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Wavelet-Based Image Estimation:
An Empirical Bayes Approach
Using Jeffreys’ Noninformative Prior
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Abstract—The sparseness and decorrelation properties of 3) compute the inverse DWT to obtain the “processed”
the discrete wavelet transform have been exploited to develop signal.
powerful denoising methods. However, most of these methods have Stimulated by the seminal work of Donoho and Johnstone
free parameters which have to be adjusted or estimated. In this . . -
paper, we propose a wavelet-based denoising technique Without[lz_]’ m{:my authors have p_ropos_ed denoising (or signalimage
any free parameters; it is, in this sense, a “universal” method. Our  €stimation) methods adopting this standard three step approach
approach uses empirical Bayes estimation based on a Jeffreys’ (see, for example, Mallat [24], Mihcadt al. [25], Moulin and
noninformative prior; .it is a step tpward objective .Bayesi.an Liu [26], Ogden [30], Vidakovic [34], Krim and Schick [21]).
wavelet-based denoising. The result is a remarkably simple fixed |, haricular for detail-preserving (or discontinuity-preserving)
nonlinear shrinkage/thresholding rule which performs better than . timation/denoising (the subject of this paper), wavelet-
other more computationally demanding methods. Image es X 9 ] ) p p ’

based approaches provide a very efficient alternative to Markov

Index Terms—Bayesian estimation, empirical Bayes, hierar- ) .
chical Bayes, image denoising, image estimation, inVariame,random field (MRF) based techniques (see [15] and references

Jeffreys’ priors, noninformative priors, shrinkage, wavelets. therein).
In the denoising context, the decorrelation property sug-

gests processing the coefficients independently of each other;
the sparseness (or “heavy-tailedness”) property paves the
A. Background way to the use of threshold/shrinkage estimators aimed at
éemoving/attenuating those coefficients that are “small” rel-
jve to the noise level. The classical choices for performing

esholding/shrinkage of each DWT coefficient (proposed
'Donoho and Johnstone [12], [13]) are the hard and soft
p_resholding functions; lettingy denote an arbitrary DWT
efficient of the observed signal/image, these functions are
efined, respectively, as

. INTRODUCTION

AVELETS and other multiscale analysis tools underli
many recent advances in key areas of signhal and ima;
processing, namely, approximation/representation, estimati
and compression (see, e.g., Mallat's [24] recent book and
many references therein). In these applications, two imp
tant properties of the discrete wavelet transform (DWT)
real-world signals and images are exploited: 1) #parsei.e.,
a few large coefficients dominate the representation and 2) the 0, « |w| <A
coefficients tend to be much less correlated than the original shard () = { ’ - 1)
data. These properties, together with the existence of fast im- w, < |w[>A
plementations, make the DWT an excellent tool for many tasks 0 < |w| <A
(see [24]) and also for statistical applications (see [27] and [30], M w) = { ’ _ (2)
and the references therein). The basic approach to DWT-based sgn()(jo] =), = |w|> A
signal/image processing consists in manipulating the DV\(,'VFh

- . “Wheresgn(-) is the sign functiondgn(z) = 1, if > 0, and
coefficients, ra.ther than the signal samples themselves. Th'%é%(x) — _1,if 2 < 0] and \ a threshold level. In Donoho
done by following a three step program:

and Johnstone’s classical techniqueslepends on the known
1) compute the DWT coefficients of the signal; (or estimated) noise standard deviation. Their simplest approach
2) perform some specified processing on these coefficient§isushrink uses a common value affor all levels (scales) of
the DWT decomposition, which is based on the so-called “uni-
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standard Bayesian decision-theoretic approach, after the spedifiperforms nearly as well as (sometimes even better than)
cation of a loss function [32]. Bayesian techniques usually outtuch more computationally expensive Bayesian denoising
perform other methods and are the state-of-the-art in wavelatethods in standard benchmark problems. Remarkably, in
based denoising [10], [27], [34]. view of its very good performance, our rule is fixed (with no
There are several open issues in wavelet-based denoisingrée parameters), thus it is as computationally inexpensive as
threshold/shrinkage methods, the choice of the particular ngressible (e.g., as simple as VisuShrink).
linearity (e.g., hard or soft) is somewhat arbitrary. Thresholds Our results seem to carry an important message in terms of
are often chosen for mathematical convenience, rather thaatural image modeling. The good results achieved with our
motivated by physical or inferential considerations. Moreovenpninformative prior seem to suggest the presence of a type of
the standard choices of nonlinearity have certain drawbackszariance which has not been previously exploited in image
The soft thresholding function yields systematically biasetknoising: amplitude-scale invariance. Other types of invari-
estimates because it shrinks coefficients regardless of hance, namely spatial-scale invariance (or self similarity), how-
large they are. The hard thresholding function, on the othever, have received considerable attention (see Field [14] and
hand, produces less biased but higher variance estimates; it Raderman [33]).
also be unstable due to its discontinuous nature. To avoid thesé Section I, the denoising problem is described and notation
drawbacks, several othad-hocrules have been proposed. Letntroduced. In Section Ill, a new noninformative prior is pro-
us mention Gao and Bruce’s [19] “firm” rule which tries toposed, based on which we derive, in Section 1V, a novel empir-
retain the best of the hard and soft functions (requiring twioal-Bayes denoising procedure that we eafiplitude-scale-in-
threshold values, thus computationally much more expensivariant Bayes estimatiofABE). In Section V we discuss the re-
in terms of threshold selection) and, recently, the “nonnegatilation of our method with other approaches. The performance of
garrote” function (as suggested by Gao [18]), defined as  the new rule is compared to that of other methods in Section VI.
Section VII presents a Bayesian interpretation of the nonnega-

