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Wavelet-Based Image Estimation:
An Empirical Bayes Approach

Using Jeffreys’ Noninformative Prior
Mário A. T. Figueiredo, Senior Member, IEEE,and Robert D. Nowak, Member, IEEE

Abstract—The sparseness and decorrelation properties of
the discrete wavelet transform have been exploited to develop
powerful denoising methods. However, most of these methods have
free parameters which have to be adjusted or estimated. In this
paper, we propose a wavelet-based denoising technique without
any free parameters; it is, in this sense, a “universal” method. Our
approach uses empirical Bayes estimation based on a Jeffreys’
noninformative prior; it is a step toward objective Bayesian
wavelet-based denoising. The result is a remarkably simple fixed
nonlinear shrinkage/thresholding rule which performs better than
other more computationally demanding methods.

Index Terms—Bayesian estimation, empirical Bayes, hierar-
chical Bayes, image denoising, image estimation, invariance,
Jeffreys’ priors, noninformative priors, shrinkage, wavelets.

I. INTRODUCTION

A. Background

WAVELETS and other multiscale analysis tools underlie
many recent advances in key areas of signal and image

processing, namely, approximation/representation, estimation,
and compression (see, e.g., Mallat’s [24] recent book and the
many references therein). In these applications, two impor-
tant properties of the discrete wavelet transform (DWT) of
real-world signals and images are exploited: 1) it issparse, i.e.,
a few large coefficients dominate the representation and 2) the
coefficients tend to be much less correlated than the original
data. These properties, together with the existence of fast im-
plementations, make the DWT an excellent tool for many tasks
(see [24]) and also for statistical applications (see [27] and [30],
and the references therein). The basic approach to DWT-based
signal/image processing consists in manipulating the DWT
coefficients, rather than the signal samples themselves. This is
done by following a three step program:

1) compute the DWT coefficients of the signal;
2) perform some specified processing on these coefficients;
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3) compute the inverse DWT to obtain the “processed”
signal.

Stimulated by the seminal work of Donoho and Johnstone
[12], many authors have proposed denoising (or signal/image
estimation) methods adopting this standard three step approach
(see, for example, Mallat [24], Mihçaket al. [25], Moulin and
Liu [26], Ogden [30], Vidakovic [34], Krim and Schick [21]).
In particular for detail-preserving (or discontinuity-preserving)
image estimation/denoising (the subject of this paper), wavelet-
based approaches provide a very efficient alternative to Markov
random field (MRF) based techniques (see [15] and references
therein).

In the denoising context, the decorrelation property sug-
gests processing the coefficients independently of each other;
the sparseness (or “heavy-tailedness”) property paves the
way to the use of threshold/shrinkage estimators aimed at
removing/attenuating those coefficients that are “small” rel-
ative to the noise level. The classical choices for performing
thresholding/shrinkage of each DWT coefficient (proposed
by Donoho and Johnstone [12], [13]) are the hard and soft
thresholding functions; letting denote an arbitrary DWT
coefficient of the observed signal/image, these functions are
defined, respectively, as

(1)

(2)

where is the sign function [ , if , and
, if ] and a threshold level. In Donoho

and Johnstone’s classical techniques,depends on the known
(or estimated) noise standard deviation. Their simplest approach
(VisuShrink) uses a common value offor all levels (scales) of
the DWT decomposition, which is based on the so-called “uni-
versal threshold.” More sophisticated level-dependent adaptive
schemes have also been proposed (namely, Donoho and John-
stone’sSureShrink[13]); adaptive techniques tend to outper-
form fixed rules at the cost of a higher computational burden.

Recently, wavelet-based denoising/estimation has been ad-
dressed using Bayesian methods. The basic idea is to formally
model the relevant properties of the DWT coefficients with prior
probability distributions [7], [10], [26], [34]. These priors, to-
gether with the likelihood function (noise model), produce pos-
terior distributions. Estimation rules can then be derived via the
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standard Bayesian decision-theoretic approach, after the specifi-
cation of a loss function [32]. Bayesian techniques usually out-
perform other methods and are the state-of-the-art in wavelet-
based denoising [10], [27], [34].

