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Unsupervised Contour Representation and Estimation
Using B-Splines and a Minimum Description
Length Criterion
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Abstract—This paper describes a new approach to adaptive havingexternal/potentiaenergy,F..:(v,I)) which is a func-

estimation of parametric deformable contours based on B-spline tion of certain features of the imade The equilibrium (min-
representations. The problem is formulated in a statistical imal total energy) configuration

framework with the likelihood function being derived from a re-

gion-based image model. The parameters of the image model, the v* = argmin{ Eiy (v) + Eex (v, 1)} Q)

contour parameters, and the B-spline parameterization order (i.e., . . v .

the number of control points) are all considered unknown. The IS @ compromise betweesmoothnesg¢enforced by the elastic

parameterization order is estimated via a minimum description nature of the model) and proximity to the desired image features

length (MDL) type criterion. A de_terministic iteratiye a.lgorithm is (by action of the external potential).

developed to implement the derived contour estimation criterion. Several drawbacks of conventiorsaiakessuch as their “my-

The result is an unsupervised parametric deformable contour: it A, . .

adapts its degree of smoothness/complexity (number of control OF"a (i-e., use of image data strictly along the bounda_ry), h_ave

points) and it also estimates the observation (image) model Stimulated a greatamount of research; although most limitations

parameters. The experiments reported in the paper, performed of the original formulation have been successfully addressed

on synthetic and real (medical) images, confirm the adequacy and (see, e.g., [6], [9], [10], [34], [38], [43], [49], and [52]), non-

good performance of the approach. adaptiveness (in the sense that some or all parameters have to
Index Terms—B-splines, counter estimation, deformable con- pe seta priori) remains to be solved.

tours, image segmentation, minimum description length, snakes.

B. Deformable Templates/Models

|. INTRODUCTION In parametrically deformable models and templates, as used
. S Lor contour estimation, the contour itself, or deformations ap-
MAGE segmentation and contour estimation are among t : . .
ied to a given template, are parametrically described [25],

most challenging, important, and frequently addressed f 0]. Techniques used include Fourier descriptors [22], [28],

damental problems in image analysis. When no assumptions gr * spline models [1], [31], [35], [44], wavelets [7], and poly-

made about the morphology of the objects/regions to be esti- e )
mated. we have dmage seggrzentatiqwoijlem inq[he common 90NS [29] (see arecent review in [27]). The parametric approach

usage of the term. When the problem is more confined to thatcoqntrasts V\."th the explicit, €., nonparametric, contqur (_jescnp—
o M . C fjons used in snakes. By using low-order parameterizations, the
finding some individual image region, it is commonly referred

L ) . ossible shapes may be implicitly placed under some regularity
to ascontour estimationa typical example is organ boundar S . .
o S constraint; this allows dropping the (snake-type) internal energy
location in medical images.

term and formulating contour location as a parameter estimation
A. Snakes and Related Approaches problem. For example, a few low-order Fourier coefficients can

. . ) only describe smooth curves [22], [46]. However, as in snakes,
Rooted in the seminal work [30§nakegor active contours ¢ of the main difficulties of these techniques is their lack of

and their descendants constitute the most often used clasg @ tiveness; namely, the order of the parameterization has to
approaches to smooth boundary estimation. As originally PR specifieca priori

posed [30], a snake is a virtual objeet(living on the image
plane) which can deform elastically (thus possessmemnal C. Bayesian Viewpoint

energy E,,:(v)) and which isimmersed in a potential field (thus It is commonly stated that, from a Bayesian perspective,

snakes are interpretable asaximum a posteriori(MAP)
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However, anaximum likelihoodML) estimation interpretation [15], [19], [24]; multi-resolution algorithms [15], [24], [28];
is still valid, since this can be seen as a limiting case of the MAdhd stochastic methods [3], [25], [29], [47].
criterion with a uniform prior on the set of valid parameter
values. _ E. Proposed Approach
Formally, letv be the contour to be estimated on the observed

imagel (aw, x w, array of gray levels). A Bayesian approach In this paper, we propose an adaptive contour estimation
requires the following steps: strategy based on parametrically deformable models. Our main

