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Abstract—This paper describes a new approach to adaptive
estimation of parametric deformable contours based on B-spline
representations. The problem is formulated in a statistical
framework with the likelihood function being derived from a re-
gion-based image model. The parameters of the image model, the
contour parameters, and the B-spline parameterization order (i.e.,
the number of control points) are all considered unknown. The
parameterization order is estimated via a minimum description
length (MDL) type criterion. A deterministic iterative algorithm is
developed to implement the derived contour estimation criterion.
The result is an unsupervised parametric deformable contour: it
adapts its degree of smoothness/complexity (number of control
points) and it also estimates the observation (image) model
parameters. The experiments reported in the paper, performed
on synthetic and real (medical) images, confirm the adequacy and
good performance of the approach.

Index Terms—B-splines, counter estimation, deformable con-
tours, image segmentation, minimum description length, snakes.

I. INTRODUCTION

I MAGE segmentation and contour estimation are among the
most challenging, important, and frequently addressed fun-

damental problems in image analysis. When no assumptions are
made about the morphology of the objects/regions to be esti-
mated, we have animage segmentationproblem, in the common
usage of the term. When the problem is more confined to that of
finding some individual image region, it is commonly referred
to ascontour estimation; a typical example is organ boundary
location in medical images.

A. Snakes and Related Approaches

Rooted in the seminal work [30],snakes(or active contours)
and their descendants constitute the most often used class of
approaches to smooth boundary estimation. As originally pro-
posed [30], a snake is a virtual object(living on the image
plane) which can deform elastically (thus possessinginternal
energy, and which is immersed in a potential field (thus
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havingexternal/potentialenergy, which is a func-
tion of certain features of the image The equilibrium (min-
imal total energy) configuration

(1)

is a compromise betweensmoothness(enforced by the elastic
nature of the model) and proximity to the desired image features
(by action of the external potential).

Several drawbacks of conventionalsnakes, such as their “my-
opia” (i.e., use of image data strictly along the boundary), have
stimulated a great amount of research; although most limitations
of the original formulation have been successfully addressed
(see, e.g., [6], [9], [10], [34], [38], [43], [49], and [52]), non-
adaptiveness (in the sense that some or all parameters have to
be seta priori) remains to be solved.

B. Deformable Templates/Models

In parametrically deformable models and templates, as used
for contour estimation, the contour itself, or deformations ap-
plied to a given template, are parametrically described [25],
[50]. Techniques used include Fourier descriptors [22], [28],
[46], spline models [1], [31], [35], [44], wavelets [7], and poly-
gons [29] (see a recent review in [27]). The parametric approach
contrasts with the explicit, i.e., nonparametric, contour descrip-
tions used in snakes. By using low-order parameterizations, the
possible shapes may be implicitly placed under some regularity
constraint; this allows dropping the (snake-type) internal energy
term and formulating contour location as a parameter estimation
problem. For example, a few low-order Fourier coefficients can
only describe smooth curves [22], [46]. However, as in snakes,
one of the main difficulties of these techniques is their lack of
adaptiveness; namely, the order of the parameterization has to
be specifieda priori.

C. Bayesian Viewpoint

It is commonly stated that, from a Bayesian perspective,
snakes are interpretable asmaximum a posteriori(MAP)
contour estimators, where the internal and external energies
are associated with thea priori probability function (orprior)
and the likelihood function (observation model), respectively
[18], [47]. The same is true for deformable templates where
the prior biases the estimate toward the template shape [25],
[28], [36], [46]. As referred above, in deformable models it
is possible not to include a deformation energy (i.e., a prior,
from the Bayesian viewpoint) when the parameterization itself
guarantees regularity/smoothness of the represented shape.

1057–7149/00$10.00 © 2000 IEEE
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However, amaximum likelihood(ML) estimation interpretation
is still valid, since this can be seen as a limiting case of the MAP
criterion with a uniform prior on the set of valid parameter
values.