0, < o <A tive garrote. Conclusions are given in Section VIII.
6§arrote(w) — )\2 (3)
w= o = > Il. PROBLEM FORMULATION

which we will return to in Section V. A. Wavelet-Based Denoising and the Sparseness Property

Bayesian methods do not use a fixed arbitrary nonlinearity; Supposey is a noisy observed signal or image, modeled as
the priors on the wavelet coefficients are chosen with the goal
of matching empirical coefficient distributions or obtaining y=x+n (4)
Bayesian estimators that mimic the conventional nonlinear ) ) o . .
rules. However, Bayesian methods are usually computationafféré x is the underlying original signal (or image) amnd
intensive and require either careful hand-tuning of the prigpntalnsmdependent samples of a zero-mean Gaussian variable

parameters or signal-adaptive schemes. of variancé o?; that is,n ~ A(0, #°I), with I denoting an
identity matrix of appropriate size. The goal of denoising
B. Contributions (signal/image estimation) is to recowefrom the observeg.

In wavelet-based denoising, the orthogonal DWT, denoted by

We tackle the fundamental issues raised above by adoptiRgeither 1-D or 2-D; see, e.g., [24] for details) is applied to the
a Bayesian perspective supported on noninformative Jeffreyic, data yielding the noiswavelet coefficients: these are

priors (see, for example, [3] or [32]). described by an analogous model
Our approach can be seen as a step towhjekctiveBayesian

wavelet-based denoising; the term “objective” means the use w=Wy=Wx+Wn=60+n' (5)

of priors that do not require any subjective input. If we can

find a prior distribution that, in a certain sense, does netheref = Wx, andn’ = Wn ~ A(0, ¢°T), sinceW is
favor one signal over another, then any inferences derivetthogonal (i.e. /WW7T = I).

from the resulting posterior distribution are solely due to the As mentioned above, the wavelet transforms of most
data. Accordingly, our approach mitigates the subjectivenagsl-world signals and images tend to be dominated by a
associated with other (Bayesian and non-Bayesian) denoisfag large coefficients [12]. This is the so-callegparseness
schemes. The type of noninformativeness we invoke exprespesperty which, in probabilistic terms, corresponds to a wavelet
amplitude-scale invariance, meaning that the units in whickcoefficient density function with a marked peak at zero and
an image/signal is measured do not directly influence amgavy tails; that is, a strongly non-Gaussian density (also called
inference made from it [32], [3]. In other words, the inferencsuper-Gaussian). Interestingly, it has recently been found that
procedure tries to be invariant under changes of ampike human visual system exploits this sparseness property by
tude-scale. Maybe surprisingly, the result of our approach isuging wavelet-like representations (see, for example, the recent
fixed nonlinear shrinkage/threshold rule which, neverthelesgork by Olshausen and Field [31], and Hyvarinen [20], and
clearly outperforms both VisuShrink and SureShrink; actuallseferences therein). On the other hand, the DWT of Gaussian

IThroughout this paper, we use the teramiplitude-scalén place of simply 2In this paper, we assume known noise variance; this is not a shortcoming
scale,to clearly distinguish it from the more common usage of the tecale because excellent estimates can be easily obtained directly from the noisy data
(meaning spatial-scale) in wavelet theory. using, e.g., the MAD scheme [13].
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white noise produces i.i.d. Gaussian distributed coefficients; 1) compute the DWT of the data = Wy;

with high probability, these are bounded in magnitude by a 2) obtain a Bayes estimate givenw;

suitable threshold proportional to their standard deviation. 3) reconstruct the signal estimate= ¥~16.

