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Abstract—Grouping images into (semantically) meaningful
categories using low-level visual features is a challenging and
important problem in content-based image retrieval. Using binary
Bayesian classifiers, we attempt to capture high-level concepts
from low-level image features under the constraint that the test
image does belong to one of the classes. Specifically, we consider
the hierarchical classification of vacation images; at the highest
level, images are classified as indoor or outdoor; outdoor images
are further classified as city or landscape; finally, a subset of land-
scape images is classified into sunset, forest, and mountain classes.
We demonstrate that a small vector quantizer (whose optimal
size is selected using a modified MDL criterion) can be used to
model the class-conditional densities of the features, required by
the Bayesian methodology. The classifiers have been designed and
evaluated on a database of 6931 vacation photographs. Our system
achieved a classification accuracy of 90.5% for indoor/outdoor,
95.3% for city/landscape, 96.6% for sunset/forest & mountain,
and 96% for forest/mountain classification problems. We further
develop a learning method to incrementally train the classifiers
as additional data become available. We also show preliminary
results for feature reduction using clustering techniques. Our
goal is to combine multiple two-class classifiers into a single
hierarchical classifier.

Index Terms—Bayesian methods, content-based retrieval, digital
libraries, image content analysis, minimum description length, se-
mantic indexing, vector quantization.

I. INTRODUCTION

CONTENT-BASED image retrieval has emerged as an
important area in computer vision and multimedia

computing. Many organizations have large image and video
collections (programs, news segments, games, art) in digital
format, available for on-line access. Organizing these libraries
into categories and providing effective indexing is imperative
for “real-time” browsing and retrieval. With the development
of digital photography, more and more people are able to store
vacation and personal photographs on their computers. As
an example, travel agencies are interested in digital archives
of photographs of holiday resorts; a user could query these
databases to plan a vacation. However, in order to make
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these databases more useful, we need to develop schemes for
indexing and categorizing the humungous data.

Several content-based image retrieval systems have been
recently proposed: QBIC [5], Photobook [26], SWIM [44],
Virage [10], Visualseek [36], Netra [17], and MARS [20].
These systems follow the paradigm of representing images
using a set of attributes, such as color, texture, shape, and
layout, which are archived along with the images. Retrieval
is performed by matching the features of a query image with
those in the database. Users typically do not think in terms
of low-level features, i.e., user queries are typically semantic
(e.g., “show me a sunset image”) and not low-level (e.g., “show
me a predominantly red and orange image”). As a result, most
of these image retrieval systems have poor performance for
(semantically) specific queries. For example, Fig. 1(b) shows
the top-ten retrieved images (based on color histogram features)
from a database of 2145 images of city and landscape scenes,
for the query in Fig. 1(a). While the query image has a monu-
ment, some of the retrieved images have mountain and coast
scenes. Recent research in human perception of image content
[21], [24], [27], [31] suggests the importance of semantic cues
for efficient retrieval. One method to decode human perception
is through the use of relevance feedback mechanisms [33]. A
second method relies on grouping the images into semantically
meaningful classes [42]. Fig. 1(c) shows the top-ten results
(again based on color histograms) on a database of 760city
images for the same query; clearly, filtering out landscape
images improves the retrieval result.

As shown in Fig. 1(a)–(c), a successful indexing/categoriza-
tion of images greatly enhances the performance of content-
based retrieval systems by filtering out irrelevant classes. This
rather difficult problem has not been adequately addressed in
current image database systems. The main problem is that only
low-level features (as opposed to higher level features such as
objects and their inter-relationships) can be reliably extracted
from images. For example, color histograms are easily extracted
from color images, but the presence of sky, trees, buildings,
people, etc., cannot be reliably detected. The main challenge,
thereby, lies in grouping images into semantically meaningful
categories based on low-level visual features. One attempt to
solve this problem is the hierarchical indexing scheme proposed
in [45], [46], which performs clustering based on color and tex-
ture, using aself-organizing map. This indexing scheme was
further applied in [16] to create a texture thesaurus for indexing
a database of aerial photographs. However, the success of such
clustering-based schemes is often limited, largely due to the
low-level feature-based representation of image content. For ex-
ample, Fig. 2(a)–(d) shows two images and their corresponding
edge direction coherence feature vectors (see [42]). Although,
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Fig. 1. Color-based retrieval. (a) Query image, (b) top-ten retrieved images
from 2145 city and landscape images, and (c) top-ten retrieved images from 760
city images; filtering out landscape images prior to querying clearly improves
the retrieval results.

Fig. 2. Edge direction coherence vector features for (a) fingerprint and (c)
landscape image.

these are semantically very different concepts, their edge direc-
tion histograms are highly similar, illustrating the limitations
of this low-level feature in capturing semantic content. Yet, we
shall show that these same features are sufficiently discrimina-
tive for city/landscape classification. That is, specific low-level

Fig. 3. (a) Hierarchy of the 11 categories obtained from human provided
grouping [42] and (b) simplified semantic classification of images; solid lines
show the classification problems addressed in this paper.

features can be used in constrained environments to discrimi-
nate between certain conceptual image classes. To achieve au-
tomatic categorization/indexing in a large database, we need to
develop robust schemes to identify salient image features cap-
turing a certain aspect of the semantic content. This necessitates
an initial specification of meaningful classes, so that the data-
base images can be organized in asupervisedfashion.

In this paper, we address the problem of image classification
from low-level features. Specifically, we classify vacation
photographs into a hierarchy of high-level classes. Photographs
are first classified asindoor or outdoor. Outdoor images are
then classified ascity or landscape. A subset of landscape
images is further classified intosunset, forest, and mountain
classes. The above hierarchy was identified based on experi-
ments with human subjects on a small database of 171 images
[42] (as briefly described in Section II). These classification
problems are addressed using Bayesian theory. The required
class-conditional probability density functions are estimated,
during a training phase, usingvector quantization(VQ) [9].
An MDL-type principle [30] is used to determine the optimal
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codebook size from the training samples. Advantages of the
Bayesian approach include

1) small number of codebook vectors represent each class,
thus greatly reducing the number of comparisons neces-
sary for each classification;

2) it naturally allows for the integration of multiple features
through the class-conditional densities;

3) in addition to a classification rule, we have degrees of con-
fidence which may be used to incorporate a reject option
into the classifiers.

The paper is organized as follows. Section II briefly mentions
psychophysical studies which are the basis of our work in iden-
tifying the global scene represented in an image. We also de-
scribe our experiments with human subjects to identify concep-
tual classes in a database of vacation images. After reviewing the
Bayesian framework for image classification in Section III, Sec-
tion IV addresses VQ-based density estimation and the MDL
principle for selecting codebook sizes. Section V discusses im-
plementation issues. We report the classification accuracies in
Section VI. Sections VII and VIII discuss approaches for using
incremental learning and automatic feature selection. Finally,
Section IX concludes the paper and presents directions for fu-
ture research.

II. HIGH-LEVEL CLASSESIDENTIFIED BY HUMANS

Psychophysical and psychological studies have shown
that scene identification by humans can proceed, in certain
cases, without any kind of object identification [1], [2], [34].
Biederman [1], [2] suggested that an arrangement of volumetric
primitives (geons), each representing a prominent object in the
scene, may allow rapid scene identification independently of
local object identification. Schyns and Oliva [34] demonstrated
that scenes can be identified from low spatial-frequency images
that preserve the spatial relations between large-scale structures
in the scene, but which lack the visual detail to identify local
objects. These results suggest the possibility of coarse scene
identification from global low-level features before the identity
of objects is established. Based on these observations, we
address the problem of scene identification as the first step
toward building semantic indices into image databases.