Formally, let be the contour to be estimated on the observed
image (a array of gray levels). A Bayesian approach
requires the following steps:

1) specification of a prior capturinga priori informa-
tion/constraints on ;

2) derivation of a likelihood function modeling the
observed image conditioned on the true contour;

3) specification of aloss function measuring how
much loss is incurred by an estimate when the true
contour is in fact

Once these elements are in place, an optimal Bayes rule is the
function of the data (called an estimator, and denoted that
minimizes thea posterioriexpected loss (see, e.g., [42])

(2)

where is thea posterioriprobability density function ob-
tained via Bayes law A particular
choice of loss function leads to the well known maximuma pos-
teriori (MAP) rule If the prior and
the likelihood are written as

(3)

(4)

(where the ’s are normalizing constants) then, the MAP esti-
mator can be written as (1)

(5)

if and only if is a constant. In other words, this simple
equivalence between the energy-minimization formulation and
a MAP criterion is only possible if the normalizing constant
of the likelihood function does not depend onThis crucial
condition is usually not mentioned.

The Bayesian interpretation gives meaning to all the involved
entities, e.g., the form of the (external) energy term that links
the contour with the image contents (i.e., the likelihood func-
tion, in Bayesian terms) can be derived from knowledge about
the observation model rather than simply from common sense
arguments [15], [18]. The main difficulty in this approach is still
the choice of the parameters involved in the definition of thea
priori probability function and of the observation model.

D. Optimization Problem

Regardless of their theoretical/conceptual interpretation,
both classicalsnake-type approaches and deformable tem-
plates/models lead to difficult optimization problems for
which several computational techniques have been proposed:
deterministic iterative schemes [18], [30] (see [9], for a com-
prehensive and integrative review); dynamic programming [2],

[15], [19], [24]; multi-resolution algorithms [15], [24], [28];
and stochastic methods [3], [25], [29], [47].

E. Proposed Approach

In this paper, we propose an adaptive contour estimation
strategy based on parametrically deformable models. Our main
goal is an unsupervised technique which does not require any
kind of parameter adjustment by the user.

Although other choices do fit well in our formulation (e.g.,
Fourier descriptors, see [22]) this paper considers only B-spline
representations since they are paradigmatic of the proposed ap-
proach. The problem is formulated in a statistical estimation
framework, with the contour parameters and the observation
model parameters all being considered unknown. A key issue
arising in parametric contour descriptions is the choice of the pa-
rameterization order, e.g., the number of spline control points, or
the number of coefficients in Fourier descriptors. In less formal
terms, this problem can be restated as: how smooth, or how com-
plex, should the contour be? This model order selection problem
is an instance of the underfitting/overfitting tradeoff, present
in many pattern recognition and image analysis problems [39];
briefly, if the selected order is too low, the model will not be able
to represent the underlying shape (underfitting), if the order is
too high, the representation will fit irrelevant (noisy) features
(overfitting). We address this problem by using aminimum de-
scription length(MDL) type criterion. MDL is a criterion due
to Rissanen [40], based on coding theoretical considerations; al-
though it was not conceived within a Bayesian framework, MDL
can be interpreted as corresponding to the adoption of a certain
prior [12]. Recently, MDL-type criteria have been successfully
used for several problems in computer vision and image pro-
cessing (see [20] and references therein).

Concerning the likelihood function (image model) from
which the parameters (i.e., the contour) are to be estimated, we
adopt aregion-basedapproach [18], [43], [52]. This means that
the likelihood function of the contour position depends on all
the image data (split into inner and outer regions), not just on a
narrow stripe along the contour (as insnakes). This approach is
adequate to situations where gradients do not make sense (e.g.,
inner and outer regions with the same mean). Moreover, by
using all the image, this approach is robust against any small
local artifacts that, if having high gradients, can strongly attract
classical snakes.

The resulting contour estimation criterion is implemented via
an iterative deterministic scheme. User intervention is limited to
providing an initial contour; as will be shown in the examples,
the adopted region-based model is very robust with respect to
the initialization which may even be far from the final estimate.

To our knowledge, this is the first/only fully unsupervised
(with respect to parameter adjustments) formulation for the
problem of deformable boundary location.

II. B-SPLINE CONTOUR DESCRIPTORS

Splines are a widely used function approximation tool [13],
[16]. In particular, they have been used in computer graphics
and, more recently, in computer vision and image analysis;



FIGUEIREDOet al.: UNSUPERVISED CONTOUR REPRESENTATION AND ESTIMATION 1077

spline representations of curves/contours were addressed in
[1], [5], [8], [9], [23], [35], and [45].

For the sake of self-containedness and clarity, we now present
a brief review of splines and B-splines; for a more detailed ac-
count, see [13] and [16].

