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Abstract—Standard formulations of image/signal deconvo-
lution under wavelet-based priors/regularizers lead to very
high-dimensional optimization problems involving the following
difficulties: the non-Gaussian (heavy-tailed) wavelet priors lead
to objective functions which are nonquadratic, usually nondif-
ferentiable, and sometimes even nonconvex; the presence of the
convolution operator destroys the separability which underlies
the simplicity of wavelet-based denoising. This paper presents a
unified view of several recently proposed algorithms for handling
this class of optimization problems, placing them in a common
majorization–minimization (MM) framework. One of the classes
of algorithms considered (when using quadratic bounds on non-
differentiable log-priors) shares the infamous “singularity issue”
(SI) of “iteratively reweighted least squares” (IRLS) algorithms:
the possibility of having to handle infinite weights, which may
cause both numerical and convergence issues. In this paper,
we prove several new results which strongly support the claim
that the SI does not compromise the usefulness of this class of
algorithms. Exploiting the unified MM perspective, we introduce
a new algorithm, resulting from using 1 bounds for nonconvex
regularizers; the experiments confirm the superior performance
of this method, when compared to the one based on quadratic
majorization. Finally, an experimental comparison of the several
algorithms, reveals their relative merits for different standard
types of scenarios.

Index Terms—Image deconvolution, image restoration, ma-
jorization–minimization (MM) algorithms, optimization, regular-
ization, wavelets.

I. INTRODUCTION

WAVELET-BASED methods are the current state-of-
the-art in image denoising, both in terms of perfor-

mance and computational efficiency (see, e.g., [26], [42],
[43], [45], [47], and the many references therein). However,
image restoration in general (e.g., deblurring/deconvolution) is
much more challenging than denoising, and applying wavelets
turns out to be a much harder task. Unlike most approaches
to wavelet-based denoising, which lead to thresholding rules,
the optimization problems resulting from the wavelet-based
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formulations of deconvolution have no simple closed-form
solutions (except in special circumstances [21]).

Most formulations of image deconvolution under wavelet-
based priors lead to very large scale optimization problems
where the objective function has two terms: a quadratic log-like-
lihood (or data discrepancy) term plus a (usually non quadratic)
log-prior (also known as regularizer of penalty function). In ad-
dition to being of very large dimensionality, these optimization
problems are also difficult for two other main reasons: the best
performing penalty functions are nondifferentiable and some-
times even nonconvex; the presence of a convolution operator
(rather than simply additive white Gaussian noise) destroys the
separability which underlies the simplicity of wavelet-based
denoising. These optimization problems have been recently
addressed via expectation-maximization (EM) algorithms [7],
[27], [28], as well as by majorization–minimization (MM)
methods (also known as bound optimization or surrogate
optimization methods; see [36] for a tutorial/review on MM
algorithms) [18], [29]. Earlier approaches to wavelet-based
image restoration were recently reviewed in [7] and [28], so we
refrain from reviewing them here, and simply indicate some
key references: [5], [6], [21], [40], [44].

This paper focuses on the class of MM approaches to wavelet-
based image restoration by considering three possible majoriza-
tion strategies leading to three different classes of algorithms, as
described in the following three sections.

A. MM Algorithms via Majorizing the Log-Likelihood

We show that the methods independently introduced by
several authors [18], [23], [24], [27], [28], [40], [49], [50] can
all be seen as MM algorithms based on a separable quadratic
majorizer on the log-likelihood. This class of algorithms
involve the iterative application of nonlinear shrinkage/thresh-
olding denoising operators; thus, they are termed iterative
shrinkage-thresholding (IST) or iterative denoising algorithms.
Convergence proofs for this class of algorithms have been
recently presented in [16] and [18].

B. MM Algorithms via Majorizing the Penalty Function

When a quadratic separable majorizer on the penalty function
is adopted, the resulting MM algorithm has the structure of an
iteratively reweighted shrinkage (IRS) which is related to the
well known reweighted least squares (IRLS) algorithm. In the
context of wavelet-based image restoration, this scheme was in-
troduced in [7] using an EM framework.

Algorithms of the IRLS type have been often criticized due to
what can be called the “singularity issue”: when using quadratic
majorizers for nondifferentiable functions, if, at some iteration,
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one of the variables coincides with a point of nondifferentia-
bility, the corresponding weight is infinity, thus locking this vari-
able at that point. This effect raises numerical difficulties (han-
dling infinity) and may prevent convergence of the algorithm.

In this paper, we show several new results concerning the
infamous “singularity issue,” which strongly suggest that this
issue does not compromise the usefulness of this class of algo-
rithms. More specifically, we show the following.

a) The algorithm can be written in such a way that it dis-
penses with having to handle infinite values.

b) If initialized with all components different from zero,
then, with probability one, no component will become
zero in a finite number of iterations.

c) If the algorithm converges, it does so to a minimizer of the
objective function (with probability one).