The first step toward building a classifier is to identify mean-
ingful image categories which can be automatically identified
by simple and efficient pattern recognition techniques. For
this purpose, we conducted a simple small-scale experiment
in which eight human subjects classified 171 vacation images
[42]. Our goal was to identify a hierarchy of classes into which
the vacation images can be organized. Since these classes
match human perception, they allow organizing the database
for effective browsing and retrieval.

Our experiments revealed a total of 11 semantic cate-
gories: forests and farmlands, mountains, beach scenes,
pathways, sunset/sunrise images, long distance city shots,
streets/buildings, monuments/towers, shots of Washington,
DC, miscellaneous images, and faces. We organized these
11 categories into the hierarchy shown in Fig. 3(a). The first
four classes (forests, mountains, beach scenes, and pathways)

are grouped into the classnatural scenes. Natural scenes and
sunset images were further grouped into thelandscapeclass.
City shots, monuments, and shots of Washington DC were
grouped into thecity class. Finally, the miscellaneous, face,
landscape, and city classes were grouped into the top-level
class ofvacationscenes. We conducted additional experiments
to verify that the above hierarchy is reasonable: we used a
multidimensional scaling algorithm to generate a three-dimen-
sional (3-D) feature space to embed the 171 images from the

dissimilarity matrix used above (generated from user
groupings). We then applied a -means clustering algorithm
to partition the (3-D) data. Our goal was to verify if the main
clusters in this representation space agreed with the hierarchy
shown in Fig. 3(a). For , we obtained two clusters of
62 and 109 images, respectively. The first cluster consisted of
predominantly city images, while the second cluster contained
landscape images. The following clusters were obtained with

1) city scenes (70 images);
2) sunrise/sunset images (21 images);
3) forest and farmland scenes and pathways (49 images);
4) mountain and coast scenes (31 images).

These groupings motivated us to study a hierarchical classifica-
tion of vacation images.

In order to make the problem more tractable, we simplified
the classification hierarchy as shown in Fig. 3(b). The solid lines
show the classification problems addressed in this paper. This
hierarchy is not complete, e.g., a user may be interested in im-
ages captured in the evening or images containing faces. How-
ever, it is a reasonable approach to simplify the image retrieval
problem.

Another limitation of the proposed hierarchy is that the
leaf nodes are not mutually exclusive. For example, an image
can belong to both the city and sunset categories. One way
to address this issue is to develop individual classifiers such
as city/non-city or sunset/non-sunset, instead of a hierarchy.
However, this would drastically increase the complexity of the
classification task (now we will have to identify city scenes
from all possible scenes, rather than differentiate between city
and landscape scenes).

Most images can be classified as representing indoor or
outdoor scenes. Exceptions include close-ups and pictures of
a window or door. Outdoor images can be further divided into
city or landscape [40], [42]. City scenes can be characterized
by the presence of man-made objects and structures such as
buildings, cars, roads. Natural scenes, on the other hand, lack
these structures. A subset of landscape images can be further
classified into one of the sunset, forest, and mountain classes.
Sunset scenes are characterized by saturated colors (red,
orange, or yellow), forest scenes have predominantly green
color distribution, and mountain scenes can be characterized
by long distance shots of mountains (either snow covered, or
barren plateaus).

We assume that the input images do belong to one of the
classes under consideration. This restriction is imposed because
automatically rejecting images that do not belong to any of the
classes, based on low-level image features alone, is in itself a
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very difficult problem (see Fig. 2). However, for images be-
longing to the classes of interest, the Bayesian methodology
can be used to reject ambiguous images based on the confi-
dence values associated with the images (images that belong to
both the classes of interest, such as an image of a city scene
at sunset). We briefly discuss incorporating the reject option in
Section VI-F.

III. B AYESIAN FRAMEWORK

Bayesian methods have been successfully adopted in many
image analysis and computer vision problems. However, its use
in content-based retrieval from image databases is just being
realized [43].

We now review the Bayesian framework for image classifi-
cation. The set of possible images is partitioned intoclasses

; any image belongs to one and only one
class. The images from class are modeled as samples of a
random variable, , whose class-conditional probability den-
sity function is . Each class has ana priori probability,

, with . A loss
function, : , specifies the loss incurred
when class is chosen and the true class is. As is common
in classification problems, we adopt the “0/1” loss function:

, and , if .
In most image classification problems, the decision is based

on, say , feature sets, , rather
than directly on the raw pixel values. Of course,is a function
of the image . We will then have class-conditional densities for
the features, rather than for the raw images. It is often assumed
that the feature sets are class-conditionally independent, that is

for (1)

The classification problem can be stated as: “given the feature
sets , classify the image into one of the classes in.”

The decision rule resulting from the “0/1” loss function is the
maximum a posteriori(MAP) criterion [4], [29],

(2)

In addition to the MAP classification, we also have a degree of
confidence which is proportional to .

IV. DENSITY ESTIMATION BY VECTORQUANTIZATION

The performance of a Bayes classifier depends critically on
the ability of the features to discriminate among the various
classes. Moreover, since the class-conditional densities have to
be estimated from data, the accuracy of these estimates is also
critical. Choosing the right set of features is a difficult problem
to which we return in Section V-A. In this section, we focus
on estimating the class-conditional densities, adopting avector
quantizationapproach [9].

A. Introduction to Vector Quantization

For compression and communication applications, avector
quantizer(VQ) is described as a combination of an encoder and
a decoder [8]. A -dimensional VQ consists of two mappings:

an encoder : , mapping the input alphabet to
the channel symbol set , and a decoder : which
maps to the output alphabet (or codebook). A distortion
measure specifies the cost associated with quantiza-
tion, where . An optimal quantizer minimizes the
average distortion under a size constraint on[8]. The gen-
eralized Lloyd algorithm (GLA) is an iterative algorithm for
obtaining a (locally) optimal VQ. Under a mean square error
(MSE) distortion criterion, GLA is equivalent to the-means
( ) clustering algorithm [11]. Any given input vector

is quantized into the closest (in) of the codebook
vectors. This defines a partition of the spaceinto the so-called
Voronoi cells [8]. A comprehensive
study of VQ can be found in [3], [8].

B. Vector Quantization for Density Estimation

Vector quantization provides an efficient tool for density esti-
mation [9]. Consider training samples from a class. In order
to estimate the class-conditional density of theth feature vector,

, VQ is used to obtain (with , usually )
codebook vectors, ( ), from the training data.1

In the so-calledhigh-resolutionapproximation (i.e., for small
Voronoi cells), this density can be approximated by a piece-
wise-constant function over each cell , with value

for (3)

where and are the ratio of training samples

falling into cell and the volume of cell , respectively,
(see [9]). This approximation fails if the cells are not suffi-
ciently small, for example, when the dimensionality of
is large. In that case, the class-conditional densities can be
approximated using a mixture of Gaussians [9], [43], each
centered at a codebook vector. The MSE criterion is the sum
of the Euclidean distances of each training sample from its
closest codebook vector. From a mixture point of view, this is
equivalent to assuming covariance matrices of the form
(where is the identity) [43], leading to

(4)

where , (note that

). The value of is not estimated by the VQ
algorithm, and so we empirically choose it for each feature.
Alternatively, we could use the EM algorithm to directly find
maximum likelihood(ML) estimates of the mixture parameters,
under a diagonal covariance constraint [19]. This choice is
computationally demanding, and we have found that the value
of is not crucial; it simply affects the number of codebook
vectors that influence classification. Unlessis exceptionally

1Actually, learning vector quantization (LVQ) is used to select the codebook
vectors. LVQ does not run the GLA separately for each class; in this algorithm,
the codebook vectors are also “pushed away” from incorrectly classified sam-
ples (see [14], [29]).
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large, only a few codebook vectors close to the input pattern
influence the class-conditional probabilities.

