH

To address the optimization problem (9) using the tools re-
viewed in the previous section, we begin by rewriting it as

(23)

(24)

with

(25)

The approach followed in [38] also considers a variable split-
ting, aiming at the application of the ADMM method. However,
the splitting therein adopted is different from ours and, as shown
below, leads to a more complicated algorithm with an additional
ADMM inner loop.

Applying the ADMM method to the constrained problem de-
fined by (23)–(25) leads to the proposed algorithm, which we
call multiplicative image denoising by augmented Lagrangian
(MIDAL). Obviously, the estimate of the image is computed
as , component-wise.

Algorithm MIDAL

1.Choose , , , and . Set .
2.repeat
3.
4.
5.
6.
7.
8.
9.until a stopping criterion is satisfied.

The minimization with respect to (line 4) is in fact a set of
decoupled scalar convex minimizations. Each of these mini-

mizations has closed form solution in terms of the Lambert W
function [14]. However, as in [5], we apply the Newton method,
as it yields a faster (and very accurate) solution by running just
a few iterations.

The minimization with respect to (line 6) corresponds to
solving a -TV denoising problem with observed image and
regularization parameter or, equivalently, to computing the
so-called Moreau proximity operator (see [13]) of , de-
noted at ; i.e., for

(26)

We use Chambolle’s algorithm [8] to compute , although
faster algorithms could be applied [40]. As stated in Theorem
1, this computation does not have to be solved exactly as long
as the Euclidian norm of the errors are summable along the
ADMM iterations (and, thus, along the MIDAL iterations).

Still invoking Theorem 1, and assuming that the sequences of
optimization errors with respect to (line 4 of MIDAL pseudo-
code) and (line 6 of MIDAL pseudo-code) are absolutely sum-
mable, then MIDAL convergence is guaranteed, because and
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are closed proper convex functions, and has full
column rank.

V. COMMENTS ON RELATED WORK

We will now make a few remarks on related work. Notice how
the variable splitting approach followed by the ADMM method
allowed converting a difficult problem involving a nonquadratic
term and a TV regularizer into a sequence of two simpler prob-
lems: a decoupled minimization problem and a TV denoising
problem with a quadratic data term. In contrast, the variable
splitting adopted in [38] leads to an intermediate optimization
that is neither separable nor quadratic, which is dealt with by an
inner DRS iterative technique.

TV-based image restoration under multiplicative noise was
recently addressed in [37]. The authors apply an inverse scale
space flow, which converges to the solution of the constrained
problem of minimizing TV under an equality constraint on
the log-likelihood; this requires a carefully chosen stopping cri-
terion, because the solution of this constrained problem is not
a good estimate. Moreover, as evidenced in the experiments re-
ported in [15], the method proposed in [37] has a performance
far from the state-of-the-art.

In [27], a variable splitting is also used to obtain an objective
function with the form

(27)

this is the so-called splitting-and-penalty method. Notice that
the minimizers of converge to those of (23) and (24)
only when approaches infinity. However, since be-
comes severely ill-conditioned when is very large, causing
numerical difficulties, it is only practical to minimize
with moderate values of ; consequently, the solutions obtained
are not minima of the regularized negative log-likelihood (11).
Nevertheless, the method exhibits good performance, although
not as good as the method herein proposed, as shown in the ex-
periments reported below.

As mentioned in Section I-C, in the approach followed in [1],
the objective function is con-convex. In addition to a lack of
guarantee of uniqueness of the minimizer, this feature raises dif-
ficulties from an optimization point of view. Namely, as con-
firmed experimentally in [27], the obtained estimate depends
critically upon the initialization.

Finally, we should mention that the algorithmic approach
herein pursued can also be interpreted from a Douglas–Rach-
ford splitting perspective [12], [17], [35]. In [12], that approach
was applied to several image restoration problems with
non-Gaussian noise, including a multiplicative noise case, but
not with the Gamma distribution herein considered.

VI. EXPERIMENTS

In this section, we report experimental results comparing the
performance of the proposed approach with those of the recent
state-of-the-art methods introduced in [15] and [27]. We chose
to focus on those two references for two reasons: (a) they report
quantitative results and the corresponding implementations are
available; (b) experimental results reported in those papers show

TABLE I
EXPERIMENTAL SETUP

that the methods therein proposed outperform other recent tech-
niques, namely the previously mentioned [1] and [37], as well
as the (noniterative) block-Stein thresholding of [11].