Therefore, a natural denoising criterion results from thiko interpret this procedure from a Bayesian decision theory per-

statistical difference between the coefficients of the signal ag@ective, let us explicitly write dow# as the minimizer of the

the noise: if the magnitude of an observed wavelet coefficieatposterioriexpected loss (see [32] or [3]); then

is large, its signal component is probably much larger than

the noise and it should be kept; conversely, if a coefficient x = W‘largmjn/L(o, 0)p(0|w) do. (8)

has small absolute value, it is probably due to noise and it 6

oo e e 180, 1(0.0) 5 th acopte toss o ta penaizes e
“discrepancy” betweefl and any candidate estimale while

independently of each other) is the rationale underlying th . . el . . .
nowpclassicalythresholding mgthods introduced by Dor?oh% aﬁ@'w) Is thea posterioriprobability density function obtained

Johnstone [12]. via Bayes Ia\/\(p(0|¢f;) = p(w|@)p(8)/p(w). Now, recalling that
The choice of wavelet basis does not effect the procedure Wg| = |dx|, and since

develop in this paper, butit does play a significant role in wavelet

denoising performance. Suppose that the signal or image under

consideration belongs to a function space with smoothness pa-

rametera,_e.g., a Besov space. If the underlying wgvelgt hﬁuation (8) is equivalent to

r > « vanishing moments, then the besterm approximation

(i.e., keep only then largest terms in the signal’'s wavelet ex- S /L Wx. W d 9

pansion) converges at a rate@f» <) [11]. The smoother the X = agugt (Wx, WR)p(xly) dx. ©)

target function, the more vanishing moments we require of the o i

wavelet. There is also interesting connection between smoalh-other wqrds, t_he_esﬂ_matg = Wwé dqes correspond

ness spaces and the choice of informative Bayesian priors [fif @ Bayesian criterion in the signal domain, under the loss
Finally, we mention that there is also a conceptual link(*¥X; W), which is induced by the los£(6, ) that is

between wavelet-based denoising aimdependent compo- 2dopted in the wavelet domain.

nent analysis(ICA): see Cardoso [6], Comon [9], Bell and In some cases, this loss is invariant under orthogonal trans-

Sejnowski [2], and the recent book by Lee [22]. The goal dPrmations, in the sense that

ICA is to recover independent sources (signals) given only - -

unknown (memoryless) linear combinations of them; ICA LOVx, Wx) o L(x, %) (10)

is poss_,ible only if no more than one of the mixed signals igs a consequence, (9) can be further simplified to

Gaussian, and all the others are non-Gaussian. From an ICA

perspectlvg, wavelet-based dgnmsmg may be seen as a way % = argmjn/L(X, %)p(x|y) dx (11)

of separating two sources (signal and noise) by representing %

them on a basis where one becomes strongly non—Gaussianﬁe

p(xly) o« ply|x)px (x) =p(w|@)px (W0)
=p(w|f)pe(8) x p(@w).

. A~ _ _1/\ . .
signal) and the other remains Gaussian (the noise). Howe ,a:cnng 'Fhalxg W™0 is a Bayes estimate under the same
while wavelet-based denoising usually adopts fixed bases, | shunctlon ah ' h | q] ; )
adaptively looks for bases that best reveal the non—Gauss(ij;allut appens that the two most commonly used loss functions

nature of the source(s). o verify (10): _ _
» With the squared error loss, for which the optimal Bayes

B. Bayesian Formulation rule is theposterior mearj32] (PM), we can write

The likelihood functions resulting from the observation

~ ~112
— _ =112
models in the signal and wavelet domains, respectively (4) and L0, 0) = Ha - aHQ = [Wx - Wx|;

(5), are both Gaussian with covariancd: =|W(x—-%)|3 = ||x — X[|3 = La(x, X)
ylx ~N (%, 0°T) (6) (where|| - ||3 denotes squared Euclidean norm) as a trivial
w|@ ~N (97 0—21) 7 consequence of the orthogonality Wbf; the DWT is an