C. Selecting Codebook Size

Selecting is a key issue in using a VQ, or a mixture, for den-
sity representation. We start by noting that GLA approximately
looks for themaximum likelihood(ML) estimates of the param-
eters of the mixture in (4). In fact, the EM algorithm becomes
exactly equivalent to the GLA when the variancegoes to zero
[29]. We will therefore apply an MDL criterion to select, since
MDL allows extendingmaximum likelihood(ML) estimation to
situations where the dimension of the model is unknown [30].

Consider a training set of independent samples
, from the class . These are, of course,

samples of one of the features, although here we omit this
from the notation to keep it simpler. A direct application of the
standard MDL criterion would lead to the following criterion
to select [the size of the mixture in (4)]

where is the ML estimate assuming size, and
is the number of real-valued

parameters needed to specify a-component mixture (with
denoting “dimension of”) [30]. Notice that the additional

term proportional to grows with , thus counter-
balancing the unbounded increase, with, of the likelihood.
The penalty paid by each additional real param-
eter has an asymptotical justification (see [30]). For a mixture,
however, it can be argued that each center does not “see”data
points, but only (on average) (for the th center) (see
[15] and [6], for details). This leads to the followingmodified
MDL (MMDL) criterion

(5)

V. IMPLEMENTATION ISSUES

Experiments were conducted on two databases (both inde-
pendently and combined) of 5081 (indoor/outdoor classifica-
tion) and 2716 (city/landscape classification and further classifi-
cation of landscape images) images. The two databases, hence-
forth referred to as D1 and D2, have 866 images in common,
leading to a total of 6931 distinct images, collected from var-
ious sources (Corel library, scanned personal photographs, key
frames from TV serials, and images downloaded from the Web)
and are of varying sizes (from to ). The
color images are stored with 24-bits per pixel in JPEG format.
The ground truth for all the images was assigned by a single
subject.

A. Image Features

Outdoor images tend to have uniform spatial color distribu-
tions, such as the sky is on top and is typically blue. Indoor
images tend to have more varied color distributions and have
more uniform lighting (most are close up shots). Thus, it seems
logical that spatial color distribution can discriminate between
indoor and outdoor images. On the other hand, shape features
may not be useful because objects with similar shapes can be
present in both indoor and outdoor scenes. Therefore, we use
spatial color information features to represent these qualitative
attributes. Specifically, first- and second-order moments in the

color space were used as color features (it was pointed
out in [7] that moments yield better results in image re-
trieval than other spaces). The image was divided into
subblocks and six features (three means and three standard de-
viations) were extracted [37], [41]. As another set of features for
indoor/outdoor classification, we extract subblock MSAR tex-
ture features as described in [18], [39].

We looked for similar qualitative attributes for city/land-
scape classification, and further classification of landscape
images. City images usually have strong vertical and horizontal
edges due to the presence of man-made objects. Non-city
images tend to have randomly distributed edge directions. The
edge direction distribution seems then as a natural feature to
discriminate between these two categories [42]. On the other
hand, color features would not have sufficient discriminatory
power as man-made objects have arbitrary colors. In the case
of further classification of landscape images as sunset, forest,
or mountain, global color distributions seem to adequately
describe these classes. Sunset pictures typically have saturated
colors (mostly yellow and red); mountain images tend to have
the sky in the background (typically blue); and forest scenes
tend to have more greenish distributions. Based on the above
observations, we use edge direction features (histograms and
coherence vectors) for city/landscape classification and color
features (histograms, coherence vectors, and spatial moments)
in and color space for further classification of
landscape images [25], [38], [42]. Table I summarizes the
qualitative attributes of the various classes and the features
used to represent them.

B. Vector Quantization

We used the LVQ_PAK package [14] for vector quantization.
Half of the database was used to train the LVQ for each of the
image features. The MMDL criterion (Section IV-C) was used
to determine the codebook sizes. For the indoor and outdoor
classes, with the spatial color moment features, Fig. 4(a)–(c)
plots the MMDL cost function [(5)] versus the codebook size
. These plots show that and are the MMDL

choices for the indoor and outdoor classes, respectively. For the
combination of the two classes, minimizes the MMDL
criterion. To confirm this choice from a classification point of
view, Fig. 5 plots the accuracy of the indoor/outdoor classifier
(on an independent test set of size 2540) as a function of the
total codebook size. As is initially increased, the classifier
accuracy improves. However, it soon stabilizes and further in-
creasing beyond 30 does not improve the accuracy. This con-
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TABLE I
QUALITATIVE ATTRIBUTES OF THESEVERAL CLASSIFACTION PROBLEMS AND ASSOCIATEDLOW-LEVEL FEATURES

clusion (and similar ones for city/landscape classification) sup-
ports the use of MMDL for codebook size selection.

Based on similar analysis (see [40]), 20 codebook vectors
were extracted for each of the city and landscape classes. For
further classification of landscape images, a codebook of five
vectors was selected for each class. These vectors were then
stored as representatives of each class. Table II shows the
number and dimensionality of the codebook vectors for the
various classification problems.

VI. EXPERIMENTAL RESULTS

Given an input image, the classifier computes the class-con-
ditional probabilities for each of the features using (4). These
probabilities are then used to obtain the MAP classification
[(2)]. We present classification accuracies on a set of indepen-
dent test patterns as well as on the training patterns. We have
done classifications based on individual features and also based
on combinations of features [assumed independent, (1)]. As
we show later, each of the individual features chosen for the
classification problems has sufficient discrimination power for
that particular classification problem, and introducing other
features does not significantly improve the results.

A. Indoor/Outdoor Classification

Database D1 (2470 indoor and 2611 outdoor images) was
used to train the indoor/outdoor classifier. Apart from the color
moment features, we also considered the subblock MSAR tex-
ture features [39], edge direction features, and color histograms.
MSAR features yielded an accuracy of around 75% on the test
set. A higher classification accuracy (using a-NN classifier
and leave-one-out testing) of 84% on a database of 1324 im-
ages was reported in [39]. We attribute this discrepancy to dif-
ferences in the database (our database of 5081 images is larger)
and mode of testing (we report results on an independent test
set). Edge direction and coherence vector features yielded an
accuracy of around 60%, while the color moment features lead
to a much higher accuracy of around 90%. These results show
that the spatial color distribution (probably capturing illumina-
tion changes) is suited for indoor/outdoor classification. A com-
bination of color and texture features did not yield a better ac-
curacy than color moment features alone.

Table III shows the classification results with the color mo-
ment features for indoor/outdoor classification. The classifier
showed an accuracy of 94.2% and 88.2% on the training set and

Fig. 4. Determining codebook size for spatial color moment features for the
indoor/outdoor classification problem. (a) Indoor class, (b) outdoor class, and
(c) indoor and outdoor classes combined.