There are several open issues in wavelet-based denoising. In
threshold/shrinkage methods, the choice of the particular non-
linearity (e.g., hard or soft) is somewhat arbitrary. Thresholds
are often chosen for mathematical convenience, rather than
motivated by physical or inferential considerations. Moreover,
the standard choices of nonlinearity have certain drawbacks.
The soft thresholding function yields systematically biased
estimates because it shrinks coefficients regardless of how
large they are. The hard thresholding function, on the other
hand, produces less biased but higher variance estimates; it can
also be unstable due to its discontinuous nature. To avoid these
drawbacks, several otherad-hocrules have been proposed. Let
us mention Gao and Bruce’s [19] “firm” rule which tries to
retain the best of the hard and soft functions (requiring two
threshold values, thus computationally much more expensive
in terms of threshold selection) and, recently, the “nonnegative
garrote” function (as suggested by Gao [18]), defined as

(3)

which we will return to in Section V.
Bayesian methods do not use a fixed arbitrary nonlinearity;

the priors on the wavelet coefficients are chosen with the goal
of matching empirical coefficient distributions or obtaining
Bayesian estimators that mimic the conventional nonlinear
rules. However, Bayesian methods are usually computationally
intensive and require either careful hand-tuning of the prior
parameters or signal-adaptive schemes.

B. Contributions

We tackle the fundamental issues raised above by adopting
a Bayesian perspective supported on noninformative Jeffreys’
priors (see, for example, [3] or [32]).

Our approach can be seen as a step towardobjectiveBayesian
wavelet-based denoising; the term “objective” means the use
of priors that do not require any subjective input. If we can
find a prior distribution that, in a certain sense, does not
favor one signal over another, then any inferences derived
from the resulting posterior distribution are solely due to the
data. Accordingly, our approach mitigates the subjectiveness
associated with other (Bayesian and non-Bayesian) denoising
schemes. The type of noninformativeness we invoke expresses
amplitude-scale1 invariance, meaning that the units in which
an image/signal is measured do not directly influence any
inference made from it [32], [3]. In other words, the inference
procedure tries to be invariant under changes of ampli-
tude-scale. Maybe surprisingly, the result of our approach is a
fixed nonlinear shrinkage/threshold rule which, nevertheless,
clearly outperforms both VisuShrink and SureShrink; actually,

1Throughout this paper, we use the term “amplitude-scale,” in place of simply
scale,to clearly distinguish it from the more common usage of the termscale
(meaning spatial-scale) in wavelet theory.

it performs nearly as well as (sometimes even better than)
much more computationally expensive Bayesian denoising
methods in standard benchmark problems. Remarkably, in
view of its very good performance, our rule is fixed (with no
free parameters), thus it is as computationally inexpensive as
possible (e.g., as simple as VisuShrink).

Our results seem to carry an important message in terms of
natural image modeling. The good results achieved with our
noninformative prior seem to suggest the presence of a type of
invariance which has not been previously exploited in image
denoising: amplitude-scale invariance. Other types of invari-
ance, namely spatial-scale invariance (or self similarity), how-
ever, have received considerable attention (see Field [14] and
Ruderman [33]).

In Section II, the denoising problem is described and notation
introduced. In Section III, a new noninformative prior is pro-
posed, based on which we derive, in Section IV, a novel empir-
ical-Bayes denoising procedure that we callamplitude-scale-in-
variant Bayes estimation(ABE). In Section V we discuss the re-
lation of our method with other approaches. The performance of
the new rule is compared to that of other methods in Section VI.
Section VII presents a Bayesian interpretation of the nonnega-
tive garrote. Conclusions are given in Section VIII.