Euclidean norm preserving transformation (Parseval’s re-
that is, the noise is white and Gaussian both in the signal and lation). It can then be stated that the inverse DWT of the
wavelet domains. To build a Bayesian framework that exploits  PM estimate of the coefficients coincides with the PM es-
the sparseness and decorrelation properties of the DWT, a prior timate ofx.
pe(@) is formulated with respect to the wavelet coefficients. Of ¢ For the 0/1 loss, which leads to theaximum a posteriori

course, this priope (#) induces a signal prior given by (x) = (MAP) criterion [32], L1 (8, 0) = Lojy Wx, Wx) =
pe(Wx), becaus@V is an orthogonal transformation, thus pos- L, (x, %), simply becaus&V~! exists (i.e.)V is bijec-
sessing a unit Jacobian (i.&f| = |dx]). tive). In conclusion, the inverse DWT of the MAP estimate

The standard Bayesian version of the three step of the coefficients is the MAP estimate in the signal do-
wavelet-based denoising program is: main.
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Notice that this is not true in general. It is easy to come up wittind of invariance is expressed by the well-known (noninforma-
loss functions that do not satisfy this condition; for exampléive) amplitude-scale-invariant Jeffreys’ pripfa) o« 1/« (see
Loo(8, 0) = [WX—WX]|oo # Loo(x, X) (Where||v||o, stands [32] or [3]). Now, ouré can be positive or negative; the corre-
for theinfinity norm, ||v||.. = max{|v;|}). Of course, as seensponding amplitude-scale-invariant prior is then
above, the resulting rule is still a valid Bayes rule, but no simple 1

and clear relation exists between the estimates in the signal and p(f) x [k

wavelet domains.
This happens to be an extremely heavy-tailed “density,” thus in
l1l. NEw PRIOR FORWAVELET COEFFICIENTS accordance with the expected behavior of wavelet coefficients.
The decorrelation property supports that we model the codh fa(?t, i IS SO hegvy-taned that It s |mp.r0p?e.rNot|ce that
ficients as mutually independent the S|mp!e qucatlon of amplitude-scale invariance leads to a
heavy-tailed prior.
p(6) = H p(6)). (12 Le’F us clearly _shovv_ how this noninformative prior exhibits
; amplitude-scale invariance. Say we change the measurement
units (amplitude-scale) in which and all other quantities are
Of course, decorrelation does not imply independence, but tb'b‘épressed. This defines anew unkngiva K0, whereK is the
is a good first approximation often followed, and we adopt §onstant expressing the change of units/amplitude-scale. Then,
here. Furthermore, recall that the likelihood function describg§ applying the rule for the change of variable in a pdite) =
the observed coefficients as conditionally independent. Asj@—1 we retain the same prig3)  |3|~!. Itis in this sense

consequence, the unknown coefficients argosterioricondi-  that the prior (13) is said to be amplitude-scale-invariant. Other

(13)

tionally independent, priors for Bayesian denoising (based on Laplacian, Gaussian
mixture, or other heavy-tailed densities) do not share this in-
p(flw) o H p(wilb;) H p(f;) o H p(b;]wi) variance property, and hence they must be tuned/adapted to the

amplitude-scale of the wavelet coefficients of each particular

wherep(Biluw:) o p(wil6i)p(wr), With wilf; ~ N (6, o%). Fi-  Signalimage at hand.

nally, under the MAP or the PM criterion (see above), the Bayes
rule can be computed separately with respect to each coefficient,
The priorp(#) = |#|~*, together with the simple Gaussian

IV. HIERARCHICAL/EMPIRICAL BAYES APPROACH

Opr = E[0|w] observation modeb|6 ~ A (6, o2), leads to an improper (non-

_ T integrable)a posterioripdf p(f|w). This a posterioripdf also
- [Blorlen], - BlOnlon]] has a singularity at the origin, thus being unclear how to derive a
Onap = argmax p(f|w) simple inference rule from it. Consequently, we have to look for

4

an alternative to a fully Bayesian approach. This alternative is
provided by the identification of a hierarchical Bayesian model
that is equivalent to the prigr(8) = |6|~*; the goal is to facil-

. . . itate the use of an empirical-Bayes-type approach. The equiva-
whereXV'is the dimension of andw. lent hierarchical model is as follows.