C. MM Algorithms via Majorizing Both the Log-Likelihood
and the Penalty Function

We introduce a new class of MM algorithms, obtained by
combining the separable quadratic majorizer on the log-likeli-
hood with a majorizer on penalty function, for which we con-
sider two options: with a quadratic majorizer, we recover a par-
ticular instance of the algorithm introduced in [7]; with an
majorizer, which is well suited for nonconvex penalty functions,
we obtain a new class of algorithms which we call iterative soft
thresholding (ISoft).

D. Outline of the Paper

The remaining sections of the paper are organized as fol-
lows. Section II reviews the formulation of wavelet-based image
restoration as an optimization problem, analyzes the sources
of the difficulties in handling that optimization problem, and
mentions related work. Section III contains a brief introduction to
MMalgorithms. InSectionIV,aclassofMMalgorithmisderived
by considering majorizers on the log-likelihood term of the ob-
jective function. Another class of algorithms, obtained by using
majorizers on the penalty function, is presented in Section V;
that section also contain new theoretical results concerning the
properties of this class of algorithms. In Section VII, we sum-
marize the algorithms and analyze their computational cost per
iteration. Section VIII presents an experimental comparison of
the several types of algorithms, showing their relative merits for
different types of scenarios, in terms of: severity of the blur oper-
ator; amount of added noise; nature of the adopted prior. Finally,
Section IX ends the paper with some concluding remarks.

II. PROBLEM FORMULATION

A. Wavelet-Based Image Deconvolution

In this paper, we adopt the standard convention of repre-
senting images as vectors, obtained by stacking all the pixels
in some predetermined order (e.g., lexicographically). In image
reconstruction/restoration problems, the goal is to estimate an
original image from an observation , assumed to have been
produced by the linear-Gaussian observation model

(1)

where matrix represents the observation operator, and con-
tains samples of independent zero-mean Gaussian random vari-
ables of variance . Matrix can model many types of linear
observations, but this paper will focus on deconvolution (e.g.,
deblurring) problems. In this case, matrix represents a 2-D
convolution and it is block-circulant with circulant blocks (as-
suming periodic boundary conditions for the convolution) or
block Toeplitz with Toeplitz blocks [1]. Multiplying any vector
(image) by or can, thus, be done using the 2-D fast
Fourier transform (FFT) with a cost of , where
is the number of image pixels.

To obtain a wavelet-based formulation, consider that can
be represented on some wavelet basis as , where is
the vector of representation coefficients and the set of columns
of is a wavelet basis or dictionary. In the case of an or-
thogonal basis, is a square orthogonal matrix, whereas for
an over-complete dictionary (e.g., a tight frame), has more
columns than rows. With this wavelet-based representation, the
observation model becomes

(2)

and the resulting log-likelihood function is

(3)

where denotes the usual squared Euclidean norm and
is a constant independent of .

The maximum penalized likelihood (MPL) estimate of is
given by

(4)

where

(5)

where is a penalty function which has several different
possible interpretations, depending on the framework in which
the problem is formulated. In Bayesian decision theoretic terms,
(4) defines the well-known maximum a posteriori (MAP) esti-
mate, with , where is a prior den-
sity (usually heavy-tailed), expressing the sparse nature of the
wavelet coefficients of natural images [43]. The estimation cri-
terion (4) can also be seen in a regularization perspective as a
way to address the ill-posed problem of inferring from ; in
that setting, is called the regularization function and is
the regularization parameter [3].

Of course, the MAP/MPL criterion is not the only possible
choice for wavelet-based image denoising/restoration, and sev-
eral alternatives have been proposed with excellent results [33],
[44], [45], [48]. In this paper, we are solely concerned with algo-
rithms for solving the MAP/MPL criterion, and will not discuss
the relative merits of this option with respect to the possible al-
ternatives.

B. Gaussian Priors/Quadratic Penalties

The simplest version of (4) is obtained when a zero-mean
Gaussian prior for is adopted
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where is symmetric positive semi-definite and is a scalar
independent of . In this case, the solution of (4) is

(6)

Of course, this estimate can only be obtained via an iterative
algorithm, due to the huge size of the matrix being inverted; in
fact, it is not even practical to explicitly compute it or store it
(e.g., for 256 256 images, it would be a matrix).

C. Non-Gaussian (Sparseness-Inducing) Priors

It is well accepted that Gaussian densities are not adequate
models for the statistics of wavelet coefficients of natural
images; the sparse nature of wavelet-based representations
(many very small or even zero coefficients together with a few
very large ones) demands heavy-tailed densities [41]. One of
the distributions most often adopted to model the statistics of
wavelet coefficients is the independent generalized Gaussian
density (GGD, see [43])

(7)

The logarithm of this prior is proportional to the th power of
an norm1 plus an irrelevant constant , that is

where . It has been found that good wavelet-based
models of natural images are obtained for [43].