II. PROBLEM FORMULATION

A. Wavelet-Based Denoising and the Sparseness Property

Suppose is a noisy observed signal or image, modeled as

(4)

where is the underlying original signal (or image) and
contains independent samples of a zero-mean Gaussian variable
of variance2 ; that is, , with denoting an
identity matrix of appropriate size. The goal of denoising
(signal/image estimation) is to recoverfrom the observed .

In wavelet-based denoising, the orthogonal DWT, denoted by
(either 1-D or 2-D; see, e.g., [24] for details) is applied to the

noisy data yielding the noisywavelet coefficients ; these are
described by an analogous model

(5)

where , and , since is
orthogonal (i.e., ).

As mentioned above, the wavelet transforms of most
real-world signals and images tend to be dominated by a
few large coefficients [12]. This is the so-calledsparseness
property which, in probabilistic terms, corresponds to a wavelet
coefficient density function with a marked peak at zero and
heavy tails; that is, a strongly non-Gaussian density (also called
super-Gaussian). Interestingly, it has recently been found that
the human visual system exploits this sparseness property by
using wavelet-like representations (see, for example, the recent
work by Olshausen and Field [31], and Hyvärinen [20], and
references therein). On the other hand, the DWT of Gaussian

2In this paper, we assume known noise variance; this is not a shortcoming
because excellent estimates can be easily obtained directly from the noisy data
using, e.g., the MAD scheme [13].
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white noise produces i.i.d. Gaussian distributed coefficients;
with high probability, these are bounded in magnitude by a
suitable threshold proportional to their standard deviation.
Therefore, a natural denoising criterion results from this
statistical difference between the coefficients of the signal and
the noise: if the magnitude of an observed wavelet coefficient
is large, its signal component is probably much larger than
the noise and it should be kept; conversely, if a coefficient
has small absolute value, it is probably due to noise and it
should be attenuated or even removed. This (together with the
decorrelation property that suggests processing the coefficients
independently of each other) is the rationale underlying the
now classical thresholding methods introduced by Donoho and
Johnstone [12].

The choice of wavelet basis does not effect the procedure we
develop in this paper, but it does play a significant role in wavelet
denoising performance. Suppose that the signal or image under
consideration belongs to a function space with smoothness pa-
rameter , e.g., a Besov space. If the underlying wavelet has

vanishing moments, then the best-term approximation
(i.e., keep only the largest terms in the signal’s wavelet ex-
pansion) converges at a rate of [11]. The smoother the
target function, the more vanishing moments we require of the
wavelet. There is also interesting connection between smooth-
ness spaces and the choice of informative Bayesian priors [1].

Finally, we mention that there is also a conceptual link
between wavelet-based denoising andindependent compo-
nent analysis(ICA); see Cardoso [6], Comon [9], Bell and
Sejnowski [2], and the recent book by Lee [22]. The goal of
ICA is to recover independent sources (signals) given only
unknown (memoryless) linear combinations of them; ICA
is possible only if no more than one of the mixed signals is
Gaussian, and all the others are non-Gaussian. From an ICA
perspective, wavelet-based denoising may be seen as a way
of separating two sources (signal and noise) by representing
them on a basis where one becomes strongly non-Gaussian (the
signal) and the other remains Gaussian (the noise). However,
while wavelet-based denoising usually adopts fixed bases, ICA
adaptively looks for bases that best reveal the non-Gaussian
nature of the source(s).

B. Bayesian Formulation

The likelihood functions resulting from the observation
models in the signal and wavelet domains, respectively (4) and
(5), are both Gaussian with covariance :

(6)

(7)

that is, the noise is white and Gaussian both in the signal and
wavelet domains. To build a Bayesian framework that exploits
the sparseness and decorrelation properties of the DWT, a prior

is formulated with respect to the wavelet coefficients. Of
course, this prior induces a signal prior given by

, because is an orthogonal transformation, thus pos-
sessing a unit Jacobian (i.e., ).

The standard Bayesian version of the three step
wavelet-based denoising program is:

1) compute the DWT of the data ;
2) obtain a Bayes estimate, given ;
3) reconstruct the signal estimate .