Let us then focus on choosing a prior for each wavelet co- - i .
» Each (unknown) coefficient is conditionally zero-mean

efficient, which we will now simply denote a&. The usual : . : N 2 2
approach is to explicitly capture the sparseness property with Gaussian, with variancg”, 6|¢* ~ A(0, ¢%), for ¢ >

heavy-tailed priors. For example, Chipmetral.[7] and Crouse

et al. [10] considerp(f) as a mixture of two zero mean Gaus-

sians: one with small variance and the other with large variance. , 5 )

Abramovichet al.[1] take this approach to an extreme by con- prior p(¢7) o 1_/(7) :

sidering the small variance component as a point mass at zefgth these assumptions,

Studentt distributions were adopted by Vidakovic [35]. Other oo

variants of these approaches are reviewed by Vidakovic [34]. / p (0¢°) p (¢°) dp® = |6]7* (14)
Finally, recall that a Laplacian prigi(6) o« exp{—v|6|} 0

leads to the soft thresholding function [see equation (2)] aBowingthap(f) = ||~ can be decomposed into a continuous

the MAP Bayes rule. A Bayesian interpretation of the hanghixture of zero-mean Gaussians, weighted according to the Jef-

threshold was presented by Moulin and Liu [26]. freys’ noninformative hyper-priop(¢?) ~ 1/¢2. Since this
Here, we follow a different route based on the notion of “norlyper-prior is the limiting case of the conjugate inverse-Gamma

informativeness” or “invariance.” The type of noninformativefamily, the priorp(8) = |6|~! is itself a limiting case of a family

ness we are seeking must exprassplitude-scalénvariance; of Studentt densities [3]. Student-densities are common ro-

this means that the units in which a quantity is measured bast substitutes for Gaussian priors [32], [3], which have been

not influence any conclusions drawn from it (see [32] or [3]). ,, . . o _ o _ .

. . : A prior is improper if it is not normalizable (its integral is not finite).
In other words, the inference procedure must be invariant ungg

) = X Broper priors are common in Bayesian inference since only the relative
changes of amplitude-scale. For a positive parametery S#lys  weighting expressed by their shape impactsaipesterioridensity [32], [3].

T

= |argmax p(61|w1), ..., argmax p(fx|wn)
w1 W

« Again, amplitude-scale invariance with respecttds ex-
pressed by the noninformative improper Jeffreys’ (hyper)
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‘‘‘‘‘ - Hard threshold
= == Soft threshold
—— ABErule

used in wavelet-based denoising with specially selected param-
eter settings (see Vidakovic [34]). Our (noninformative) prior
leaves us wito free parameters to adjust.

This hierarchical Bayesian model opens the door to the use of
an empirical-Bayes-type technique [32]; i.e., we break the fully
Bayesian analysis chain as follows:

« First, a variance estimat#? is obtained with the MAP
criterion based on the marginal likelihoptlv|$?) and the
corresponding (amplitude-scale-invariant) Jeffreys’ prior.

 Given ¢?, both the MAP and the posterior mean criteria
leadto the wellknown shrinkage estimator, resulting froma
Gaussian likelihood (of varianee?) and a\V (0, ¢?2) prior,

i

— Ww.
(/)2 +O'2

Estimate of 0

Observed o

Fig. 1. ABE nonlinearity versus the hard and soft thresholding rules (for the

6= (15)  same threshold).

Notice that this is a nonlinear estimator because, although ifand consequently the identity line) for large avoiding the
clearly expressed by the notatio/ﬁs?\, depends ow. undesirable bias incurred with the soft rule.

The MAP estimate of the variancg?, is derived as follows.  Computationally, our denoising method is as simple as any
Sincew = 6 + n’, the marginal likelihood is very simply other one that uses some fixed thresholding/shrinkage nonlin-
wlp ~ N(0, $* + o), and the corresponding Jeffreys’ priofearity depending on a fixed threshold proportional to the noise
is nowp(¢?) o 1/(¢* + o02). Notice that this Jeffreys’ prior standard deviation (e.g., VisuShrink); that is, the only needed
respects our amplitude-scale-invariance desideratum. To see thidyt iso. Remarkably, however, it achieves the performance of
consider again the change the measurement units expresset§yfe computationally demanding) Bayesian methods (see the
defininganewvariablg? = K ¢2. Applyingtherule forachange experimental results in Section VI) without requiring any tuning
of variable to the priop(¢?), we obtaip(¢2)  1/(£% + Ko?), Of adaptive estimation of parameters of the prior.
which is the same prior, with the noise variance adequately

re-scaled. The resulting MAP estimate/dfis V. RELATION WITH THE NON-NEGATIVE GARROTE
S 2 2y —3/2 7(w2/2(¢2+02))} As mentioned in the Introduction, Gao [18] has very recently
¢ alg};sg%{(d) to ) ¢ proposed the use of the so-called “nonnegative garrote” func-
" ) tion, defined in (3), for wavelet-based denoising. Notice that the
= <§ -0 ) (16)  ABE rule [equation (17)] happens to be a “nonnegative garrote”
+

with a fixed threshold\ = v/302:
where(-); stands for “the positive part of,” i.e(z)+ = z, if , rrote
x> 0,and(z)y = 0,if z < 0. §4P(w) = 5%/§t (w).