T : . Lo goal is an unsupervised technique which does not require any
1) specification of a priop(v) capturinga priori informa- . .
i . ] kind of parameter adjustment by the user.
tion/constraints orv; ) ) . :
L o . . Although other choices do fit well in our formulation (e.g.,
2) derivation of a likelihood function(T|v) modeling the Fourier descriptors, see [22]) this paper considers only B-spline
observed image conditioned on the true contour; ptors, pap y 5-Sp

3) specification of doss functionZ(v, v') measuring how representations since they are paradigmatic of the proposed ap-
much loss is incurred by an esti’maté when the true proach. The problem is formulated in a statistical estimation

. framework, with the contour parameters and the observation
contour is in factv.

. ) . model parameters all being considered unknown. A key issue
Once these elements are in place, an optimal Bayes rule is fag in parametric contour descriptions is the choice of the pa-

function of the data (called an estimator, and denetdd) that ;1 eterization order, e.g., the number of spline control points, or
minimizes thea posterioriexpected loss (see, e.g., [42]) the number of coefficients in Fourier descriptors. In less formal
A ) terms, this problem can be restated as: how smooth, or how com-
V(I) = arg 1L /L(Vv vOp(v(T) dv (2)  plex, should the contour be? This model order selection problem
is an instance of the underfitting/overfitting tradeoff, present
wherep(v|I) is thea posterioriprobability density function ob- in many pattern recognition and image analysis problems [39];
tained via Bayes law(v|I) = p(I|v)p(v)/p(I). A particular priefly, if the selected order is too low, the model will not be able
choice of loss function leads to the well known maximapos-  to represent the underlying shape (underfitting), if the order is
teriori (MAP) rule ¥xiap = arg max, p(v|[I). If the prior and too high, the representation will fit irrelevant (noisy) features

the likelihood are written as (overfitting). We address this problem by usingiaimum de-
1 maw scription length(MDL) type criterion. MDL is a criterion due
p(v) = L C ()  toRissanen [40], based on coding theoretical considerations; al-
' 1 By D) though it was not conceived within a Bayesian framework, MDL
p(Iv) = Zex(V) em e (4 canbe interpreted as corresponding to the adoption of a certain

o prior [12]. Recently, MDL-type criteria have been successfully
(where theZ’s are normalizing constants) then, the MAP estigsed for several problems in computer vision and image pro-

mator can be written as (1) cessing (see [20] and references therein).
. Concerning the likelihood function (image model) from
Vaap = argmax{p(I[v)p(v)} which the parameters (i.e., the contour) are to be estimated, we
= argmin{ Eit (V) + Fexi (v, )} (5) adoptaegion-baseapproach [18], [43], [52]. This means that

the likelihood function of the contour position depends on all

if and only if Z..(v) is a constant. In other words, this simplehe image data (split into inner and outer regions), not just on a
equivalence between the energy-minimization formulation amérrow stripe along the contour (assnake This approach is
a MAP criterion is only possible if the normalizing constanadequate to situations where gradients do not make sense (e.g.,
of the likelihood function does not depend en This crucial inner and outer regions with the same mean). Moreover, by
condition is usually not mentioned. using all the image, this approach is robust against any small

The Bayesian interpretation gives meaning to all the involvédcal artifacts that, if having high gradients, can strongly attract
entities, e.g., the form of the (external) energy term that linkdassical snakes.
the contour with the image contents (i.e., the likelihood func- The resulting contour estimation criterion is implemented via
tion, in Bayesian terms) can be derived from knowledge abaa iterative deterministic scheme. User intervention is limited to
the observation model rather than simply from common senseviding an initial contour; as will be shown in the examples,
arguments [15], [18]. The main difficulty in this approach is stilthe adopted region-based model is very robust with respect to
the choice of the parameters involved in the definition ofahethe initialization which may even be far from the final estimate.

priori probability function and of the observation model. To our knowledge, this is the first/only fully unsupervised
(with respect to parameter adjustments) formulation for the
D. Optimization Problem problem of deformable boundary location.