To interpret this procedure from a Bayesian decision theory per-
spective, let us explicitly write down as the minimizer of the
a posterioriexpected loss (see [32] or [3]); then

(8)

In (8), is the adopted loss function that penalizes the
“discrepancy” between and any candidate estimate, while

is thea posterioriprobability density function obtained
via Bayes law . Now, recalling that

, and since

Equation (8) is equivalent to

(9)

In other words, the estimate does correspond
to a Bayesian criterion in the signal domain, under the loss

, which is induced by the loss that is
adopted in the wavelet domain.

In some cases, this loss is invariant under orthogonal trans-
formations, in the sense that

(10)

as a consequence, (9) can be further simplified to

(11)

meaning that is a Bayes estimate under the same
loss function as .

It happens that the two most commonly used loss functions
do verify (10):

• With the squared error loss, for which the optimal Bayes
rule is theposterior mean[32] (PM), we can write

(where denotes squared Euclidean norm) as a trivial
consequence of the orthogonality of; the DWT is an
Euclidean norm preserving transformation (Parseval’s re-
lation). It can then be stated that the inverse DWT of the
PM estimate of the coefficients coincides with the PM es-
timate of .

• For the 0/1 loss, which leads to themaximum a posteriori
(MAP) criterion [32],

, simply because exists (i.e., is bijec-
tive). In conclusion, the inverse DWT of the MAP estimate
of the coefficients is the MAP estimate in the signal do-
main.
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Notice that this is not true in general. It is easy to come up with
loss functions that do not satisfy this condition; for example,

(where stands
for the infinity norm, ). Of course, as seen
above, the resulting rule is still a valid Bayes rule, but no simple
and clear relation exists between the estimates in the signal and
wavelet domains.

III. N EW PRIOR FORWAVELET COEFFICIENTS

The decorrelation property supports that we model the coef-
ficients as mutually independent

(12)

Of course, decorrelation does not imply independence, but this
is a good first approximation often followed, and we adopt it
here. Furthermore, recall that the likelihood function describes
the observed coefficients as conditionally independent. As a
consequence, the unknown coefficients area posterioricondi-
tionally independent,

where , with . Fi-
nally, under the MAP or the PM criterion (see above), the Bayes
rule can be computed separately with respect to each coefficient,

where is the dimension of and .
Let us then focus on choosing a prior for each wavelet co-

efficient, which we will now simply denote as. The usual
approach is to explicitly capture the sparseness property with
heavy-tailed priors. For example, Chipmanet al.[7] and Crouse
et al. [10] consider as a mixture of two zero mean Gaus-
sians: one with small variance and the other with large variance.
Abramovichet al. [1] take this approach to an extreme by con-
sidering the small variance component as a point mass at zero.
Student- distributions were adopted by Vidakovic [35]. Other
variants of these approaches are reviewed by Vidakovic [34].

Finally, recall that a Laplacian prior
leads to the soft thresholding function [see equation (2)] as
the MAP Bayes rule. A Bayesian interpretation of the hard
threshold was presented by Moulin and Liu [26].

Here, we follow a different route based on the notion of “non-
informativeness” or “invariance.” The type of noninformative-
ness we are seeking must expressamplitude-scaleinvariance;
this means that the units in which a quantity is measured do
not influence any conclusions drawn from it (see [32] or [3]).
In other words, the inference procedure must be invariant under
changes of amplitude-scale. For a positive parameter, say, this

kind of invariance is expressed by the well-known (noninforma-
tive) amplitude-scale-invariant Jeffreys’ prior (see
[32] or [3]). Now, our can be positive or negative; the corre-
sponding amplitude-scale-invariant prior is then

(13)

This happens to be an extremely heavy-tailed “density,” thus in
accordance with the expected behavior of wavelet coefficients.
In fact, it is so heavy-tailed that it is improper.3 Notice that
the simple invocation of amplitude-scale invariance leads to a
heavy-tailed prior.