Fig. 5. Accuracy of the indoor/outdoor classifier with increasing codebook
size (trained on 2541 images and tested on an independent test set of 2540
images).

TABLE II
DIMENSIONALITIES AND CODEBOOK SIZES FOREACH CLASSIFIER

an independent test set (Test Set 1 in Table III), respectively. On
a different test set (Test Set 2 in Table III) of 1850 images from
database D2, the classifier accuracy was 88.7%. An accuracy
of 90.5% was obtained on the entire database of 6931 images.
Szummeret al. [39] use a -NN classifier and report 90% ac-
curacy using leave-one-out testing, for the indoor/outdoor clas-
sification on a database of 1324 images. Thus, our classifier’s
performance is comparable to those reported in the literature. A
major advantage of the Bayesian classifier over-NN classi-
fier is its efficiency due to the small number of codebook vec-
tors needed to represent the training data.
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TABLE III
ACCURACIES(IN PERCENT) FOR INDOOR/OUTDOOR CLASSIFICATION USING

COLOR MOMENTS; TESTSET 1 AND TESTSET 2 ARE INDEPENDENTTESTSETS

Fig. 6 shows a representative subset of the misclassified in-
door/outdoor scenes. Presence of bright spots either from some
light source or from sunshine through windows and doors seems
to be a main cause of misclassification of indoor images. The
main reasons for the misclassification of outdoor images are 1)
uniform lighting on the image mostly as a result of a close-up
shot and 2) low-contrast images (several of the indoor images
used in the training set were low contrast digital images and
hence most low contrast outdoor images were classified as in-
door scenes). The results show that spatial color distribution
captured in the subblock color moment features has sufficient
discrimination power for indoor/outdoor classification.

B. City/Landscape Classification

The city versus landscape classification problem and further
classification of landscape images as sunset, forest, or moun-
tain using the Bayesian framework has been addressed in de-
tail in [40]. We summarize the results here. Table IV shows the
results for the city/landscape classification problem using data-
base D2. Edge direction coherence vector provides the best indi-
vidual accuracy of 97.0% for the training set and 92.9% for the
test set. A total of 126 images were misclassified (95.3% accu-
racy) when the edge direction coherence vector was combined
with the color histogram. Fig. 7 shows a representative subset
of misclassified images. Most of the misclassifications for city
images could be attributed to the following reasons:

1) long distance city shots at night (difficulty in extracting
edges);

2) top view of city scenes (lack of vertical edges);
3) highly textured buildings;
4) trees obstructing the buildings.

Most of the misclassified landscape images had strong vertical
edges from tree trunks, close-ups of stems, fences, etc., that led
to their assignment to the city class.

We also computed the classification accuracy using the edge
direction coherence vector on an independent test set of 568
outdoor images from database D1. A total of 1177 images of
the 4181 outdoor images in database D1 contained close ups of
human faces. We removed these images for the city/landscape
test. Recent advances show that faces can be detected rather
reliably [32]. Of the remaining test images, we extracted 568
that were not part of database D2. The edge direction features
yielded an accuracy of 90.0% (57 misclassifications out of the
568 images). Combining color histogram features with edge di-
rection coherence vector features reduced the misclassification

Fig. 6. Some misclassified (a) indoor and (b) outdoor images using color
moment features; the corresponding confidence values (in percent) associated
with the true class are presented.

in the above experiment to 56, confirming that edge directions
are sufficient to discriminate between city and landscape.

C. Further Classification of Landscape Images

While our limited experiments on human subjects [42] re-
vealed classes such as sunset and sunrise, forest and farmland,
mountain, pathway, water scene, etc., these groups were not
consistent among the subjects in terms of the actual labeling
of the images. We found it extremely difficult to generate a
semantic partitioning of landscape images. We thus restricted
classification of landscape images into three classes that could
be more unambiguously distinguished: sunset, forest, and
mountain. Of these 528 images, a human subject labeled 177,
196, and 155 images as belonging to the forest, mountain,
and sunset classes, respectively. A two-stage classifier was
constructed. First, we classify an image into either sunset or
the forest and mountain class. The above hierarchy was based
on the human study, as shown in Fig. 3(a), where the sunset
cluster seemed to be more compact and well separated from
the other categories in the landscape class.

Table V shows the results for the classification of landscape
images into sunset vs. forest and mountain classes. The color
coherence vector provides the best accuracy of 99.2% for the
training set and 93.9% for the test set. Color features do much
better than the edge direction features here, since color distribu-
tions remain more or less constant for natural images (blue sky,
green grass, trees, plants, etc). A total of 18 images were mis-
classified (a classification accuracy of 96.6%) when the color
coherence vector feature was used. We find that combining fea-
tures does not improve the classification accuracy. This shows
that color coherence vector has sufficient discrimination ability
for the problem at hand.

Table VI shows the classification results for the individual
features for forest and mountain classes (373 images). Spatial
color moment features provide the best accuracy of 98.4% for
the training set and 93.6% on the test set. A total of 15 images
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TABLE IV
CLASSIFICATION ACCURACIES(IN PERCENT) FOR CITY/LANDSCAPECLASSIFICATION; THE FEATURES AREABBREVIATED AS FOLLOWS: EDGE DIRECTION

HISTOGRAM (EDH), EDGE DIRECTION COHERENCEVECTOR(EDCV), COLOR HISTOGRAM (CH), AND COLOR COHERENCEVECTOR(CCV)

Fig. 7. Subset of the misclassified (a) city images and (b) landscape images
using a combination of edge direction coherence vector and color histogram
features. The corresponding confidence values (in percent) associated with the
true class are indicated.

were misclassified (a classification accuracy of 96%) when the
spatial color moment features were used. Again, the combina-
tions of features did not perform better than the color features,
showing that these features are adequate for this problem. Note
that the spatial color moment features and the color coherence
vector features yield similar accuracies for the classification of
landscape images. However, the database of 528 images is very
small to identify the best color feature for the classification of
landscape images. Using color coherence vector features in-
creases the complexity of the classifiers.

D. Error Propagation in Hierarchical Classification

The goal of hierarchical classification is to break a complex
problem into simpler problems. However, since each classifier
is not perfect, the errors from a classifier located higher up in
the tree are propagated to the lower levels.

The indoor/outdoor image classifier yielded an accuracy of
90.5% on the entire database of 6931 images (658 images were
misclassified). Of these, 269 images were indoor images out
of which 229 were close-ups of people and pets. Out of the
remaining 40 images, three were classified as landscape images
and 37 were classified as city images. Fig. 8 shows these three

indoor images that were misclassified as landscapes. If a face
detector is not available and we submit all the 269 images to
the city/landscape classifier, it classifies 199 images as city
images (most indoor images have man-made structures with
strong vertical and horizontal edges) and 70 as landscape.
Since we have not yet developed a classifier to identify sunset,
forest, and mountain images from other landscape images,
in the worst case, all 70 of these images will be fed to the
sunset/forest/mountain classifier and hence, degrade the overall
classification accuracy. Fig. 8(a) and (b) was classified as
sunrise/sunset images and Fig. 8(c) was classified as a forest
image.