Let us also point out another interpretation of the Bayesi
(variance) estimator in (16). Ignoring tiie function (which
is necessary simply because we are estimagifjom an esti-
mate of¢? + o2, and the valid parameter spaceRig), this is
an instance of the following problem: giveni.i.d. A'(0, v?)

?rq [18], this function is shown to outperform both the hard and
soft nonlinearities when the threshold is optimally selected with
the help of the underlying true function. Gao credits the nonneg-
ative garrote to Breiman [4] who introduced it in the context of
observationsy, ..., z,, what is the best estimate of the vari-su_bset selegtion for re_gr_ession pTOb'e_mS- Brillinger [5] has also
briefly mentioned a similar function [in fad¢®™°*(w)] as a

ance, with the formy2 = ¢(2% 4 --- + «2), in a mean squared . , ; .
' me =5 02(371 Foe a.j") d possible alternative to the hard and soft rules; according to him,
error (MSE) E[(v* — 42)*] sense? It is known that the value

¢ = 1/(n 1 2) (in our casen = 1, thusc = 1/3) yields the this nonlinear function had been proposed by Tukey (in unpub-

. ; . . lished work of 1979), also in a regression context.
minimum M_SE(aIthough b|asgd) est|matey6f(s_ee [23]). This Finally, the nonnegative garrote [specificall§g®*°*(w)]
coincides with th? MAP ruIe_W|th aJeﬁr_eys prior off. also arises naturally in certain cross-validation methods, as
Now, by plugging the estimate (16) into (15), we have Ylsed by Nowak [28] and Nowak and Baraniuk [29].
new nonlinear rule, which we call tinplitude-scale-invariant

Bayes estimatofABE) VI. EXPERIMENTAL RESULTS
b 5B _ (w? =307, (17) A Signal Denoising
w We have evaluated the ABE rule versus the standard
which is plotted in Fig. 1, together with the classical soft anSureShrink and VisuShrink methods (based on soft thresh-
hard thresholding functions (for the same threshold value)lding), using Donoho and Johnstone’s [12] well known test
Notice how the proposed rule places itself between those tsignals: “Blocks,” “Doppler,” “HeaviSine,” and “Bumps.” We
functions: it is close to the soft rule for smal| thus effectively have also included in our comparison a Bayesian approach

behaving like a shrinkage rule; it approaches the hard rutased on mixture priors (see [10]) which, to our knowledge, is
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— — ABE rule Test function "Blocks" _ — ABE rule Test function "Heavisine"
= 50dB. X R 2 < 50dB+ . . E
g - VisuShrink = A G VisuShrink
@ === SureShrink @ L] - SureShrink
40dB | . ureShrin

E ---- Indep. mixture E 40dBy . Indep. mixture
) 3
530dB. 5 30dB}
S| ]
;5) 20dB . :% 20dB
N Gt
5 8
24
Z 10dB, & 1odB}
“ o e o

0dB | 1 0dB 4

0dB 10dB 20dB . 30dB 40dB 0dB 10dB 20dB 30dB 40dB
SNR of the noisy signal SNR of the noisy signal
(@ (CY
Test function "Doppler” Tést function "Bumps"

5 soq, ~ ABE rule e — s0dB| —— ABE rule ]
& | o VisuShrink g VisuShrink
2 40qp, ~"" SureShrink # 4oap| -~ SureShrink
‘% ---- Indep. mixture 3 - - -- Indep. mixture
& 3048} £ 30dB}
g ks
= 20aB| £20dB}
s .
o o]
Z 10apt 2~ & 10dB}
7] s 7 z

0dB ¢ , 3 0dB ¢ , ,

9dB 10dB 20dB 36dB 40d: 0dB 10dB 20dB _30dB 40dB
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Fig. 2. Input and output SNR for various wavelet denoising schemes appliely- 3. Input and output SNR for various wavelet denoising schemes applied
to two standard test signals: “blocks” and “Doppler” (wavelets: Daubechiest® two standard test signals: *heavisine” and “bumps” (wavelets: Daubechies-8
for Blocks, Daubechies-8 for Doppler). for HeaviSine, and Daubechies-6 for Bumps).