Let us clearly show how this noninformative prior exhibits
amplitude-scale invariance. Say we change the measurement
units (amplitude-scale) in which and all other quantities are
expressed. This defines a new unknown , where is the
constant expressing the change of units/amplitude-scale. Then,
by applying the rule for the change of variable in a pdf to

, we retain the same prior . It is in this sense
that the prior (13) is said to be amplitude-scale-invariant. Other
priors for Bayesian denoising (based on Laplacian, Gaussian
mixture, or other heavy-tailed densities) do not share this in-
variance property, and hence they must be tuned/adapted to the
amplitude-scale of the wavelet coefficients of each particular
signal/image at hand.

IV. HIERARCHICAL/EMPIRICAL BAYES APPROACH

The prior , together with the simple Gaussian
observation model , leads to an improper (non-
integrable)a posterioripdf . This a posterioripdf also
has a singularity at the origin, thus being unclear how to derive a
simple inference rule from it. Consequently, we have to look for
an alternative to a fully Bayesian approach. This alternative is
provided by the identification of a hierarchical Bayesian model
that is equivalent to the prior ; the goal is to facil-
itate the use of an empirical-Bayes-type approach. The equiva-
lent hierarchical model is as follows.

• Each (unknown) coefficient is conditionally zero-mean
Gaussian, with variance , , for
.

• Again, amplitude-scale invariance with respect tois ex-
pressed by the noninformative improper Jeffreys’ (hyper)
prior .

With these assumptions,

(14)

showing that can be decomposed into a continuous
mixture of zero-mean Gaussians, weighted according to the Jef-
freys’ noninformative hyper-prior . Since this
hyper-prior is the limiting case of the conjugate inverse-Gamma
family, the prior is itself a limiting case of a family
of Student- densities [3]. Student-densities are common ro-
bust substitutes for Gaussian priors [32], [3], which have been

3A prior is improper if it is not normalizable (its integral is not finite).
Improper priors are common in Bayesian inference since only the relative
weighting expressed by their shape impacts thea posterioridensity [32], [3].
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used in wavelet-based denoising with specially selected param-
eter settings (see Vidakovic [34]). Our (noninformative) prior
leaves us withno free parameters to adjust.

This hierarchical Bayesian model opens the door to the use of
an empirical-Bayes-type technique [32]; i.e., we break the fully
Bayesian analysis chain as follows:

• First, a variance estimate is obtained with the MAP
criterion based on the marginal likelihood and the
corresponding (amplitude-scale-invariant) Jeffreys’ prior.

• Given , both the MAP and the posterior mean criteria
lead to thewellknownshrinkageestimator, resulting froma
Gaussian likelihood (of variance ) and a prior,

(15)

Notice that this is a nonlinear estimator because, although not
clearly expressed by the notation, depends on .

The MAP estimate of the variance,, is derived as follows.
Since , the marginal likelihood is very simply

, and the corresponding Jeffreys’ prior
is now . Notice that this Jeffreys’ prior
respectsouramplitude-scale-invariancedesideratum.Toseethis,
consider again the change the measurement units expressed by
defininganewvariable .Applyingtherule forachange
of variable to the prior , we obtain ,
which is the same prior, with the noise variance adequately
re-scaled. The resulting MAP estimate ofis

(16)

where stands for “the positive part of,” i.e., , if
, and , if .

Let us also point out another interpretation of the Bayesian
(variance) estimator in (16). Ignoring the function (which
is necessary simply because we are estimatingfrom an esti-
mate of , and the valid parameter space is), this is
an instance of the following problem: giveni.i.d.
observations, , what is the best estimate of the vari-
ance, with the form , in a mean squared
error (MSE) sense? It is known that the value

(in our case, , thus ) yields the
minimum MSE (although biased) estimate of(see [23]). This
coincides with the MAP rule with a Jeffreys’ prior on.