E. Feature Saliency

The accuracy of the individual classifiers depends on the un-
derlying low-level representation of the images. For example,
the edge direction and coherence vector features yield accura-
cies of about 60% for the indoor/outdoor problem, yet they yield
approximately 95% accuracy for the city/landscape problem.
This shows the importance of feature definition and selection.
We have empirically determined that

1) spatial color moment features are better for indoor/out-
door classification;

2) edge direction histograms and coherence vector features
have sufficient discrimination power for city/landscape
classification;

3) color moments, histograms, and coherence vectors are
more suited for the classification of landscape images.

F. Reject Option

Introducing a reject option is useful, yet a difficult problem
in image classification. For Bayesian classifiers, the simplest
strategy is to reject images whose maximuma posterioriprob-
ability is below a threshold . Table VII shows the accuracies
for theindoor/outdoorandcity/landscapeimage classifiers with
reject option, for . The indoor/outdoor classifier used
spatial color moment features and was trained on 2541 images
from database and tested on the entire set (6931 images).
The classification accuracy improved from 90.5% (no rejec-
tion) to 92.1% at 5.4% reject rate. The city/landscape classifier
used edge direction coherence vector features; it was trained on
1358 images from database and tested on the complete data-
base (2716 images). The classification accuracy improved
from 95.0% (no rejection) to 95.7% at 2.1% reject rate. There
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TABLE V
CLASSIFICATION ACCURACIES(IN PERCENT) FOR SUNSET/FOREST/MOUNTAIN CLASSIFICATION; SPMSTANDS FOR“SPATIAL COLOR MOMENTS”

TABLE VI
CLASSIFICATION ACCURACIES(IN PERCENT) FOR FOREST/MOUNTAIN CLASSIFICATION

Fig. 8. Indoor images misclassified as landscape.

is a clear accuracy/reject tradeoff; too much rejection may be
needed to further reduce the error rate.

VII. I NCREMENTAL LEARNING

It is well-known that the classification performance depends
on the training set size: the more comprehensive a training set,
the better the classification performance. Table VIII compares
the classification accuracies of the indoor/outdoor image clas-
sifier (based on spatial color moment features) as the training
set size is increased. As expected, increasing the training set
size improves the classification accuracy. When we trained the
LVQ with all the available 5081 images using the color moment
features, a classification accuracy of 95.7% (resubstitution ac-
curacy) was obtained. This shows that the classifier still has the
capacity to learn, provided additional training samples are avail-
able. The above observations illustrate the need for anincre-
mentallearning method for Bayesian classifiers.

Collecting a large and representative training set is expensive,
time consuming, and sometimes not feasible. Therefore, it is not
realistic to assume that acomprehensivetraining set is initially
available. Rather, it is desirable to incorporate learning tech-
niques in a classifier [22], [29]. As additional data become avail-
able, the classifier should be able to adapt, while retaining what
it has already learnt. Since the training set can become extremely
large, it may not be feasible to store all the previous data. There-
fore, instead of retraining the classifier on the entire training set
every time new samples are collected, it is more desirable to

TABLE VII
CLASSIFIER PERFORMANCEUNDER A REJECTOPTION

TABLE VIII
CLASSIFICATION ACCURACIES AS AFUNCTION OF TRAINING SET SIZE ON THE

INDOOR/OUTDOOR CLASSIFIER

incrementallytrain the classifier on the new samples. For the
Bayesian classifier proposed above, the initial training set is
represented in terms of the codebook vectors (). Learning
involves incrementally updating these codebook vectors as new
training data become available.

One simple method to retrain the classifier is to train it with
the new data, i.e., start with the previously learnt codebook vec-
tors and run the LVQ with the new data. This straightforward
method, however, does not assign an appropriate weight to the
previously learnt codebook. In other words, if a classifier was
trained on a large number of samples and then a small number
of new samples are used to further train the classifier using the
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above learning paradigm, the new data will unduly influence the
current value of the codebook vectors. Learning with this small
amount of new data will in fact lead to unlearning of the distri-
bution based on previous samples. Table IX demonstrates the re-
sults of training the indoor/outdoor classifier using only the new
data. The indoor/outdoor classifier was initially trained on 1418
images and yielded an accuracy of 79.8% on an independent test
set of 2540 images. When the classifier is further trained with
350 new images, the performance on the independent test set de-
teriorates to 63.7%. When the classifier is further trained on an
additional 773 samples using the naive approach, the accuracy
on the test set slightly recovers to 72.5%. Note that when all the
available data were used ( images),
the accuracy on the independent test set was 88.2% (Table VIII).
These results show that any robust incremental learning scheme
must assign an appropriate weight to the already learnt distribu-
tion.

A. Proposed Incremental Learning Scheme

The idea behind the proposed scheme is to try to generate the
original samples from the codebook vectors and then augment
these estimated samples to the new training set. The combined
training set is then used (starting at the current codebook vec-
tors) to determine the new set of codebook vectors. This method
differs from traditional bootstrapping [11] which assumes that
the original training samples are available for sampling with re-
placement. In our case, the new samples representing the orig-
inal training set are generated based on the number of training
samples, the proportion of these samples assigned to each code-
book vector ( ), and the codebook vectors themselves. Fig. 9
illustrates this learning paradigm for synthetic data where two-
dimensional samples are generated from two i.i.d. Gaussian dis-
tributions with mean vectors and , respectively,
and identity covariance matrices. We see that as the classifier
is incrementally trained with additional data, the new codebook
vectors approach the true mean vectors.

We have used the following methods to generate (indepen-
dent) samples from a codebook vector.

• Case 1: Using duplicates of the codebook vectors as
the samples (this is, by far, the least computationally
demanding case, since no samples have to be actually
generated).

• Case 2: Sampling from a multivariate Gaussian, with co-
variance , centered at the codebook vectors.

• Case 3: Same asCase 2, except that we use a diagonal
covariance matrix. The diagonal elements correspond to
the individual variances of features of the training samples
assigned to the respective codebook vector.

• Case 4: Sampling from a multivariate Gaussian with co-
variance , centered at the mean of the training patterns
assigned to the codebook vector. Note that each codebook
vector need not be the mean of the samples assigned to it,
as both positive and negative examples influence the code-
book vectors (see footnote 1, Section V-B).

• Case 5: Same asCase 4, except that we use a diagonal
covariance matrix. The diagonal elements correspond to

TABLE IX
NAIVE APPROACH TOINCREMENTALLY TRAINING A CLASSIFIER. ACCURACIES

ARE REPORTED ON ANINDEPENDENTTESTSET OF SIZE 2540

Fig. 9. Incremental learning with synthetic Gaussian data;(�) represents the
true means;( ) represents the initial codebook vectors learnt from 100 samples
per class;(}) represents the codebook vectors after an additional 400 samples
per class; and(�) represents the codebook vectors after 500 more samples per
class.

the individual variances of features of the training samples
assigned to the respective codebook vector.

The last four methods do not enforce the condition that the gen-
erated samples be closest to the codebook vector they are esti-
mated from. The above criterion is satisfied inCase 1since the
generated samples are all identical to the codebook vector. The
number of samples generated from each codebook vector are
the same as the number of original training samples assigned
to that codebook vector. If we had chosen to use the EM al-
gorithm to estimate mixture representations of the class-con-
ditional densities, instead of LVQ, then, incremental learning
could be achieved by using an on-line version of EM, such as
the one in [35].