Another class of heavy-tailed prior densities which has been
used to model wavelet coefficients (and which contains GGDs
with as special cases) is that of Gaussian scale mixtures
(GSM); see [2], [7], [17], and [45] for details.

If (4) is hard to solve when is a Gaussian prior, it be-
comes much harder when is a heavy-tailed prior, such as a
GGD or GSM. In this case, we no longer even have a “closed-
form” expression [such as (6)].

D. Sources of Difficulties

The difficulty of solving (4) has two main sources.
• Matrix , unlike alone, is not block-circulant (nor

block-Toeplitz), thus, cannot be efficiently handled using
FFT-based methods. Even when is orthogonal, is
not. The presence of this matrix makes solving (4), even in
the Gaussian case examined in Section II-B, a task that can
only be achieved using iterative algorithms.

• When the penalty (equivalently, the log prior
) is not a quadratic function of , there is, in

general,2 no close-form solution to (4).
In this paper, we will describe MM algorithms which are ob-
tained by addressing each one (or both) of this difficulties; that
is, by using majorizers for the log-likelihood or/and the penalty
function.

1Recall that the ` norm is defined as kvk = ( jv j ) ; thus kvk =
jv j . Although, for p < 1, kvk is not a norm, we will (as is commonly

done) still refer to it as a norm.
2Of course, ifH = I andW is orthogonal, (4) may have closed-form solu-

tion for some choices of p(���); however, in this case, we would be in the presence
of a pure denoising problem, not a deconvolution problem.

E. Related Problems and Approaches

Optimization problems formally close to (4), with re-
placed by some arbitrary matrix , have been studied in other
contexts and applications. For example, with being the design
matrix of some regression problem, the LASSO (least absolute
shrinkage and selection operator) criterion is similar to (4), with

[51]. Notice, however, that state-of-the-art algo-
rithms which have been proposed to solve the LASSO (such as
least angle regression [22]) cannot be used to address (4) be-
cause matrix can not be explicitly computed or stored, nor
is it possible to access individual rows, columns, or elements.
This fact places (4) beyond the reach of most general-purpose
optimization methods.

Another problem formulation leading to an objective function
with the same form as (4) is the following. Let the columns of

contain a redundant (over-complete) dictionary with respect
to which a representation of the observed image (or signal) is
sought [14], [23], [24]. This representation can be obtained by
solving (4), with and being some penalty function
encouraging sparse solutions [23], [24]. The algorithms con-
sidered in this paper can be directly applied to this scenario.
For , this is known as the basis-pursuit denoising
problem [14].

Finally, we should mention that MM algorithms have been
used for more than a decade in image reconstruction (mainly in
tomographic medical imaging, see, e.g., [20], [25], and [39]).
However, to the best of our knowledge, they have only very re-
cently been used to tackle the optimization problems that result
from wavelet-based approaches to inverse problems (e.g., de-
convolution) [18], [28], [29].

III. MAJORIZATION–MINIMIZATION ALGORITHMS

A MM [36] iterative algorithm for solving (4) has the form

(8)

where , for any , , and , i.e.,
upper bounds (majorizes) , touching it for

. It is well known that this property of the function implies
monotonicity of the algorithm, since

(9)

where the first inequality results from , the

second one from the fact that, according to (8), attains

its minimum for .
The MM approach opens the door to the derivation of

EM-type algorithms [19], where the -function (the majorizer)
does not have to result from a model with missing-data, as in
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standard EM. Any convenient inequality and any property of
can be invoked to obtain a valid -function [36].

MM algorithms have three properties (which have trivial
proofs), of which we will make use later.

• Property 1: The function ,
where and are constants independent of (pos-
sibly dependent on ) defines exactly the same iteration as

.
• Property 2: Let ; consider two

majorizers, and ,
both with equality for . Then, all the following func-
tions majorize (with equality for ):

, , and .
• Property 3: The monotonicity property of MM is kept if,

instead of exactly minimizing [as in (8)], the
following weaker condition is satisfied:

(10)

Notice that this is the only property of that was in-
voked in showing the monotonicity of MM. A similar rea-
soning underlies generalized EM (GEM) algorithms [53].
Algorithms defined by iteration (10), instead of (8) are,
thus, called generalized MM (GMM) algorithms.

IV. MM ALGORITHM VIA MAJORIZATION

OF THE LOG-LIKELIHOOD

A. Majorizing the Log-Likelihood

Let us denote , the log-likeli-
hood term of the objective function in (5). This is a quadratic
function with positive semi-definite Hessian ,
thus convex (though not necessarily strictly so), and gradient

. We can write a second-order Taylor
expansion of this function (which is exact, because the function
is quadratic) about some point

(11)

Now let be a symmetric matrix such that

(12)

where denotes matrix inequality.3 Since
, for any , we can obtain a majorizer for as

(13)

which is, of course, an equality for . This suggests using

the r.h.s. of (13) as , with . According to

3Recall thatA � B (for two symmetric matrices) means that matrixA�B
is positive semi-definite.