The proposed algorithm is implemented in MATLAB 7.5 and
all the tests were carried out on a PC with a 3.0 GHz Intel
Core2Extreme CPU and 4 Gb of RAM. All the experiments use
synthetic data, in the sense that the observed image is gener-
ated according to (1) and (2), where is the original image. In
Table I we list the details of the 16 experimental setups con-
sidered: the original images, their sizes, and the maximum and
minimum pixel values ( and ); the M values (which
coincide with the SNR (3)); the adopted value of [the regular-
ization parameter in (11)] for our algorithm.

Experiments 1–7 reproduce the experimental setup used in
[1] and [27]; experiments 8–16 follow those reported in [15].
The 8 original images used are shown in Fig. 1. The values of

and are as in [15] and [27], for comparison purposes.
Notice the low SNR values ( values) for most observed im-
ages, a usual scenario in applications involving multiplicative
noise.

The focus of this paper is mainly the speed of the algorithms
to solve the optimization problem (9), the automatic choice of
the regularization parameter is, thus, out of scope. Therefore,
as in [1], [15], and [27], we select by searching for the value
leading to the lowest mean squared error with respect to the true
image.

Assuming that conditions of Theorem 1 are met, MIDAL is
guaranteed to converge for any value of the penalty parameter

. This parameter has, however, a strong impact in the
convergence speed. We have verified experimentally that setting

yields good results. For these reason, we have used this
setting in all the experiments.

The quality of the estimates is assessed using the relative error
(as in [27])

and the mean absolute-deviation error (MAE) (as in [15])
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Fig. 1. Seven original images used in the 16 experiments: from top to bottom
and left to right: Cameraman, Lena, Sim1, Sim2, Sim3, Fields, and Nîmes.

where and and stand for the and
norms, respectively. MIDAL is initialized with the observed

noisy image. As in [27], we use the stopping criterion

with in experiments 1 to 7, as in [27], and in
experiments 8 to 16.

A. Computing the TV Proximity Operator

MIDAL requires, in each iteration, the computation of the
TV proximity operator, , given by (26), for which we
use Chambolle’s fixed point iterative algorithm [8]. Aiming at

Fig. 2. Evolution of the objective function (11) for the setting of Experiment 1,
using Chambolle’s fixed point iterative algorithm [8] to compute the TV prox-
imity operator with different initializations. Top plot: initialization with the dual
variables computed in the previous iteration. Bottom plot: initialization with the
dual variables set to zero.

faster convergence of Chambolle’s algorithm, and consequently
of MIDAL, we initialize each run with the dual variables (see [8]
for details on the dual variables) computed in the previous run.
The underlying rationale is that, as MIDAL proceeds, the im-
ages to which the proximity operator is applied get closer; thus,
by initializing the computation of the next proximity operator
with the internal variables of the previous iteration, the burn-in
period is largely avoided.

Another perspective to look at this procedure, already re-
ferred to, is given by Theorem 1, which states that there is no
need to exactly solve the minimizations in each iteration, but
just to ensure the minimization errors along the iterations are
absolutely summable. The fulfilment of this condition is easier
to achieve with the proposed initialization than with a fixed ini-
tialization. Fig. 2 illustrates this aspect. For the setting of Ex-
periment 1, it shows the evolution of the objective function (11)
when the dual variables are initialized with the ones computed
in the previous iteration (top plot) and when the dual variables
are initialized to zero (bottom plot). All the curves in the top plot
reach essentially the same value. Notice that MIDAL takes, ap-
proximately, the same time for a number of fixed point iterations
between 5 and 20 to compute the TV proximity operator. For a
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Fig. 3. Left column: observed noisy images for Experiments 1 to 4 with
� � �� ����� ��, respectively. Right column: image estimates.

number of iterations higher than 20, MIDAL time increases be-
cause, in each iteration, it runs more fixed point iterations than
necessary. In the bottom plot, we see that the minimum of the
objective function is never reached, although it can be approx-
imated for large values of the fixed point iterations. Based on
these observations, we set the number of fixed point iterations
to 20 in all experiments of this section.