B. Experimental Results

We have tested the proposed incremental learning method
with the Bayesian indoor/outdoor and city/landscape classifiers.
Initially, half the images from the database were used to train
a classifier. The classifier was then incrementally trained (all
the five methods described above were tested) using the re-
maining images. The performance of a classifier trained on the
entire set of database images (nonincremental learning) was also
measured. Table X shows the classification accuracies for the
various methods. The best classification accuracies achieved
for each of the classifiers were 95.9% for the city/landscape
classifier (on 2716 images) and 94.6% for the indoor/outdoor
classifier (on 5081 images), versus 97.0% and 95.7%, respec-
tively, for the classifiers trained on the entire database. These
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results show that a classifier trained incrementally achieves al-
most similar accuracies as one trained with all the data. The five
methods used to regenerate “training” samples perform equally
well. Since the first method (Case 1) requires, by far, the least
additional storage (only one number denoting the total number
of training samples used to train the classifier so far) and com-
putation (no random number generation), it clearly has the best
cost/performance tradeoff.

VIII. F EATURE SUBSET SELECTION

Automatic feature subset selection is an important issue in
designing classifiers. In fact, one usually finds that the per-
formance of a classifier trained on a finite number of samples
starts deteriorating as more features are added beyond a cer-
tain number (thecurse of dimensionality[4], [12], [29]). Can
the classification be improved using feature subset selection
methods? Selecting the optimal features is a problem of expo-
nential time complexity and various suboptimal heuristics have
been proposed [12], [13].

Jain and Zongker [13] studied the merits of various feature
subset selection methods. While the branch-and-bound algo-
rithm proposed in [23] is “optimal,” it requires the feature selec-
tion criterion function to be monotone (i.e., it cannot decrease
when new features are added). The above requirement may not
be true for small samples. It is thus desirable to use approximate
methods that are fast and also guarantee near optimal solutions.
Therefore, we tested the sequential floating forward selection
(SFFS) method, which was shown to be a promising alternative
where the branch-and-bound method cannot be used [28].

We have also applied a simple heuristic procedure based on
clustering the features (using-means [11]), trying to remove
redundancy. The feature components assigned to each cluster
are then averaged to form the new feature. Thus, the number of
clusters determines the final number of features. Although this
method does not guarantee an optimal solution, it does attempt
to eliminate highly correlated features in high-dimensional fea-
ture spaces. We refer to this method as the feature cluster (FC)
method.

A. Experiments Using SFFS

We have experimented with feature subset selection on the in-
door/outdoor classifier using the implementation of SFFS pro-
vided in [13]. We found the algorithm to be very slow over the
entire training set of 2541 training samples from database.
We hence took 700 samples each from the training and test sets
for the feature subset selection process. Our results using SFFS
are summarized as follows.

• It took the program 12 days on a Sun Ultra 2 Model
2300 (dual 300-MHz processors) processor with 512 MB
memory to select up to 67 features from the 600-dimen-
sional feature vector for the small training set of 700
samples.

• The best accuracy of 87% on the independent test set of
700 samples was provided by a subset of 52 features, com-
pared to the 88.2% accuracy using all the 600 features.

• Training a new classifier, with the 52 features selected by
SFFS, on the 2541 samples from the training set of data-

TABLE X
CLASSIFICATION ACCURACIES(PERCENT) WITH AND WITHOUT INCREMENTAL

LEARNING; CASEi REPRESENTS ONE OF THEINCREMENTAL METHODS; IN

NON-INCREMENTAL, THE WHOLE DATABASE WAS USED IN TRAINING

Fig. 10. Accuracies for the indoor/outdoor classifier trained on varying
sized feature vectors generated by FC (from the 600-dimensional spatial color
moment features); the dashed, dotted, and solid lines represent, respectively,
the accuracies of the training set (2541 images), test set (2540 images), and the
entire database (5081 images).

base yielded 82.2% accuracy on the test set (2540 sam-
ples). The lower accuracy on larger sets agrees with the
observations in [13] on the pitfalls of using feature subset
selection on sparse data in a high-dimensional space.

B. Experiments Using FC

The spatial color moment features used for indoor/outdoor
classification (feature dimensionality of 600) were clustered to
generate new feature vectors of sizes 50, 75, 100, 125, 150, 175,
and 200. The components assigned to each cluster were aver-
aged to define a new feature. This approach is incomparably
faster than SFFS, taking only a few seconds on a training set
size of 2541, from database . The classification accuracies
for the various feature set sizes are plotted in Fig. 10. A code-
book size of 30 (optimal for the spatial color moments features)
was used for all the features. The best classification accuracy
of 91.8% on the entire database of 5081 images (95.2% on the
training set and 88.3% on an independent test set of 2540 im-
ages) was obtained with feature vectors of 75 components. Note
that these accuracies are marginally better than those obtained
from training the classifier on the 600-dimensional spatial color
moment features (accuracy of 88.2% on an independent test set
of 2540 images and an accuracy of 94.2% on the training set).
On examining the feature components that were clustered to-
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TABLE XI
ACCURACIES FORINDOOR/OUTDOOR CLASSIFICATION WITH THE FEATURES

OBTAINED BY FEATURE CLUSTERING

gether, we found that all groupings were formed within features
of neighboring image regions. These preliminary results show
that clustering the features (linear combination of features) is
more efficient and accurate than the SFFS feature subset selec-
tion method for very high-dimensional feature vectors.

We used MMDL to select the optimal codebook size for
the new feature set. The criterion selected , for the
indoor/outdoor classifier based on the 2541 training samples.
Therefore, we extracted 25 codebook vectors each for the
indoor and outdoor image classes under the new feature set
of 75 components. This illustrates how a reduction in feature
size (from 600 spatial color moment features to the new set of
75 features) leads to the generation of a larger codebook (50
vectors represent the underlying density as opposed to 30 for
the full spatial color moment features).

Table XI shows the accuracies for the classifier trained on
these new features compared against those of the classifier
trained on the full spatial color moment features. The FC
method for feature selection improved the classifier perfor-
mance from 91.2% to 92.4% for the indoor/outdoor problem
(on a database of 5081 images), while reducing the feature
vector dimensionality from 600 components to 75 components.
Recall that the low-level features used for the indoor/outdoor
image classification problem are extracted over
subblocks in the image. Usually, neighboring subblocks in an
image have similar features as various objects span multiple
subblocks (e.g., sky, forest, etc., may span a number of sub-
blocks in many images). Other linear and nonlinear techniques
for feature extraction (PCA, Discriminant Analysis, Sammon’s
nonlinear projection) may be as effective as FC in reducing
feature dimensionality.

IX. CONCLUSION AND FUTURE WORK

User queries in content-based retrieval are typically based
on semantics and not on low-level image features. Providing
high-level semantic indices for large databases is a challenging
problem. We have shown that certain high-level semantic cat-
egories can be learnt using specific low-level image features
under the constraint that the images do belong to one of the
classes under consideration. Specifically, we have developed a
hierarchical classifier for vacation images. At the top level, va-
cation images are classified as indoor or outdoor. The outdoor
images are then classified as city or landscape (we assume a face
detector that separates close-up images of people in outdoor im-

ages) and finally, a subset of landscape images are classified as
sunset, forest, or mountain. We have adopted a Bayesian classi-
fication approach, using vector quantization (LVQ) to learn the
class-conditional probability densities of the features. This ap-
proach has the following advantages:

1) small number of codebook vectors represent a particular
class of images, regardless of the size of the training set;

2) it naturally allows for the integration of multiple features
through the class-conditional densities;

3) it not only provides a classification rule, but also assigns
a degree of confidence in the classification, which may be
used to build a reject option.