A. Splines, B-Splines, and Closed Curves

Let be the set
of so-calledknots.1 By definition, spline functions are polyno-
mial inside each interval and exhibit a certain degree
(say ) of continuity at the knots. The set of all splines on

which are continuous at the knots is a linear
space of dimension The set of so-called B-splines,
denoted constitute a basis
(though a nonorthogonal one) for this linear space. Accordingly,
each spline in this space has a unique representation (where

is a set of coefficients/weights)

(6)

The B-splines are nonnegative, and verify the
so-calledpartition of the unityproperty

for (7)

Planar curves are simply the version of (6)

(8)

where the are now points in called con-
trol points. To describe closed curves, the periodic extension of
the knot sequence, with is defined
[23]. The basis functions also have to be periodic [23], which is
achieved by defining the periodic expansions

(9)

which still verify (7). A -knots closed spline curve is then a
periodic function (of period representable as

a linear combination of periodic basis functions

(10)

In computer graphics and image analysis, it is common to
use or [17]. In all the examples presented below,
cubic B-splines will be used (and we will drop the su-
perscript nevertheless, everything is valid for any Also,
we will only address the periodic case, which is the one of in-
terest for boundary representation.

B. Discrete Contours

A discretized spline curve (a contour on a digital image) is
a set of equispaced samples of collected as a

-vector

(11)

1For simplicity, in this paper we exclude the possibility of multiple knots; see,
e.g., [16] for the consequences of this option.

where we assume that (usually, and

for
If we let the coordinates of the control points be arranged

into a parameter vector
where subscript is used to emphasize that there arecon-
trol points, the discretized closed splinecan be obtained by a
matrix product

and (12)

where the elements of are given by
In the absence of constraints on the control

points, the set of all splines withcontrol points and a given set
of basis functions (i.e., a given set of knots) is a linear space: the
range of matrix

C. B-Spline Fitting: 1-D Case with Known Knots

Consider the set of pairs
and consider the problem of finding the periodic spline (of a
certain degree on a given periodic set of knots

with usually that best fits
this set. Since the knots are known, a set ofperiodic B-splines
can be defined, and the elements
of the matrix computed. The unknown spline can
then be described as a linear combination of these B-splines
and so the problem is that of finding the corresponding weights

With the usual least
squares criterion leads to

(13)

where is thepseudo-inverseof Notice that the null-
space of is and, because all its columns
are linearly independent, is invertible. The vector of
fitted spline values, at the same coordinates
denoted is

(14)

where is the projection matrix. That is,
is the projection of onto the ( -dimensional) range space of

D. B-Spline Fitting: 2-D Case with Known Number of Control
Points

Now consider the situation where points on the image
plane are given

...
...

...
...

(15)

and the spline (described on a-dimensional B-spline basis,
with given ) that best fits them is sought; however, two key
elements are missing: 1) the values of the’s to which the ’s
and the ’s correspond, which are necessary to build matrix
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and 2) the knots, which are also indispensable in com-
puting Of the proposed strategies to address these issues
(e.g., [8], [17], [26]), we adopt the simplest one,uniform as-
signment: for and for

Of course, it would be more interesting to
consider thefree-knot problem, i.e., to estimate the knot loca-
tions; however, this is a much harder problem to which there
currently exists no general optimal solution [37], though there
are several proposed practical techniques [16], [17], [26].

Summarizing, given a vector with data points and a
choice for matrix (which, with auniform assignment,
only depends on and ) can be built and its pseudo-inverse

computed. The estimated control points are then given by

(16)

Finally, the discretized spline curve corresponding to the
estimated control points is given by

III. ESTIMATING THE NUMBER OF CONTROL POINTS

It is well known that least squares fitting is equivalent to
maximum likelihood (ML) estimation when the observations
are modeled as being perturbed by white Gaussian noise.
Specifically, let the observations and be independent
white Gaussian noise contaminated versions of
and with variances and respectively; i.e.,

where

Then, the ML estimate of is

(17)

as in (16) (see also (13). Notice that the estimatesand
do not depend on and

A. MDL Criterion

To estimate we adopt aminimum description length(MDL)
criterion [40], adapted to the current problem. The first key ob-
servation behind MDL-type criteria is that looking for an ML
estimate is equivalent to looking for the Shannon code for which
the observations have the shortest code-length [40]; this is be-
cause Shannon’s optimal code-length,2 for data obeying a
probability density function is simply [11],
[40]

(18)

2In bits ornats, respectively, if base-2 or natural logarithms are used [11].