Regardless of their theoretical/conceptual interpretation,
both classicalsnaketype approaches and deformable tem-
plates/models lead to difficult optimization problems for
which several computational techniques have been proposedsplines are a widely used function approximation tool [13],
deterministic iterative schemes [18], [30] (see [9], for a conji6]. In particular, they have been used in computer graphics
prehensive and integrative review); dynamic programming [ZAnd, more recently, in computer vision and image analysis;

Il. B-SPLINE CONTOUR DESCRIPTORS
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spline representations of curves/contours were addressedvirere we assume that > k (usually, N > k), and

[1], [5], [8], [9], [23], [35], and [45]. ity — to) it — to)
For the sake of self-containedness and clarity, we now pres&at— [i w]= |z |to+ N ylto+ N

a brief review of splines and B-splines; for a more detailed A i — 0.1 N — 1

count, see [13] and [16]. If we let the coordinates of the control points be arranged

into a parameter vectdly,) = [cf - --ci_i[" = [0y 6],
where subscriptk) is used to emphasize that there &reon-

Let{to < #, < .- < #i} C [to,ta] C R bethe set 4| noints, the discretized closed splinean be obtained by a
of so-callecknotst By definition, spline functions are polyno- ., +rix product

mial inside each intervdt,;_;,¢;] and exhibit a certain degree . u
(saym — 1) of continuity at the knots. The set of all splines on ¥ = Bwfuw) & {x =B 04, andy =B, 03, ) (12)
[tm, t—m], Which areC™~! continuous at the knots is a linearnyhere the elements @, are given bY[B(k)]ij = Bj(to +
space of dimensiok — m). The set of so-called B-splines, (((t, — t,)i)/N)). In the absence of constraints on the control
denoted{B;*(t), k = 0,---,k —m — 1}, constitute a basis points, the set of all splines withcontrol points and a given set

(though a nonorthogonal one) for this linear space. Accordingby basis functions (i.e., a given set of knots) is a linear space: the
each splingf(¢) in this space has a unique representation (Whergnge of matrixB ), R(B))-

A. Splines, B-Splines, and Closed Curves

{co,c1," -, ck—m—1} IS a set of coefficients/weights)
k—m—1 C. B-Spline Fitting: 1-D Case with Known Knots
F&y= > aBMt),  t€[tmtrml- (6)  Consider the set of paifgs;, f(s;)),i = 0,1,---, N — 1},
_ i=0 _ _ and consider the problem of finding the periodic spline (of a
The B-splines are nonnegativg;"(t) > 0, and verify the certain degreer, on a given periodic set of knofgy < #; <
so-calledpartition of the unityproperty <o < fh_q}, with & < N;usuallyk < N) that best fits
Z B(t) =1, forte [tm:theml. (7) this set. Since the knots are known, a set periodic B-splines

7 can be defined{l”;’j(t), ji=0,1,---,k— 1}, and the elements
Planar curves are simply tH&? version of (6) ofthe N x k matnx B, cpmputed. The ynknown spline can
then be described as a linear combination of these B-splines

k—m—1 . . . . .
v(t) = [2(t) y(t)] = Z ;B (1) ®) inj s[,gothc? 'p'r'octlleir; is that of finding the corresponding weights
Z=0 W I f— Y ' ... T
where thec; = [¢¢ Y] are now points inR?, called con- With £ = [f(s0) f(s1) flsn-1)I", the usual least
. i g . sguares criterion leads to
trol points To describe closed curves, the periodic extension 0 A _ )
the knot sequencdf;,j € Z} with ; = t; moas, is defined €y = argmin [|f — Bc||
[23]. The basis functions also have to be periodic [23], which is —(BZ.B,.)'BL.f=RB f 13
achieved by defining the periodic expansions (B Baw)™ Byt =By, (13)
R +00 whereBIk is thepseudo-inversef B;,. Notice that the null-
B (t) = Z it —to) () 9 space oﬂ?»(k:) isN(Bq,) = {0} an_d,_beca_use all its columns
j=—00 are linearly mdepender(tBa)B(k)) is invertible. The vector of
which still verify (7). A k-knots closed spline curve is then ditted spline values, at the same coordindt&s s1, - - -, sn—1},
IR — IR? periodic function (of period; — t,) representable as denotedg = [g(so) - - - g(sn—1)]%, is
a linear combination of pin?dlc basis functions g = Bgye = B(k)BIk)f — B(Lk)f (14)
v(t) = [z(t) y(t)] = Z ;B (t), teR. (10) whereBa) = B(k)BIk) is the projection matrix That is,g
20 is the projection oft onto the {-dimensional) range space of