Classifications based on local color moments, color histograms,
color coherence vectors, edge direction histograms, and edge
direction coherence vectors have shown promising results.

The accuracy of the above classifiers depends on the features
used, the number of training samples, and the classifier’s ability
to learn the true decision boundary from the training data. We
have developed methods for incremental learning and feature
subset selection. Another challenging issue is to introduce a re-
ject option. In the simplest form, the a posteriori class probabili-
ties can be used for rejection (rejecting images whose maximum
a posteriori probability is less than a threshold,—say 0.6). We
are looking at other means of adding the reject option into the
system. Finally, we will introduce other binary classifiers into
the system for categories such as day/night, people/nonpeople,
text/nontext, etc. These classifiers can be added to the present
hierarchy to generate semantic indices into the database.

REFERENCES

[1] I. Biederman, “On the semantics of a glance at a scene,” inPerceptual
Organizations, M. Kubovy and J. R. Pomerantz, Eds. Hillsdale, NJ:
Lawrence Erlbaum, 1981, pp. 213–253.

[2] I. Biederman, “Aspects and extensions of a theory of human image un-
derstanding,” inComputational Processes in Human Vision: An Inter-
disciplinary Perspective, Z. W. Pylyshyn, Ed. Norwood, NJ: Ablex,
1988, pp. 370–428.

[3] P. C. Cosman, K. L. Oehler, E. A. Riskin, and R. M. Gray, “Using vector
quantization for image processing,”Proc. IEEE, vol. 81, pp. 1326–1341,
Sept. 1993.

[4] R. O. Duda and P. E. Hart,Pattern Classification and Scene Anal-
ysis. New York: Wiley, 1973.

[5] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic,
and W. Equitz, “Efficient and effective querying by image content,”J.
Intell. Inform. Syst., vol. 3, pp. 231–262, 1994.

[6] M. Figueiredo and A. K. Jain, “Unsupervised selection and estimation
of finite mixture models,” inProc. Int. Conf. Pattern Recognition,
Barcelona, Spain, 2000.

[7] B. Furht, Ed., “Content-based image indexing and retrieval,” inThe
Handbook of Multimedia Computing. Boca Raton, FL: CRC, 1998,
ch. 13.

[8] R. M. Gray, “Vector quantization,”IEEE ASSP Mag., vol. 1, pp. 4–29,
Apr. 1984.

[9] R. M. Gray and R. A. Olshen, “Vector quantization and density estima-
tion,” in Proc. SEQUENCES97, 1997.

[10] A. Hampapur, A. Gupta, B. Horowitz, C. F. Shu, C. Fuller, J. Bach, M.
Gorkani, and R. Jain, “Virage video engine,” inProc. SPIE Storage Re-
trieval Image Video Databases V, San Jose, CA, Feb. 1997, pp. 188–197.

[11] A. K. Jain and R. C. Dubes,Algorithms for Clustering
Data. Englewood Cliffs, NJ: Prentice-Hall, 1988.

[12] A. K. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: A re-
view,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 4–38, Jan.
2000.

[13] A. K. Jain and D. Zongker, “Feature selection: Evaluation, application,
and small sample performance,”IEEE Trans. Pattern Anal. Machine In-
tell., vol. 19, pp. 153–158, Feb. 1997.



VAILAYA et al.: IMAGE CLASSIFICATION FOR CONTENT-BASED INDEXING 129

[14] T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola, “LVQPAK: A
program package for the correct application of learning vector quantiza-
tion algorithms,” inProc. Int. Joint Conf. Neural Networks, Baltimore,
MD, June 1992, pp. 725–730.

[15] J. L. M. Figueiredo and A. K. Jain, “On fitting mixture models,” in
Energy Minimization Methods in Computer Vision and Pattern Recog-
nition, E. Hancock and M. Pellilo, Eds. Berlin, Germany: Springer-
Verlag, 1999.

[16] W. Y. Ma and B. S. Manjunath, “Image indexing using a texture dictio-
nary,” in Proc. SPIE Conf. Image Storage Archiving Systems, vol. 2606,
Philadelphia, PA, October 1995, pp. 288–298.

[17] W. Y. Ma and B. S. Manjunath, “Netra: A toolbox for navigating large
image databases,” inProc. IEEE Int. Conf. Image Processing, vol. 1,
Santa Barbara, CA, Oct. 1997, pp. 568–571.

[18] J. Mao and A. K. Jain, “Texture classification and segmentation using
multiresolution simultaneous autoregressive models,”Pattern Recognit.,
vol. 25, no. 2, pp. 173–188, 1992.

[19] G. McLachlan and T. Krishnan,The EM Algorithm and Exten-
sions. New York: Wiley, 1997.

[20] S. Mehrotra, Y. Rui, M. Ortega, and T. S. Huang, “Supporting con-
tent-based queries over images in MARS,” inProc. IEEE Int. Conf. Mul-
timedia Computing Systems, ON, Canada, June 3–6, 1997, pp. 632–633.

[21] T. P. Minka and R. W. Picard, “Interactive learning using a society of
models,”Pattern Recognit., vol. 30, no. 4, p. 565, 1997.

[22] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[23] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for

feature subset selection,”IEEE Trans. Comput., vol. 26, pp. 917–922,
Sept. 1977.

[24] T. V. Papathomas, T. E. Conway, I. J. Cox, J. Ghosn, M. L. Miller,
T. P. Minka, and P. N. Yianilos, “Psychophysical studies of the per-
formance of an image database retrieval system,” inProc. IS&T/SPIE
Conf. Human Vision Electronic Imaging III, San Jose, CA, July 1998,
pp. 591–602.

[25] G. Pass, R. Zabih, and J. Miller, “Comparing images using color co-
herence vectors,” inProc. 4th ACM Conference on Multimedia, Boston,
MA, Nov. 1996, http://simon.cs.cornell.edu/Info/People/rdz/rdz.html.

[26] A. Pentland, R. W. Picard, and S. Sclaroff, “Photobook: Content-based
manipulation of image databases,”Proc. SPIE Storage Retrieval Image
Video Databases II, pp. 34–47, Feb. 1994.

[27] R. W. Picard and T. P. Minka, “Vision texture for annotation,”Multi-
media Syst., vol. 3, pp. 3–14, 1995.

[28] P. Pudil, J. Novovicova, and J. Kittler, “Floating search methods in fea-
ture selection,”Pattern Recognit. Lett., vol. 15, pp. 1119–1125, Nov.
1994.

[29] B. Ripley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[30] J. Rissanen,Stochastic Complexity in Stastistical Inquiry. Singapore:
World Scientific, 1989.

[31] B. E. Rogowitz, T. Frese, J. Smith, C. A. Bouman, and E. Kalin, “Percep-
tual image similarity experiments,” inProc. IS&T/SPIE Conf. Human
Vision Electronic Imaging III, San Jose, CA, July 1998, pp. 576–590.

[32] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face de-
tection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, pp. 23–38,
Jan. 1998.

[33] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra, “Relevance feedback:
A power tool for interactive content-based image retrieval,”IEEE Trans.
Circuits Syst. Video Technol., vol. 8, pp. 644–655, Sept. 1998.

[34] P. G. Schyns and A. Oliva, “From blobs to boundary edges: Evidence
for time and spatial scale dependent scene recognition,”Psychol. Sci.,
vol. 5, pp. 195–200, 1994.