It can be claimed that only discrete data have finite code-lengths,
with a Gaussian density not being allowed here. However, as
argued in [41], finite values may be obtained by discretizing
a density to an arbitrary precision; a loose usage of the term
“code-length” is convenient and harmless.

The second fundamental fact is that the parameters them-
selves are also part of the code, in the following sense: a code
word representing can not be decoded by itself; only full
knowledge of (i.e., of its parameters) allows
reconstructing the code and respective decoder. Accordingly,
the MDL criterion states that the description code-length to be
minimized by the estimate must include not only the data code-
length but also the code-lengths of the parameters.

In our case, the joint MDL estimate ofand which we
will denote by is then

(19)

where and
is the parameters description length. Notice

that, unlike the ML estimate of for fixed does
depend on and this justifying why they were ex-
plicitly included as unknowns. Furthermore, we will write

i.e., we assume that and have
constant description lengths which can be dropped from (19).
Now, since, for a given the minima w.r.t. and do not
depend on and we can write

(20)

After some simple manipulation, we obtain

(21)

where and are the residual error variances (which
are functions of )

Since matrix is fully specified by and from we also

immediately obtain and

B. Parameter Description Length

Specifying is a crucial aspect of MDL criteria. The
commonly used is an asymptotically (large
sample) optimal value, valid for (real) parameters that depend
on all the data values [40]. Since this is not true for B-spline
control points, we propose what may be described as thenatural
code-length for discrete contours.

Let be a finite precision version of

and let and
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be the associated error vectors. The error between the curve rep-
resented by vector and
the exact one is, by linearity

and (22)

Now, let be the maximal absolute error allowed in any of the
coordinates of the contour, i.e., let us impose that3

and that In view of (22), it is clear that

(23)

(24)

Since is a discrete curve, is the natural choice. Con-
cerning invoking thepartition of the unityproperty
(7), and the positivity of the B-splines, leads to

It is also clear that if all the control points are inside the
image plane, then, will also be inside the image plane (a spline
is inside the convex hull of its control points [17]). Accordingly

(25)

The final estimation criterion, obtained by inserting
into (21), has the following intuitively reasonable

features:

1) for given and increasing decreases

but increases forcing an
MDL-typical compromise between these two terms;

2) larger (more data) gives more relative weight to the
error variance, i.e. more control points will be allowed;

3) when the coordinate ranges and/or increase, the
variance term receives a smaller relative weight, i.e.
smaller fitting precision is imposed.

This last property, which at first sight may look strange, does
make sense if one admits that the same data points, on a larger
image, are relatively less meaningful and can then be fitted with
less precision; in other words, we are talking about relative, and
not absolute, precision. Anyway, notice that this effect is very
weak; because it appears inside a logarithm, only orders of mag-
nitude changes in the product will have a strong influence
on the result.

It is well known that MDL-type criteria can be interpreted
under a Bayesian perspective [12], [40]. Equation (19) can be
seen as a MAP estimator

(26)

3Here,kuk is thel vector norm,kuk = max ju j; the induced matrix
norm iskB k = max j[B ] j:

Fig. 1. Hand-drawn points (marked “�”), estimated spline (solid line), and
control points (small circles).

Fig. 2. Plots of the description length (minimum at 21) and error variance
(relative to Fig. 1).

with the prior

(27)

This prior can be interpreted as a (parametric) “smoothing-type”
prior which favors “simpler” (in the sense of having fewer con-
trol points) contours. Another prior for the number of B-spline
knots was proposed in [8].

C. Some Examples

Adaptive spline fitting, although not our final goal, is an im-
portant problem in itself. Moreover, to the authors’ knowledge,
there exist no published automatic general criteria to determine
the optimal number of knots. Accordingly, we present now a few
examples. Figs. 1 and 3 show two sets of data points (“”), the
fitted splines (solid lines) and the corresponding control points
(small circles). The evolution of the error variances (we plot

and the description lengths as functions of
are shown in Figs. 2 and 4; notice that, the first shape, being

more complex, requires more control points than the
second one In Fig. 5, the data from Fig. 1 was per-
turbed with additive noise; as a result, a smaller number of con-
trol points was found optimal; this shows that the criterion is
able to distinguish intrinsic curve complexity from noisy data,
thus behaving as an adaptive smoother.
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Fig. 3. Hand-drawn points (marked “�”), estimated spline (solid line), and
control points (small circles).