representative of the very best Bayesian methods. Figs. 2 and- 2. Fig. 6 shows the mean squared error achieved by the
3 report the signal-to-noise ratios (SNR) obtained by each igérd, soft, and garrote rules, as a function of the respective
the methods, based on 100 runs for each original SNR valggreshold values; the horizontal dotted line represents the mean
These results show that the ABE rule ConSiStently (for all fOl{lj’quared error of the proposed (f|Xed thresh0|d) ABE. Notice
test signals and at all SNR levels) outperforms SureShrirkgw the ABE rule achieves lower MSE than both the hard
this is a remarkable fact because SureShrink is an adapti®i soft functions, even when these are allowed to choose
method (more computationally demanding) while the ABRgeal (clairvoyant) thresholds using the underlying true images
rule is fixed. With respect the VisuShrink, which has a SImI'%f course, Something that in practica| situations can not be
computational load, ABE achieves far superior results. Finaljlone). Concerning the garrote, it is remarkable that the optimal
asis also clearin Figs. 2 and 3, the proposed technique perfoff@shold is found to b& = 35.1 which is very close to our
comparably (except for HeaviSine at low SNR) with the mucfixed thresholdv/352 ~ 34.6. The resulting denoised images
more computationally demanding mixture based method.  are shown in Figs. 4 and 5.

Our experimental results allow addlng the fO”OWing conclu- The same test was performed for two other values QIO
sions to those of Gao [18]: at least for the signals and SNfd 40), and the results are also reported in Fig. 6. Again, our
values considered, a nonnegative garrote with a fixed threshgleb=(,,) outperforms both the hard and soft rules, even with
A = /302 still beats SureShrink (and also, of course, Visheir ideal/clairvoyant thresholds. The garrote rule [of which,
uShrink). This conclusion implies an important practical guidgecall, $4BE(«) is a particular case] is able to find thresholds
line: the ABE method should be used instead of SureShrink. QAm:h which it very s||ght|y beats the ABE rule (however, re-
method performs better than SureShrink, and it is much maggy| that these are clairvoyant thresholds that can not be found

computationally efficient. in practical situations because they would require access to the
o unknown underlying images). Again, the optimal garrote rule
B. Image Denoising thresholds are very near our fixed level\d8o-.

For image denoising, we have compared the ABE rule versudn Mihgak et al. [25], an image denoising method was
the hard, the soft, and the garrote nonlinearities for a rangemposed which has some similarities with ours. In that paper,
of threshold values. Fig. 4 shows a mosaic containing theavelet coefficients are also modeled as zero-mean Gaussian
well-known “Lena” and “Cameraman” images (and two othewrith unknown variance. The denoising procedure obtains vari-
images) after being contaminated by noise of standard deviatemce estimates and plugs these estimates in the standard linear
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(b) (b)

Fig. 4. Noisy imaged = 20) and denoised image produced by the ABE ruld=ig. 5. Denoised images produced by the hard (MSE55.6) and soft (MSE
(MSE = 125.2) (wavelet: Daubechies-2). = 131.8) rules, with ideal/clairvoyant thresholds, from the noisy image in Fig. 4
(wavelet: Daubechies-2).

shrinkage rule [equation (15)]. The main difference between
our method and the one in [25] is that our variance estimates are  VII. BAYESIAN INTERPRETATION OF THEGARROTE
obtained independently for each coefficient (under a Jeffreys’
prior), thus leading to a coefficient-wise closed-form estimation
rule, while in [25] the variance estimates are obtained froff|" . L

tor. This fact suggests the question: is there any piiéy

small windows around each coefficient. So, in a sense, h | fici hat lead h .

method can be seen as a limit case of the one in [25] wﬁﬂr the wave,\itA?DoeB 'C'e'?‘St at_ eadstot ﬁ nor;]negatlve ga_rr_otel

windows of size 1, thus being even less computational the true ayesian es_t|mator _(rat er than an empirica
.ayes one)? The answer to this question would help shed some

demanding. Two variants of the method are studied in [25f: ian light” h d perf f th )
variance estimates are obtained by the ML criterion, leading ayesian lig U on the good performance of the no'nnega_lt'we
arrote shrinkage rule. It turns out that the answer is positive:

a scheme callelbcally adaptive window-based denoising using/_h P dif he ori
ML (LAWML); and using MAP variance estimates obtaine ith w|6 ~ (6, %), and if we assume the prior

under an exponential prior (LAWMAP). Table | shows the

results of our (ABE) rule, in comparison with those reported in

[25] (for the Lena and Barbara images). As expected, due to its 6? |0|v/4ac? + 62
less adaptable nature, and less robust variance estimate (based p(6) eXp{ 402 402

on only one coefficient), ABE performs a little worse than

LAWML and LAWMAP (with 3 x 3 windows), but clearly — alog (|9| + V4dao? +92) } (18)

The denoising approach proposed in this paper provides an
pirical Bayes interpretation of the nonnegative garrote esti-

better than the hard threshold.
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Fig. 6. MSE achieved by the hard, soft, and garrote rules, as function of threshold value, for three noise standard dewvatiihsy = 10, ande = 40
(image of Figs. 4 and 5). The horizontal dotted line shows the MSE obtained by the ABE rule (with its fixed threshold).