Now, by plugging the estimate (16) into (15), we have our
new nonlinear rule, which we call theamplitude-scale-invariant
Bayes estimator(ABE)

(17)

which is plotted in Fig. 1, together with the classical soft and
hard thresholding functions (for the same threshold value).
Notice how the proposed rule places itself between those two
functions: it is close to the soft rule for small, thus effectively
behaving like a shrinkage rule; it approaches the hard rule

Fig. 1. ABE nonlinearity versus the hard and soft thresholding rules (for the
same threshold).

(and consequently the identity line) for large, avoiding the
undesirable bias incurred with the soft rule.

Computationally, our denoising method is as simple as any
other one that uses some fixed thresholding/shrinkage nonlin-
earity depending on a fixed threshold proportional to the noise
standard deviation (e.g., VisuShrink); that is, the only needed
input is . Remarkably, however, it achieves the performance of
(more computationally demanding) Bayesian methods (see the
experimental results in Section VI) without requiring any tuning
or adaptive estimation of parameters of the prior.

V. RELATION WITH THE NON-NEGATIVE GARROTE

As mentioned in the Introduction, Gao [18] has very recently
proposed the use of the so-called “nonnegative garrote” func-
tion, defined in (3), for wavelet-based denoising. Notice that the
ABE rule [equation (17)] happens to be a “nonnegative garrote”
with a fixed threshold :

In [18], this function is shown to outperform both the hard and
soft nonlinearities when the threshold is optimally selected with
the help of the underlying true function. Gao credits the nonneg-
ative garrote to Breiman [4] who introduced it in the context of
subset selection for regression problems. Brillinger [5] has also
briefly mentioned a similar function [in fact ] as a
possible alternative to the hard and soft rules; according to him,
this nonlinear function had been proposed by Tukey (in unpub-
lished work of 1979), also in a regression context.

Finally, the nonnegative garrote [specifically, ]
also arises naturally in certain cross-validation methods, as
used by Nowak [28] and Nowak and Baraniuk [29].

VI. EXPERIMENTAL RESULTS

A. Signal Denoising

We have evaluated the ABE rule versus the standard
SureShrink and VisuShrink methods (based on soft thresh-
olding), using Donoho and Johnstone’s [12] well known test
signals: “Blocks,” “Doppler,” “HeaviSine,” and “Bumps.” We
have also included in our comparison a Bayesian approach
based on mixture priors (see [10]) which, to our knowledge, is



FIGUEIREDO AND NOWAK: WAVELET-BASED IMAGE ESTIMATION 1327

(a)

(b)

Fig. 2. Input and output SNR for various wavelet denoising schemes applied
to two standard test signals: “blocks” and “Doppler” (wavelets: Daubechies-2
for Blocks, Daubechies-8 for Doppler).

representative of the very best Bayesian methods. Figs. 2 and
3 report the signal-to-noise ratios (SNR) obtained by each of
the methods, based on 100 runs for each original SNR value.
These results show that the ABE rule consistently (for all four
test signals and at all SNR levels) outperforms SureShrink;
this is a remarkable fact because SureShrink is an adaptive
method (more computationally demanding) while the ABE
rule is fixed. With respect the VisuShrink, which has a similar
computational load, ABE achieves far superior results. Finally,
as is also clear in Figs. 2 and 3, the proposed technique performs
comparably (except for HeaviSine at low SNR) with the much
more computationally demanding mixture based method.

Our experimental results allow adding the following conclu-
sions to those of Gao [18]: at least for the signals and SNR
values considered, a nonnegative garrote with a fixed threshold

still beats SureShrink (and also, of course, Vis-
uShrink). This conclusion implies an important practical guide-
line: the ABE method should be used instead of SureShrink. Our
method performs better than SureShrink, and it is much more
computationally efficient.