[35] Y. Singer and M. Warmuth, “A new parameter estimation method for
Gaussian mixtures,” inAdvances in Neural Information Processing Sys-
tems 11, M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Cambridge,
MA: MIT Press, 1999.

[36] J. R. Smith and S. F. Chang, “Visualseek: A fully automated content-
based image query system,” inProc. ACM Multimedia, Boston, MA,
Nov. 1996, pp. 87–98.

[37] M. Stricker and A. Dimai, “Color indexing with weak spatial con-
straints,” inProc. SPIE Storage Retrieval Image Video Databases IV,
San Jose, CA, Feb. 1996, pp. 29–41.

[38] M. J. Swain and D. H. Ballard, “Color indexing,”Int. J. Comput. Vis.,
vol. 7, no. 1, pp. 11–32, 1991.

[39] M. Szummer and R. W. Picard, “Indoor-outdoor image classification,”
in IEEE Int. Workshop Content-Based Access Image Video Databases
(in conjunction with ICCV’98), Bombay, India, Jan. 1998.

[40] A. Vailaya, M. Figueiredo, A. Jain, and H.-J. Zhang, “A Bayesian frame-
work for semantic classification of outdoor vacation images,” inProc.
SPIE Storage Retrieval Image Video Databases VII, vol. 3656, San Jose,
CA, Jan. 1999, pp. 415–426.

[41] A. Vailaya, M. Figueiredo, A. Jain, and H.-J. Zhang, “Content-based hi-
erarchical classification of vacation images,” inProc. IEEE Multimedia
Systems’99, vol. 1, Florence, Italy, June 7–11, 1999, pp. 518–523.

[42] A. Vailaya, A. K. Jain, and H. J. Zhang, “On image classification:
City images vs. landscapes,”Pattern Recognit., vol. 31, no. 12, pp.
1921–1936, 1998.

[43] N. Vasconcelos and A. Lippman, “Library-based coding: A representa-
tion for efficient video compression and retrieval,” inData Compression
Conf. ’97, Snowbird, UT, 1997.

[44] H. J. Zhang, C. Y. Low, S. W. Smoliar, and J. H. Wu, “Video parsing
retrieval and browsing: An integrated and content-based solution,” in
Proc. ACM Multimedia ’95, San Francisco, CA, Nov. 5–9, 1995, pp.
15–24.

[45] H. J. Zhang and D. Zhong, “A scheme for visual feature based image in-
dexing,” inProc. SPIE Conf. Storage Retrieval Image Video Databases,
San Jose, CA, February 1995, pp. 36–46.

[46] D. Zhong, H. J. Zhang, and S.-F. Chang, “Clustering methods for video
browsing and annotation,” inProc. SPIE Storage Retrieval Image Video
Databases IV, San Jose, CA, February 1996, pp. 239–246.

Aditya Vailaya (A’00) received the B.Tech degree
from the Indian Institute of Technology, Delhi, in
1994 and the M.S. and Ph.D. degrees from Michigan
State University, East Lansing, in 1996 and 2000,
respectively.

He joined Agilent Laboratories, Palo Alto, CA,
in May 2000, where he is currently applying pattern
recognition techniques for decision support in
bioscience research. His research interests include
pattern recognition and classification, machine
learning, image and video databases, and image

understanding.
Dr. Vailaya received the Best Student Paper Award from the IEEE Interna-

tional Conference on Image Processing in 1999.

Mário A. T. Figueiredo (S’87–M’95) received
the E.E., M.S. and Ph.D. degrees in electrical and
computer engineering, all from the Higher Institute
of Technology [Instituto Superior Tecnico (IST)],
Technical University of Lisbon, Lisbon, Portugal, in
1985, 1990, and 1994, respectively.

Since 1994, he has been an Assistant Professor
with the Department of Electrical and Computer
Engineering, IST. He is also a Researcher with the
Communication Theory and Pattern Recognition
Group, Institute of Telecommunications, Lisbon. In

1998, he held a visiting position with the Department of Computer Science
and Engineering, Michigan State University, East Lansing. His scientific
interests are in the fields of image analysis, computer vision, statistical pattern
recognition, and information theory.

Dr. Figueiredo received the Portuguese IBM Scientific Prize in 1995.



130 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 1, JANUARY 2001

Anil K. Jain (S’70–M’72–SM’86–F’91) is a Univer-
sity Distinguished Professor with the Department of
Computer Science and Engineering, Michigan State
University, Ann Arbor. He served as the Department
Chair from 1995 to 1999. His research interests in-
clude statistical pattern recognition, Markov random
fields, texture analysis, neural networks, document
image analysis, fingerprint matching and 3-D object

recognition. He is the co-author ofAlgorithms for Clustering Data(Englewood
Cliffs, NJ: Prentice-Hall, 1988), edited the bookReal-Time Object Measurement
and Classification(Berlin, Germany: Springer-Verlag, 1988), and co-edited the
booksAnalysis and Interpretation of Range Images(Berlin, Germany: Springer-
Verlag, 1989),Markov Random Fields(New York: Academic, 1992),Artificial
Neural Networks and Pattern Recognition(Amsterdam, The Netherlands: El-
sevier, 1993),3D Object Recognition(Amsterdam, The Netherlands: Elsevier,
1993), andBIOMETRICS: Personal Identification in Networked Society(Nor-
well, MA: Kluwer, 1999).

Dr. Jain received the Best Paper Awards in 1987 and 1991 and certificates
for outstanding contributions in 1976, 1979, 1992, and 1997, from the Pat-
tern Recognition Society. He also received the 1996 IEEE TRANSACTIONS ON

NEURAL NETWORKSOutstanding Paper Award. He was the Editor-in-Chief of
the IEEE TRANSACTIONS ONPATTERN ANALYSIS AND MACHINE INTELLIGENCE

(1990–1994). He is a Fellow of the IAPR. He received a Fulbright Research
Award in 1998.

Hong-Jiang Zhang (S’90–M’91–SM’97) received
the B.S. degree from Zhengzhou University, China,
in 1982 and the Ph.D degree from the Technical
University of Denmark, Lyngby, in 1991, both in
electrical engineering.

In 1999, he joined Microsoft Research China,
Beijing, as a Senior Researcher/Research Manager.
He was previously with Hewlett-Packard Labs,
Palo Alto, CA, where he was a Research Manager,
performing research and development in the areas

of multimedia content retrieval and management technologies, intelligent
image processing and video coding, and Internet media. Before joining
Hewlett-Packard Labs Labs, he was with the Institute of Systems Science,
National University of Singapore, where he led several projects in video
and image content analysis and retrieval, computer vision, and multimedia
information systems. He was with the Massachusetts Institute of Technology
Media Lab in 1994 as a Visiting Researcher. He has authored two books, about
100 papers and book chapters, and numerous special issues of professional
journals in multimedia processing, content-based retrieval, and Internet media.
He has served on committees of more than 40 international conferences. He
was the Program Committee Co-Chair of the ACM Multimedia Conference in
1999. His interests are in the areas of video and image analysis, processing and
retrieval, media compression and streaming, Internet multimedia, computer
vision and their applications.

Dr. Zhang currently serves on the editorial boards of five international jour-
nals, including IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FORVIDEO

TECHNOLOGY, IEEE TRANSACTIONS ONMULTIMEDIA , and IEEE MULTIMEDIA

MAGAZINE.