Fig. 4. Plots of the description length (minimum at 7) and error variance
(relative to Fig. 3).

Fig. 5. Noise contaminated points (marked “�”), estimated spline (solid line),
and control points (small circles); see text for comment.

IV. CONTOUR ESTIMATION

We will now address our main problem: contour estimation,
not from a set of points, but from an observed image. To do so,
we need an image model (or observation model), i.e., a proba-
bilistic formulation of how the observed image is related to the
underlying contour. In this paper, we adopt region-based models
for two types of reasons. First, we have medical imaging appli-

cations in mind, and region based models are known to be ro-
bust with respect to local artifacts and poor image quality. Sec-
ondly, region-based models allow an easy derivation of the like-
lihood function, which is a main ingredient of our formulation.
Of course it is also possible to write models and derive likeli-
hood functions for other (e.g., gradient-based) approaches.

A. Observation Model

Let the observed image(a array of gray levels)
be a random function of an ideal (in the sense of [25]) object
whose (closed) boundary is a discretized uni-
form periodic spline, with and both unknown. An image
observation model is, in probabilistic terms, a likelihood func-
tion where the image plays the role of observed
data, while the control points play the role of unknown param-
eters; other parameters characterizing the observation mecha-
nism, which we will also consider unknown, are collected into
vector Although other choices would be possible, let us con-
sider the region-based model characterized by the two following
hypotheses:

1) Conditional Independence:Given the contour, the image
pixels are independently distributed.

2) Region Homogeneity:The conditional probability func-
tion of each pixel depends only on whether it belongs to the in-
side or outside region of the contour, i.e., all pixels inside (resp.
outside) have a common distribution characterized by a param-
eter vector (resp. with From these
assumptions, the likelihood function is

(28)

with and denoting the value of pixel
while and are, respectively, the inside and outside
regions of contour Finally, and
are the pixel-wise probability functions, of the inner and outer
regions, respectively. Notice that there is no guarantee that the
normalizing constant of if written as in (4), does not
depend on

The conditional independence assumption leads to a simple
expression for the joint probability of all the image pixels. For
other region models, such as the inner and outer regions being
characterized by two different textures, exact expressions for the
joint probability are, in general, very difficult or even impos-
sible to obtain. In those situations, one may resort to approxi-
mations, with obvious candidates being the mean field approxi-
mation (see, e.g., [51] and references therein), the pseudo-likeli-
hood approximation [4], [20], or the technique proposed in [48].
However, notice that this is not a fundamental limitation of our
approach, but just a computational/implementation issue.

B. Complete Estimation Criterion

Any unsupervised scheme has to estimate, from the observed
image not only the number of control points and their po-
sitions but also the observation parametersCombining
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Fig. 6. Example with synthetic image; evolution of the contour shape for
several numbers of control points 5, 8, 10, and 11 (chosen estimate). The
dashed line is the initial contour.

Fig. 7. Evolution of the description length for the example of Fig. 6.

the likelihood function in (28) with the MDL criterion derived
above yields

As in the previous section, this minimization can be rearranged
into a nested pair of minimizations

(29)

however, unlike in the fitting problem studied above, the inner
joint maximization is not simple and can not be split and ana-
lytically solved. We postpone this issue to the following subsec-
tions simply by denoting the result, necessarily a function of
and as With this notation

(30)

Once this minimization problem is solved, bothand will
be natural byproducts.

Fig. 8. Synthetic image (same mean, different variances) and estimated
contour (see text for parameter values). The dashed line is the user-provided
initial contour.

Fig. 9. Evolutions of the description length for the example of Fig. 8.

V. ALGORITHMS

We address the minimization in (29) with a three-level hier-
archical scheme of nested algorithms: the inner scheme (Algo-
rithm 1) solves w.r.t. with and fixed; Algorithm 1 is
then used by Algorithm 2 to solve w.r.t. both and still
with held constant. Finally, the solution w.r.t.is found by
exhaustive search over a range of values.