B. Image Denoising

For image denoising, we have compared the ABE rule versus
the hard, the soft, and the garrote nonlinearities for a range
of threshold values. Fig. 4 shows a mosaic containing the
well-known “Lena” and “Cameraman” images (and two other
images) after being contaminated by noise of standard deviation

(a)

(b)

Fig. 3. Input and output SNR for various wavelet denoising schemes applied
to two standard test signals: “heavisine” and “bumps” (wavelets: Daubechies-8
for HeaviSine, and Daubechies-6 for Bumps).

. Fig. 6 shows the mean squared error achieved by the
hard, soft, and garrote rules, as a function of the respective
threshold values; the horizontal dotted line represents the mean
squared error of the proposed (fixed threshold) ABE. Notice
how the ABE rule achieves lower MSE than both the hard
and soft functions, even when these are allowed to choose
ideal (clairvoyant) thresholds using the underlying true images
(of course, something that in practical situations can not be
done). Concerning the garrote, it is remarkable that the optimal
threshold is found to be which is very close to our
fixed threshold . The resulting denoised images
are shown in Figs. 4 and 5.

The same test was performed for two other values of(10
and 40), and the results are also reported in Fig. 6. Again, our

outperforms both the hard and soft rules, even with
their ideal/clairvoyant thresholds. The garrote rule [of which,
recall, is a particular case] is able to find thresholds
with which it very slightly beats the ABE rule (however, re-
call that these are clairvoyant thresholds that can not be found
in practical situations because they would require access to the
unknown underlying images). Again, the optimal garrote rule
thresholds are very near our fixed level of .

In Mihçak et al. [25], an image denoising method was
proposed which has some similarities with ours. In that paper,
wavelet coefficients are also modeled as zero-mean Gaussian
with unknown variance. The denoising procedure obtains vari-
ance estimates and plugs these estimates in the standard linear
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(a)

(b)

Fig. 4. Noisy image (� = 20) and denoised image produced by the ABE rule
(MSE= 125.2) (wavelet: Daubechies-2).

shrinkage rule [equation (15)]. The main difference between
our method and the one in [25] is that our variance estimates are
obtained independently for each coefficient (under a Jeffreys’
prior), thus leading to a coefficient-wise closed-form estimation
rule, while in [25] the variance estimates are obtained from
small windows around each coefficient. So, in a sense, our
method can be seen as a limit case of the one in [25] with
windows of size 1, thus being even less computationally
demanding. Two variants of the method are studied in [25]:
variance estimates are obtained by the ML criterion, leading to
a scheme calledlocally adaptive window-based denoising using
ML (LAWML); and using MAP variance estimates obtained
under an exponential prior (LAWMAP). Table I shows the
results of our (ABE) rule, in comparison with those reported in
[25] (for the Lena and Barbara images). As expected, due to its
less adaptable nature, and less robust variance estimate (based
on only one coefficient), ABE performs a little worse than
LAWML and LAWMAP (with 3 3 windows), but clearly
better than the hard threshold.

(a)

(b)

Fig. 5. Denoised images produced by the hard (MSE= 155.6) and soft (MSE
= 131.8) rules, with ideal/clairvoyant thresholds, from the noisy image in Fig. 4
(wavelet: Daubechies-2).

VII. B AYESIAN INTERPRETATION OF THEGARROTE

The denoising approach proposed in this paper provides an
empirical Bayes interpretation of the nonnegative garrote esti-
mator. This fact suggests the question: is there any prior
for the wavelet coefficients that leads to the nonnegative garrote
as the true MAP Bayesian estimator (rather than an empirical
Bayes one)? The answer to this question would help shed some
“Bayesian light” on the good performance of the nonnegative
garrote shrinkage rule. It turns out that the answer is positive:
with , and if we assume the prior

(18)
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Fig. 6. MSE achieved by the hard, soft, and garrote rules, as function of threshold value, for three noise standard deviations:� = 20, � = 10, and� = 40

(image of Figs. 4 and 5). The horizontal dotted line shows the MSE obtained by the ABE rule (with its fixed threshold).