[36], this quadratic bounding approach to obtaining a monotonic
algorithm was first introduced in [8].

A choice of leading to a simple algorithm is a matrix pro-
portional to identity. In fact, as stated by the following proposi-
tion (shown in Appendix A1) , meaning that
we can use in (13).

Proposition 1: Let the set of columns of correspond to a
normalized tight frame, that is,4 and be normal-
ized such that . Then, .

Inserting into (13), we can write (after some simple
manipulation)

(14)

where is a constant independent of and

(15)

B. Update Rule

With a majorizer for in hand, we invoke Property 1 to
drop and Property 2 to use (14) to build a majorizer for
the complete objective function . The resulting
update equation is, thus

(16)

Notice that (16) corresponds to a pure denoising problem [the
same as (4) and (5), with ], under a penalty/log-prior

, and with “noisy coefficients” . Denoting as the
function which returns the solution of (16), which is a so-called
“denoising rule,” we can write (16) as

(17)

The algorithm defined by (17), termed iterative shrinkage-
thresholding (IST), coincides with those previously presented
in [18], [28], and [29]. Theoretical results concerning the con-
vergence of this iterative procedure can be found in [18], for
the case of convex GGD priors, that is, for , with

. The results in [18] were recently extended and gen-
eralized in [16]. Similar algorithms were also proposed in [49]
and [50], without any formal support or analysis, but with ex-
cellent practical results. Algorithms of the same class were also
proposed in [23] and [24], to find sparse representations on re-
dundant dictionaries.

For a few choices of , there are closed-form expressions
for . We focus only on decoupled penalty functions of the
form . In this case, (16) can be solved sepa-
rately w.r.t. each component

(18)

4If the columns of a matrix correspond to a normalized tight frame, then
WW = I, but W W may be different from identity, because W may
not be orthogonal; see [10] and [41] for an introduction to frames.
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where denotes the th component of . There are two stan-
dard cases for which (18) has simple closed-form solutions. For
a zero-mean Gaussian prior, , the solution is
simply

(19)

For a Laplacian prior (i.e., with ), we have

the well-known soft threshold (ST) function [43]. The closed-
form solution of (18), with , also exists for

[13]. Finally, the also popular hard-threshold
(HT) function can be seen as the limit of (18), with

, when goes to zero (see [43] for details).
A shrinkage/thresholding function which was shown in [7]

and [28] to be very effective for wavelet-based deconvolution is
the non-negative garrote (NNG)

(20)

where is the indicator function of the condition . As
shown in [7], the NNG corresponds to the solution of (18) under
a prior which does belong to the GSM family.

V. MM ALGORITHM VIA MAJORIZATION OF THE PENALTY

A. Majorizing the Penalty/Log-Prior

In this section, we derive MM algorithms by considering ma-
jorizers for GGD (for ) and GSM log-priors. We con-
sider only independent priors, where (equiva-
lently, ), where the marginal densities
belong to a GSM family (of which GGDs are a particular case).
Even in denoising problems (where ) with an orthogonal
wavelet basis ( ), which allows decou-
pling the solution of (4), most priors in this class do not lead to
closed-form solutions (except in a few cases mentioned in Sec-
tion IV-B).

Let us take note of some properties of GSMs which will
be needed below. Any (univariate) GSM density is nec-
essarily even, since it is a convex combination (maybe infi-
nite) of even functions (zero-mean Gaussian densities). For the
same reason, any (univariate) GSM density is a decreasing
function of , thus is an increasing
function of , of course also even. Since GSMs have heavier
tails than a pure Gaussian, the corresponding penalty

necessarily grows slower than a quadratic func-
tion. Finally, since is a GSM, both and are ,
except maybe at the origin [32], [46].

Since is even and subquadratic, it is majorized by an
even quadratic function; i.e., we seek and such that

(21)

with equality for , where denotes the previous
iterate, all throughout this section. This requires

to be tangent to at , that is, their derivatives at must
coincide. This condition leads to

(22)

where is the derivative of at . Of course, we could
also solve for to have the majorizer touch at , but this
value is irrelevant for the algorithm (see Property 1).

Notice that when the penalty corresponds to a log-prior,
, (22) can be written as

which coincides with equation (18) in [7]; this shows the method
therein derived under an EM framework, also has an MM in-
terpretation, based on quadratic majorizers for GSM log-priors.
This quadratic bounding technique is well known in robust re-
gression, where it is used to derive the iteratively reweighted
least squares (IRLS) method [35].