A. Algorithm 1: Solving for given and

Our first building block implements the inner maximization
in (29) for fixed and The maximization w.r.t. can be
rewritten as a constrained maximization with respect to

solution of
subject to:

(31)

where is the range space of , i.e., the search is con-
strained to those contours that can be written as
for some To solve it, we use a form of thegradient projec-
tion method (i.e.,gradient ascentwhere each gradient is pro-
jected onto the constraint space [33]), also related to the itera-
tive techniques considered in [9]. A description of the algorithm
follows.
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Fig. 10. Example with a real (magnetic resonance) image; the task is to find the boundary of thecorpus callosum.We show estimates for 6, 8, 10, 12, 14, and 16
(the chosen number) control points. As above, the dashed line is the initial contour.

Algorithm 1
Inputs: and an initial valid contour
Output: a contour estimate

Step 0:Build and compute Let
Step 1:Compute the gradient with respect to the contour

(32)

Step 2:Update the contour estimate according to
i.e., taking a step in the direction of the

projection of the gradient onto parameter controls
the step-size.
Step 3: If a stopping criterion is met, stop and output

if not, increment and go back to Step 1.

The gradient w.r.t. the contour coordinates (Step 1), since these
are (integer) pixel locations, is approximated by discrete differ-
ences. It can be shown that this gradient is normal to the contour
[52]; this fact can be used to speed up the computations. Param-
eter should be kept small to avoid instabilities near the minima.

B. Solving for and with fixed

To implement this joint maximization, we use an iterative es-
timation/maximization scheme having Algorithm 1 as one of its

steps. Although resembling theexpectation–maximization(EM)
algorithm [14], notice that this is not an EM algorithm. More-
over, it is not guaranteed to converge to a joint global maximum.
This type of schemes have been used by several authors, in dif-
ferent areas, under different names; see, e.g., theadaptive seg-
mentation algorithmin [32], or adaptive versions of theiterated
conditional modes(ICM) algorithm [4], [18]. Formally, the al-
gorithm is as follows.

Algorithm 2
Inputs: and an initial valid contour
Outputs: estimates and

Step 0:Let
Step 1: Given compute the ML estimate

according to

(33)

(34)
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Fig. 11. Evolution of the description length corresponding to the example in
Fig. 10.

Step 2:Run Algorithm 1, providing and as in-
puts. The output is an updated contour estimate (which
is still in by construction of Algorithm 1).
Step 3: If some stopping criterion is met, stop, and provide

as outputs and otherwise, increment
and return to Step 1.

The particular form of (33) and (34) depends on the image
model. In the experiments presented in this paper, we will
assume the two following image models:

1) Gaussian: All pixels are independent and Gaussian dis-
tributed with means and and variances and
for the inside and outside regions, respectively. In this case,

andStep 1consists simply
of computing the (inside and outside) sample mean and variance
(which are the ML estimates).

2) Rayleigh: In this case, which adequately models ultra-
sound images [15], the pixels are Rayleigh distributed. For the
inside pixels, we have

(35)

and a similar expression (with for the outside. The pa-
rameter vector is now whose ML estimates are
simply one half of the sample means of squares [15].

We are also now in a position to obtain particular expressions
for the function

(36)

which, of course, depend on the particular image model being
adopted. For both the Gaussian and Rayleigh image models, the
result is the same (up to an additive constant) and given by

where and are, respectively, the number of
image pixels inside and outside the estimated contour.

C. Solving with Respect to

Finally, the full scheme simply proceeds as follows. For each
in a given set run Algo-

Fig. 12. Three other examples on magnetic resonance brain images; the
estimated numbers of control points are indicated in the figures.

rithm 2 using each obtained contour estimate to initialize the
next run (of course, an initial estimate is needed for the first
run) and storing the output estimates. With these, we compute

for and find the minimum
with respect to , i.e.,

for

Although this exhaustive search may seem inefficient, on a Pen-
tium-II (300 MHz) personal computer, the complete algorithm
usually takes less than 1 min.

VI. EXPERIMENTS

The first two examples (Figs. 6–9) use synthetic images
obeying the Gaussian model above defined. In Fig. 6, the inner
and outer regions have the same variance
but different means The initial
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Fig. 13. Three more examples, now with cardiac MR images. The estimated
number of control points are indicated in the figures.

contour provided by the user is represented by a dashed line,
while the final estimates, for each value of are drawn as
solid lines. Contour estimates for five, eight, ten, and 11 control
points are shown, revealing that the algorithm adequately chose

the smallest number of control points that is enough
to represent the contour shape; more control points would be
clearly unnecessary. The evolution of the description length
as a function of the number of control points is plotted in
Fig. 7. The image model parameter estimates obtained were

and
whose closeness to the true values also testifies for the good
performance of the method.