B. Results

Table II reports the results of the 16 experiments. The times
for our algorithm and that of [27] are relative to the computer
mentioned previously. The numbers of iterations are also given,
but just as side information since the computational complexity
per iteration of each algorithm is different. The initialization of

Fig. 4. Left column: observed noisy images for Experiments 5 to 7 with
� � �� �� �, respectively. Right column: image estimates.

the algorithm of [27] is either the observed image or the mean of
the observed image; since the final values of Err are essentially
the same for both initializations, we report the best of the two
times.

For experiments 8 to 16, we did not have access to the code
of [15], so we report the MAE and Err values presented in that
paper. According to the authors, their algorithm was run for a
fixed number of iterations, thus, the computation time depends
only on the image size. The time values shown in Table II were
provided by the authors and were obtained on a MacBook Pro
with a 2.53 GHz Intel CoreDuo processor and 4 Gb of RAM.

In experiments 1 to 7, our method always achieves lower es-
timation errors than the method of [27]. Notice that the gain of
MIDAL is larger for images with lower SNR, corresponding to
the more difficult problems. Moreover, our algorithm is faster
than that of [27] in all the experiments, by a factor larger than 3.

In all the experiments 8 to 16, our algorithm achieves lower
MAE than the method of [15]. Concerning the relative error Err,
our algorithm outperforms theirs in 5 out of 9 cases, there is a tie
in two cases, and is outperformed (albeit by a very small margin)
in two cases.

Figs. 3–6 show the noisy and restored images, for the Exper-
iments 1 to 4, 5 to 7, 8 to 10, and 11 to 13, respectively. Finally,
Fig. 7 plots the evolution of the objective function and
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Fig. 5. Left column: observed noisy images for Experiments 8 to 10.
Right column: image estimates. Note: for better visualization, all the images
underwent the nonlinear transformation ��� prior to being displayed.

of the constraint function along the iterations, for
the Experiment 1 (Cameraman image and ). Notice the
decrease of approximately 7 orders of magnitude of
along the 21 MIDAL iterations, showing that, for all practical
purposes, the constraint (24) is satisfied.

VII. CONCLUDING REMARKS

We have proposed a new approach to solve the optimization
problem resulting from variational (equivalently MAP) esti-
mation of images observed under multiplicative noise models.
Although the proposed formulation and algorithm can be used
with other priors (namely, frame-based), here we have focused
on total-variation regularization. Our approach is based on two
building blocks: 1) the original unconstrained optimization
problem was first transformed into an equivalent constrained
problem, via a variable splitting procedure; 2) this constrained
problem was then addressed using an augmented Lagrangian
method, more specifically, the alternating direction method of
multipliers (ADMM). We have shown that the conditions for
the convergence of ADMM are satisfied.

Multiplicative noise removal (equivalently reflectance esti-
mation) was formulated with respect to the logarithm of the

Fig. 6. Left column: observed noisy images for Experiments 11 to 13. Right
column: image estimates. Note: for better visualization, all the images
underwent the nonlinear transformation ��� prior to being displayed.

reflectance, as proposed by some other authors. As a conse-
quence, the multiplicative noise was converted into additive
noise yielding a strictly convex data term (i.e., negative of
the log-likelihood function), which was not the case with the
original multiplicative noise model. A consequence of this strict
convexity, together with the convexity of the total variation
regularizer, was that the solution of the variational problem
(the denoised image) is unique and the resulting algorithm,
termed MIDAL (multiplicative image denoising by augmented
Lagrangian), is guaranteed to converge.

MIDAL is very simple and, in the experiments herein re-
ported, exhibited state-of-the-art estimation performance and
speed. For example, compared with the hybrid method in [15],
which combines curvelet-based and total-variation regular-
ization, MIDAL yields comparable or better results in all the
experiments.

We are currently working on extending our approach to prob-
lems involving linear observation operators (e.g., blurs), other
nonadditive and non-Gaussian noise models, such as Poissonian
observations [19], [36], and other regularizers, such as those
using frame representations.
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TABLE II
EXPERIMENTAL RESULTS. ITER, ERR, AND MAE DENOTE, RESPECTIVELY, THE NUMBER OF ITERATIONS, THE RELATIVE ERROR, AND THE MEAN

ABSOLUTE-DEVIATION ERROR. THE TIMES ARE REPORTED IN SECONDS. THE TIME FOR [15] IS REFERRED TO A DIFFERENT MACHINE (SEE TEXT)

Fig. 7. Evolution of the objective function��� � and of the constraint function
�� � � � , along the iterations of the algorithm, for Experiment 1.
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