Notice that in (22) is not defined for . If
has finite second derivative at the origin, we can define by
continuity. Noticing that, in this case, , we have

by definition of second derivative, which is by hypothesis finite.
In this case, the objective function is strictly convex and twice
differentiable, and the -function

(23)

where , is smooth. Thus,
convergence of the resulting MM algorithm can be easily
shown, following the same line of reasoning used to show
convergence of EM [53].

However, the most often used penalties in wavelet-based
image restoration are nondifferentiable at the origin, which
is a sufficient condition for leading to sparse estimates [43].
For these penalties, we have to follow a different route. The
function , given by

(24)

is well defined for all and , and is a valid majorizer because
it satisfies , with equality for . Finally,
since , we invoke Property 2 to add the indi-
vidual majorizers yielding the majorizer

(25)

with equality for . Adding this majorizer to the log-likeli-
hood term , where , yields
the -function

(26)
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B. Update Rule

The updated iterate , denoted simply as , is the min-
imizer of . The bound defined in (24) implies that the
updating rule satisfies

(27)

meaning that it can be stated as the constrained problem

subject to (28)

where , and is the subvector of corre-
sponding to the indices in . Letting , we
denote as the matrix formed by the columns of with in-

dices in . Problem (28) is equivalent to

(29)

(30)

where . Since (30) is quadratic, the
minimizer is simply given by

(31)

As shown Appendix A1, the update rule which combines (29)
and (31) can be written compactly as

(32)

where is a diagonal matrix with the entry given by

(33)

This form of the update equation shows that it is never neces-
sary to handle infinite values, which is usually pointed out as
a weakness of IRLS type algorithms. If a component becomes
zero, the corresponding element of also simply becomes zero.
Of course, this will lock this component at zero forever, which
may impact the convergence of the algorithm to a minimizer of
the objective function. This issue will be analyzed in detail as
follows in Section V-D.

C. Solving the Update Equation

To implement each update step, one can simply keep at zero
the components that were zero and compute the remaining
ones by solving (31). Of course, this does not require in-
verting the matrix, but just solving the corresponding system

. Due to its size, this system can only
be solved iteratively. The approach proposed in [7] consists
in using a second-order (also known as two-step) stationary
iterative method (SOSIM) [4], which is defined by

(34)

Notice that the iteration counter in (34) defines an inner loop
(the SOSIM scheme) which is nested inside the MM iteration.
Finally, the pair of update equations and (34) can be
written compactly as

(35)

which is the form used in [7]. Parameters and can be ad-
justed to maximize the speed of the SOSIM (see [7]).

In summary, the resulting method is a GMM algorithm where
each step consists of computing matrix , followed by a number
of SOSIM steps, large enough to guarantee the decrease of the

-function.

D. Singularities and Convergence

The main difficulty in studying convergence of the algorithm
defined by (29) and (30) is caused by the following feature: if a
component reaches zero, it stays zero forever [see (21)], pos-
sibly preventing convergence to a minimizer of the objective
function.

A similar difficulty appears in the IRLS algorithm for robust
regression and has caused serious problems in characterizing
its convergence behavior; e.g., the convergence proof in [11]
includes a finiteness condition on the weights which, in our
problem, would require using a penalty function with second
derivative at the origin. As noted above, this would rule out most
sparseness inducing penalties, which are not differentiable at the
origin.

A related issue occurs in the so-called Weiszfeld algorithm
(WA) [52] for the Fermat–Weber problem, which consists in
finding the point minimizing the sum of the distances to a set
of given points (see [9] for recent results and references). The
WA can also be seen as an MM algorithm based on quadratic
majorization and also has an IRLS flavor [12]. The proof of con-
vergence of that algorithm requires that all weights are always
finite, and most of the work thereafter was focused on studying
conditions under which this is true.

The observations in the previous paragraph clearly beg the
following question: if the algorithm is initialized with all com-
ponents different from zero, does it converge to a minimizer
of the objective function? Although we do not have a proof of
convergence, we will next present results (the proofs of which
can be found in Appendix A) which strongly suggest that this
IRLS-type zero locking behavior does not seem to compromise
the convergence of the algorithm.

Definition 1: Let and
be two functions that return the sets of indices of the,

respectively, zero and nonzero components of a vector.
Proposition 2: Consider that is generated according to (2),

i.e., , with an arbitrary fixed-parameter vector,
and the update equation is given by (32). Then

(36)

that is, with probability one with respect to the (Gaussian) den-
sity governing the generation of , if the algorithm is initialized

such that , then, , for any finite .



2986 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

The following proposition characterizes the minima of the ob-
jective function (5) and extends to arbitrary convex GSM priors
recent results shown in [30] and [31] for .

Proposition 3: Consider the objective function
where is a sum of convex

(not necessarily strictly so) even functions, continuously differ-
entiable everywhere except maybe at the origin. Then, is a
global minimum of if and only if its components satisfy
the following set of conditions:

if (37)

if (38)

where is the th column of matrix and
.