TABLE I
PSNR (dB) RESULTS FOR THEABE RULE, LAWML, LAWMAP, AND

HARD THRESHOLDING

(which is not improper, although the normalization constant can
not be obtained in closed form, only numerically), the resulting
MAP estimator of , , is given
by (with corresponding to the esti-
mator proposed in this paper). This can be confirmed by using
the formulation in [20] to “reverse engineer” the nonnegative
garrote shrinkage/thresholding function. It is somewhat odd to
be led to a prior that depends on the noise variance, which is a

Fig. 7. Probability densities given by (18), all fora = 3 and for different
values of� , and Laplacian density.

parameter of the likelihood function (observation model). No-
tice, however, that the use of priors that depend on the likelihood
function is not uncommon, with the Jeffreys prior being an ob-
vious example.

In Fig. 7, we plot as given in (18) for and for three
different values of (0.1, 1, and 5); for comparison, the Lapla-
cian density (which leads to a MAP estimate given by the soft
threshold rule) is also plotted. The prior given by (18) always
exhibits heavier tails than the Lapacian, as is clear in the plots.

A final question is: are the members in the family of densities
defined by (18) good models for wavelet coefficient statistics of
natural images? To answer this question we plot in Fig. 8 the
(normalized) histogram of the wavelet coefficients of the orig-
inal image used in the example of Fig. 4 together with the den-
sity of the form (18) fitted to this histogram via the maximum
likelihood (ML) criterion (parameters: , ). For
comparison, we also plot the best (also in the ML sense)gener-
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Fig. 8. Normalized histogram (solid line) of the wavelet coefficients of the
original image used in the example of Fig. 4 and the density from the family
(18) fitted to it (dashed line). For comparison, the generalized Gaussian density
fitted to this data via the ML criterion is also plotted (dotted line).

alized Gaussian(GG) density, which is a commonly used model
for heavy-tailed distributions [26]. The GG density is defined as

where
shape parameter;
standard deviation;

[where denotes Euler’s
Gamma function].

The parameters resulting from the ML fit are and
. The plot reveals that the best density of the form (18)

fits the histogram slightly better than the best GG density. This
is confirmed by the fact that the normalized maximum likeli-
hood for the density (18) is 0.938, versus 0.948 for the GG
density.

We repeated the experiment with other images obtaining sim-
ilar results. The very close agreement between empirical his-
tograms and the functional of the prior density underlying the
nonnegative garrote rule helps to explain its good performance.
It is also foreseeable that this density can be used to obtain new
wavelet-based coders/quantizers for image compression.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have proposed an empirical-Bayes approach to
wavelet-based image and signal estimation, where a non-
informative (amplitude-scale invariant) prior plays a central
role. A hierarchical/empirical Bayes path lead us to a simple
fixed nonlinear shrinkage/thresholding rule; unlike other
schemes, it has no free parameters requiring tuning or esti-
mation. Tests based on Donoho and Johnstone’s standard test
signals showed that our rule outperforms both VisuShrink and
SureShrink. Moreover, it performs comparably with a recent

approach, based on independent mixture priors [10], which is
representative of the very best Bayesian methods.

Concerning image estimation, we showed that the ABE rule
achieves lower MSE than both the hard and the soft nonlineari-
ties, even when these are allowed to find their ideal/clairvoyant
thresholds using the true original image. The excellent estima-
tion performance of the noninformative approach here described
seems to support the presence a relevant characteristic for nat-
ural image modeling: amplitude-scale invariance. This feature
of natural images means that they contain information at all
amplitude-scales; any model that fails to take this into account
will have to pay the price of adapting to the dominant ampli-
tude-scale features of the particular image in hand, at the ex-
pense of features at other amplitude scales.

We are currently investigating the use of our rule in conjunc-
tion with translation-invariant (TI) denoising schemes [8]; ac-
tually, TI denoising can also be formalized through the use of
noninformative priors [16], [17]. TI schemes mitigate undesir-
able (pseudo-Gibbsor blocking) artifacts and improve the per-
formance of all methods considered above, with the ranking of
their relative performances being approximately unchanged.
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