TABLE |
PSNR (dB) RESuLTS FOR THEABE RULE, LAWML, LAWMAP, AND
HARD THRESHOLDING

Lena

c=10|0=15|0=20|0=25

hard threshold | 30.34 | 28.52 | 27.24 | 26.34
ABE rule 3274 | 3048 | 28.74 | 27.38
LAWML 33.72 | 31.37 | 29.63 | 28.22
LAWMAP 34.25 | 3233 | 31.00 | 29.96

Barbara

c=1010=15|0=20|0=25

hard threshold | 27.29 | 25.01 | 23.65 | 22.83
ABE rule 31.28 | 28.79 | 27.03 | 25.71
LAWML 3232 | 29.72 | 2793 | 26.53
LAWMAP 32.46 | 30.03 | 2839 | 27.21

LA L o

!
@)}

log probability density

Fig. 7. Probability densities given by (18), all far = 3 and for different
values ofo?, and Laplacian density.

parameter of the likelihood function (observation model). No-

tice, however, that the use of priors that depend on the likelihood
function is not uncommon, with the Jeffreys prior being an ob-

vious example.

In Fig. 7, we plotp(#) as givenin (18) for. = 3 and for three
different values o&2 (0.1, 1, and 5); for comparison, the Lapla-
cian density (which leads to a MAP estimate given by the soft
threshold rule) is also plotted. The prior given by (18) always
exhibits heavier tails than the Lapacian, as is clear in the plots.

(which is not improper, although the normalization constant canA final question is: are the members in the family of densities
not be obtained in closed form, only numerically), the resultingefined by (18) good models for wavelet coefficient statistics of
MAP estimator off, par = argmaxe p(f)p(wl|6), is given natural images? To answer this question we plot in Fig. 8 the
by fyiap = 6%7%“’(@ (with @ = 3 corresponding to the esti- (normalized) histogram of the wavelet coefficients of the orig-
mator proposed in this paper). This can be confirmed by usiimal image used in the example of Fig. 4 together with the den-
the formulation in [20] to “reverse engineer” the nonnegativaty of the form (18) fitted to this histogram via the maximum
garrote shrinkage/thresholding function. It is somewhat odd likelihood (ML) criterion (parameters: = 2.2, o2 = 55). For

be led to a prior that depends on the noise variance, which is@nparison, we also plot the best (also in the ML segsegr-
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10 ; ‘ ‘ ; * ' approach, based on independent mixture priors [10], which is
— normalized histogram representative of the very best Bayesian methods.
, |~~~ fitted p(6) Concerning image estimation, we showed that the ABE rule
""" generalized Gaussian achieves lower MSE than both the hard and the soft nonlineari-
ties, even when these are allowed to find their ideal/clairvoyant
1 thresholds using the true original image. The excellent estima-
tion performance of the noninformative approach here described
seems to support the presence a relevant characteristic for nat-
ural image modeling: amplitude-scale invariance. This feature
of natural images means that they contain information at all
4 amplitude-scales; any model that fails to take this into account
will have to pay the price of adapting to the dominant ampli-
tude-scale features of the particular image in hand, at the ex-
pense of features at other amplitude scales.

We are currently investigating the use of our rule in conjunc-
. ‘ ‘ ; ‘ , , ‘ tion with translation-invariant (TI) denoising schemes [8]; ac-
800 600 400 200 0 200 400 600 800 tually, Tl denoising can also be formalized through the use of
noninformative priors [16], [17]. TI schemes mitigate undesir-

Fig. 8. Normalized histogram (solid line) of the wavelet coefficients of the . . . .
original image used in the example of Fig. 4 and the density from the famiPl€ @seudo-Gibbsr blocking artifacts and improve the per-

(18) fitted to it (dashed line). For comparison, the generalized Gaussian den$gymance of all methods considered above, with the ranking of
fitted to this data via the ML criterion is also plotted (dotted line). their relative performances being approximately unchanged.

10t |
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