Finally, the following proposition uses the previous one to
characterize the points to which the algorithm may converge.

Proposition 4: Let the iterative algorithm defined by the
update (32) be initialized with all nonzero components, i.e.,

. If the algorithm converges to some point ,
then, with probability one, this point satisfies the necessary and
sufficient conditions (NSC) of optimality (37), (38), thus, is a
global optimum.

In summary, we have shown that if the algorithm is initial-
ized with all components different from zero, then (with prob-
ability one) no component will become zero in a finite number
of steps; moreover, if the algorithm converges, then (also with
probability one) it does so to a global optimum of the convex
objective function. Notice that these results say nothing about
rates of convergence, and it is not clear how the proximity of
singularities affects the speed of the algorithm; this is left as a
topic of future research.

VI. MM ALGORITHMS BY MAJORIZING BOTH

THE LOG-LIKELIHOOD AND THE PENALTY

A. Quadratic Majorizers

It is clear from Property 2 (see Section III) that a third class of
MM algorithms can be obtained by combining (i.e., adding) the
majorizers (13) and (25) derived in the two previous sections,
yielding the -function

(39)

Notice that can be minimized separately w.r.t. each
component , leading to a simple shrinkage operation,

(40)

where depends on the previous estimate according to (33).
Observe [see (35)] that this update rule coincides with a single
SOSIM iteration for (with , the SOSIM is in
fact a first-order method).

B. Nonquadratic Majorizer for the Penalty

The fact that the majorizer on the log-likelihood makes this
term separable opens the door to the use of majorizers on the
penalty which need not be quadratic. In fact, what is desirable
is that the penalty majorizer, when added to a separable log-like-
lihood majorizer, yields a -function with a closed-form mini-
mizer. In view of this, an majorizer is a natural choice for
penalties with , for two reasons: it is tighter than a
quadratic majorizer; the minimizer of the resulting function is
given by a simple soft thresholding rule.

The penalty , for and , satisfies the
inequality

(41)

with equality for . Of course, for , the majorizer
(41) is undefined for . Proceeding as for the quadratic
majorizer, we define the function as

(42)

where , while is a constant
irrelevant for the resulting algorithm. Using Property 2, we fi-
nally have the following bound for a GGD penalty

(43)

Combining (43) with the majorizer in (13) finally leads to the
function

(44)

Minimizing with respect to each , leads to the update rule

(45)

where

.
(46)

Notice that , for any .
As with the quadratic penalty majorizer, if a component be-

comes zero, it will be stuck at zero forever, which may prevent
convergence to a minimizer. It is not possible to extend to this
majorizer the results presented in Section V-D for the quadratic
majorizer. Furthermore, notice that when , the objec-
tive function is nonconvex; thus, no monotonic algorithm can
be guaranteed to converge to a global optimum. Nevertheless,
in practice, we have never observed any convergence problems:
as long as all components are initialized far away enough from
zero, the algorithm always yields high quality image restora-
tions.
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TABLE I
SUMMARY OF THE ALGORITHMS: FOR EACH ALGORITHM, THE COMPUTATIONS

INVOLVED IN EACH ITERATION ARE SHOWN

VII. SUMMARY OF ALGORITHMS AND COMPUTATIONAL

COST ANALYSIS

In this section, we briefly summarize all the algorithms pre-
sented in this paper. The algorithm presented in Section IV (17)
is called iterative shrinkage-thresholding (IST), since it pro-
ceeds by iteratively applying a nonlinear shrinkage-thresholding
function . The class of algorithms defined in Section V are
termed iteratively reweighted shrinkage (IRS), because (32) can
be seen as a shrinkage operation, in which the shrinkage weights
in are updated at each iteration. When a second-order sta-
tionary iterative method (SOSIM), defined in (35), is used to
solve (31), we refer to the resulting algorithm as IRS-2. When
we take a single step of a first-order method to solve (31), the
resulting update equation is given by (40) and the corresponding
algorithm is called IRS-1. Finally, the algorithm introduced in
Section VI-B, defined by (45), is designated as ISoft (standing
for iterative soft thresholding).

It worth pointing out that all the algorithms involve com-
puting , as given by (15), which is nothing more than the

current estimate minus the gradient of the log-likelihood
term. Defining the function

(47)

we can write . With this function in hand, we
summarize the algorithms considered in this paper in Table I.

In each iteration, the costs of computing in IST, the
vector additions, the diagonal product and inversion
in IRS-1 and IRS-2, all the multiplications by scalars and
sums in IRS-2, and the soft threshold function in ISoft, are
all , i.e., they grow linearly with the dimension of .
Therefore, the leading term of the cost per iteration of all the
algorithms comes from computing . The multiplications by

and , in (47), can be done efficiently via FFT, with
cost, since these matrices represent convolutions.