In the example of Fig. 8, the inner and outer regions have
the same mean but different variances

The description length evolution (with
minimum for is plotted in Fig. 9. The final parameter

Fig. 14. Two examples on real (ultrasound) images: (top) a cardiac (left
ventricle) image and (bottom) an intravascular image.

estimates are
again very close to the true values. Notice that in

this example the initial contour is outside the true contour, and
still the correct solution is obtained.

The next example considers the task of estimating the contour
of the corpus callosumon a magnetic resonance (MR) brain
image. Fig. 10 displays the evolution of the contour estimate
(again, the initialization is shown as a dashed line) for increasing
values of (6, 8, 10, 12, 14, and 16). As shown in Fig. 11, the
minimum of the description length corresponds to

Figs. 12 and 13 show six more examples on real medical im-
ages (all using the Gaussian regions model). Notice how, even
with nonhomogeneous regions (specially the outer ones), the
obtained contours are excellent. The final pair of examples (in
Fig. 14) deal with ultrasound data: one cardiac (left ventricle)
image and an intravascular image. Here the Rayleigh model was
used.

It is important to stress the fact that, in all the previous exam-
ples, the exact same algorithm was applied (apart from the selec-
tion of the Rayleigh model for the ultrasound images) without
any parameter tuning (in fact, there are no parameters to tune).
These examples also testify for the robustness of our method
against poor initializations. The key factor controlling the suc-
cess of a given initial contour is the resulting initial parameter
estimate; more precisely, the first estimate ofmust be such that
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Fig. 15. Outlining thecorpus callosumin a MR brain image. The first five cases are successful estimates from very different initializations, while the last one
failed due to inappropriate initialization (as explained in the text).

the likelihood function will pull the contour in the right direc-
tion. In the absence of model mismatch (i.e., if the image really
follows the assumed model), a good initial contour is one whose
inside shares a larger area with the inside of the true contour than
with its outside; in this way, initial parameter estimates will re-
spect the order relations between the true parameters (e.g., if

the same should be true for their first estimates)
and the contour will move in the right direction. Of course real
(medical) images do not exactly follow the region-based model,
namely the outside regions tend to be somewhat nonhomoge-
neous, and the initialization may be more problematic. For prac-
tical applications (and in all the examples presented), the user
indicates a point inside the boundary and the algorithm is initial-
ized with a small contour around that point (which is guaranteed
to be completely inside the inner region). In Fig. 15, we illus-
trate the robustness of our method with respect to initialization
using the MR image from Fig. 10; we show five successful con-
tour estimates from five very different initializations. Still, in
Fig. 15, we present an example of a wrong estimate due to the
fact that the initial contour had more overlap with the external
region than with the inner one (as mentioned above).

We do not report comparisons of our method versus other de-
formable contour estimation schemes since we are not claiming
that our approach achieves estimates that other methods can not.
We are simply stating that we can do it in an unsupervised way
and with a high degree of robustness with respect to initializa-
tion. For example, we have tried the method proposed in [49],4

which is representative of the state of the art in snake-type
methods, with most of the images considered in this paper (a
notable exception in the one in Fig. 8, for which gradient based
methods do not work). In most tests, that method was able to
find good contour estimates, at the cost of careful tuning of the
involved parameters (which are at least three, and in
the notation of [49], controlling aspects like the resistance of
the contour to stretching and bending, and the relative weight
of the internal and external forces); some images require stiffer
contours, while some others demand more flexible ones, etc. In
contrast, as already mentioned above, our method found all the
contours in a totally unsupervised manner (apart from initializa-
tion) without any tuning or parameter adjustments.

4Available at http://iacl.ece.jhu.edu/projects/gvf.
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VII. CONCLUDING REMARKS

This paper described a new approach to unsupervised smooth
contour estimation based on a new adaptive B-spline representa-
tion. All the model parameters are considered unknown and esti-
mated from the observed image. Examples presented, using syn-
thetic and real (medical) images, showed the ability of the pro-
posed method to estimate contours in an unsupervised manner,
i.e., adapting to unknown shape and observation parameters.
With the synthetic images, the good match between the esti-
mated and the true parameters also shows the good performance
of the approach.
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