For the multiplications by and , when these matrices
correspond to orthogonal or redundant wavelet bases, there
are efficient algorithms with and cost,
respectively [41]. Consequently, the global cost per iteration
of all the algorithms is .

TABLE II
EXPERIMENTAL SETTING

VIII. EXPERIMENTS

The goal of the experiments reported in this section is not to
assess the performance of the image restoration criteria of the
form (4). This has been carried out in several other publications,
in comparison with other state of the art criteria, namely in [7],
[24], [28], [29], [33], and [37]. In those papers, the reader can
also find examples where the visual quality of the restored im-
ages may be assessed. It is clear that the performance of such
criteria (e.g., in terms of SNR improvement) does not depend
on the optimization algorithm used to implement it, but only on
the type of wavelets and of the penalty . On the other hand,
the relative convergence speed the algorithms is essentially in-
dependent of these choices. In this paper, we use GGD priors,
i.e., , and simple Haar wavelets. We are well aware
that this does not lead to state-of-the-art performance in terms
of SNR improvement; however, the conclusions obtained con-
cerning the relative speed of the algorithms are valid for other
wavelets and penalty functions.

The experiments reported in this section were designed to
evaluate the algorithms considered in this paper in three typical
image restoration scenarios: strong blur with low noise (exper-
iment 1), mild blur with medium noise (experiment 2), and no
blur with strong noise (experiment 3). The details of each of
these scenarios are shown in Table II. All the algorithms were
initialized with all equal to a small constant (notice that this
does not correspond to a constant image) and parameter was
hand tuned for the best SNR improvement.

Experiment 1: In this case we consider a strong blur, corre-
sponding to a very ill-conditioned matrix . The objective func-
tion is plotted in Fig. 1. IRS-2 is clearly faster than IRS-1
and IST: IRS-1 and IST require roughly 3700 iterations to reach
the objective function values that IRS-2 reaches after 300 itera-
tions. This was already illustrated in [7] and is due to the ability
of the SOSIM to handle ill-conditioned systems. The slowness
of IST in this problem can be traced to the matrix bound in (12),
with , which is very loose because is very ill-condi-
tioned. In this problem, ISoft coincides with IST, because the
penalty is . In conclusion, of the algorithms de-
scribed in this paper, IRS-2 should be chosen for problems in-
volving severely ill-conditioned blurs.

Experiment 2: This experiment is targeted at assessing the
behavior of the algorithms for mild blur and medium noise. The
evolution of the objective function (in Fig. 2) shows that IST is
faster than both IRS-1 and IRS-2. This is again a understandable
result: with mild blur and medium noise, the problem is closer to
denoising than to deblurring, and IST takes advantage of the fact
that, in each iteration, it uses an exact denoising rule. Again, in
this case, ISoft coincides with IST, because the adopted penalty
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Fig. 1. Evolution of the objective functionL(��� ) produced by the algorithms
IST, IRS-1, and IRS-2 in experiment 1 (see text and Table II for details).

Fig. 2. Evolution of the objective functionL(��� ) produced by the algorithms
IST, IRS-1, and IRS-2 in experiment 2 (see text and Table II for details).

is . In conclusion, in problems involving mild blur
and medium to strong noise, IST should be the chosen method.

Experiment 3: Finally, the third experiment aims at assessing
the speed of the ISoft algorithm. Because ISoft only differs
from IRS-1 and IST in the way it handles the penalty (not the
likelihood), we consider a simple denoising problem, i.e., with

, with the penalty with . No-
tice that, in this case, the denoising rule [see (16), and
(17)] of IST does not have a closed-form; thus, we have im-
plemented via a numerical solution of (16). Of course,
each iteration of the resulting IST scheme is computationally
much heavier than each iteration of ISoft or ISR-1. Given the ab-
sence of blur, and the fact that we are using orthogonal wavelets,

is the optimal parametrization of IRS-2, making it
similar to IRS-1. The results in Fig. 3 show that ISoft is almost
as fast as IST (which converges in one iteration, because this is a
denoising problem) without involving the expensive numerical
implementation of . ISoft is faster than IRS-1 because the
quadratic bound used by the latter algorithm is not as tight as
the majorizer used by ISoft.

Fig. 3. Evolution of the objective functionL(��� ) produced by the algorithms
IST, IRS-1, and ISoft in experiment 3 (see text and Table II for details).

IX. CONCLUDING REMARKS

In this paper, we have shown that several recently proposed
algorithms for wavelet-based image deconvolution can all be
seen as members of the MM family, resulting from different
choices of majorizers. The IST class of algorithms (recently pro-
posed by several authors) results from bounding the Hessian of
the log-likelihood term with an identity matrix.

By using a quadratic majorizer on the penalty function, we
obtain IRS methods. This class is further divided into IRS-1
and IRS-2, when first- or second-order iterative algorithms, re-
spectively, are used to address the linear system that needs to
be solved at each iteration. These algorithms share some fea-
tures with the IRLS family, namely in that both involve weights
which, in principle, and if handled naïvely, can become infi-
nite if some component(s) of the iterate becomes zero. More-
over, once a component becomes zero, it remains there forever,
possible compromising the convergence of the algorithm to a
minimizer of the objective function. We have shown several re-
sults which strongly suggest that this feature of IRS algorithms
does not destroy their usefulness: if properly initialized, the al-
gorithm never (i.e., with probability zero) produces zeros in a
finite number of steps; if the algorithm converges, then it does
so to a minimum of the objective function. We have also shown
how to write the algorithm in such a way that, even if some com-
ponents become zero, no infinite weights have to be handled.

Finally, we have introduced a new class of methods, obtained
by combining a bound on the log-likelihood with an ma-
jorizer on the penalty. For nonconvex penalties, the majorizer
is tighter than the quadratic one, leading to faster algorithms.

We have experimentally compared these algorithms in typ-
ical image restoration benchmark scenarios. The conclusions of
this comparison can be summarized as follows: algorithm IRS-2
is the best for problems involving severe blurs; in problems in-
volving mild blur and medium to large noise, IST outperforms
the other methods; in problems with GGD priors with exponent
less than one, ISoft performs better than IRS, while IST can not
be directly used because the necessary denoising rule does not
have a closed-form expression.
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Current research work is aimed at obtaining methods which
perform as well as IRS-2 under strong blur and as well as IST
in weak blur and medium to high noise situations.

APPENDIX A
PROOFS

1) Proof of Proposition 1:
Proof: The spectral norm of a symmetric matrix , de-

noted , is its largest absolute eigenvalue. If are the
eigenvalues of , the eigenvalues of are , thus

implies that . It turns out that

(48)

because, by hypothesis, the convolution operator is normalized,
i.e., ; by hypothesis, the columns of matrix corre-
spond to a normalized tight frame, i.e., , [10], [41];
for any matrix , .

2) Proof of Equation (32):
Proof: Applying the matrix inversion lemma to (31), as

well as the fact that all elements of are nonzero

Putting the factor in evidence on the left, and adding

and subtracting inside the square brackets

(49)

where is a diagonal matrix. Notice now that matrix
is simply obtained from [defined in (33)] by keeping only

the nonzero elements; thus

Finally, it is clear that combining and the definition of
given by (49) into a single equation yields (32).

3) Proof of Proposition 2:
Proof: Without loss of generality, consider one particular

component of , say . Since all diagonal elements of are
nonzero (because, by hypothesis, ) for to be zero
it is necessary that

(50)

where denotes the th column of matrix . This condition
means that the vector must belong to the sub-
space orthogonal to . But matrix is positive
definite (because is positive semi-definite), so it maps
a subspace into a subspace, meaning that the condition in (50)
is equivalent to belonging to some subspace, which has zero
measure, thus zero probability under the Gaussian density as-
sumed in (4). Finally, this conclusion can be extended to the
complete vector , and to any finite number of iterations, since
any finite union of subspaces has zero measure.

4) Proof of Proposition 3:
Proof: Recall that the subgradient,5 at , of a convex func-

tion , denoted as , is a set of vectors defined
by

If is differentiable at , then . A necessary
and sufficient condition (NSC) for to have a global min-
imum at is for zero to belong to the subgradient at , i.e.,

(51)

For our objective function

thus, the NSC in (51) can be written in a coordinate-wise manner
as

for all (52)

For those coordinates , since away from
the origin is continuously differentiable, we have

and the NSC condition have the form
(37).

The subgradient at zero is ; this is true both if
is differentiable at the origin, in which case , or oth-

erwise, because since is an even function
. Thus, for zero coordinates, ,

(52) can be written as in (38).
5) Proof of Proposition 4:

Proof: From Proposition 2, with probability one,

, for any finite . Under this condition,
and (31) can be written as

(53)

Since is diagonal and , (53) is equiva-
lent to

for all (54)

If the algorithm converges to , the nonzero components of
must be fixed points of (54). Inserting this fixed-point condition

5See [34] for a comprehensive coverage of convex analysis.
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(for ) into (54) shows that these
components satisfy the NSC (37).

For components that converge to zero, , a fixed-point
argument cannot be used, because zero components are neces-
sarily fixed by construction of the algorithm [see (27)]. For these
components, we have to explicitly study the conditions under
which . Given that is different from zero,
we can rewrite the update equation (54), as

(55)

Under the hypothesis that , then
converges in : in fact, the numerator converges to some finite
number and converges to (recall
that ). If , then converges
to a finite quantity, while if , goes to . For

to converge to zero it is, thus, necessary that .
Finally, notice that this condition is the same as (38).
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