In computer graphics and image analysis, it is common Bx)> R(By)-
usem = 2 orm = 3 [17]. In all the examples presented below . e .
cubic(m = 3) B-splines will be used (and we will drop the SU_E. ' B-Spline Fitting: 2-D Case with Known Number of Control
perscriptm); nevertheless, everything is valid for amy Also, oints

we will only address the periodic case, which is the one of in- Now consider the situation whe® points on the image

terest for boundary representation. plane are given
x ris S
B. Discrete Contours ,0 y_o (_0) y(.o)
vV = =

A discretized spline curve (a contour on a digital image) is - ( ' ) ' )
a set of N equispaced samples &ft) collected as gN x N-1 UN-1 FAIN-1) W\SN-L
2)-vector =[x ¥l (15)

- - and the spline (described onkadimensional B-spline basis,
v=[vy vy =[x ¥l (11)  with given k) that best fits them is sought; however, two key

1For simplicity, in this paper we exclude the possibility of multiple knots; se€lements are missing: 1) the_ values of #fis to which th_eTi’S _
e.g., [16] for the consequences of this option. and they;’s correspond, which are necessary to build matrix
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B, and 2) the knots, which are also indispensable in corttcan be claimed that only discrete data have finite code-lengths,
puting B(;,. Of the proposed strategies to address these issuéth a Gaussian density not being allowed here. However, as
(e.g., [8], [17], [26]), we adopt the simplest on@miform as- argued in [41], finite values may be obtained by discretizing
signmentt; = j,forj = 0,---,k — 1 ands; = ik/N, for a density to an arbitrary precision; a loose usage of the term
1 =0,---,N — 1. Of course, it would be more interesting to‘code-length” is convenient and harmless.
consider thdree-knot problemi.e., to estimate the knot loca- The second fundamental fact is that the parameters them-
tions; however, this is a much harder problem to which theselves are also part of the code, in the following sense: a code
currently exists no general optimal solution [37], though thergord representings can not be decoded by itself; only full
are several proposed practical techniques [16], [17], [26]. knowledge ofp(v|0(k),a§,,a§) (i.e., of its parameters) allows
Summarizing, given a vector with N data points and a reconstructing the code and respective decoder. Accordingly,

choice fork, matrix B, (which, with auniform assignment the MDL criterion states that the description code-length to be
only depends ort: and V) can be built and its pseudo-inverseminimized by the estimate must include not only the data code-
sz) computed. The estimated control points are then given lyngth but also the code-lengths of the parameters.

e i i i In our case, the joint MDL estimate &fandé;,, which we

Oy =000 O] =Boyx Byl =Bg)v. A8 iy genote byg ;. is then
Finally, the discretized spline curve corresponding to the

estimated control points is given by = [s* s'] = B4y, 0%,02) = arg min{L(x,y]0(), 0%, 02)
[Bzyx Byl = Buyb)- How
—i—L(o(k),Oi,Oi)} (19)

IIl. ESTIMATING THE NUMBER OF CONTROL POINTS
where L(x,y|0), 02,07) = —logp(x,y|0u,02,0;), and

. _ . . xzr Yy
It is well known that least squares fitting is equivalent tg(g(k)’ag’az) is the parameters description length. Notice

maximum likelihood (ML) estimation when the observationg, o unlike the ML estimate b1, for fixed & 8. does
are modeled as being perturbed by white Gaussian noiagpend ono2 and o2, this justifying why they \(/’\;)ere ex-

" . X o ot
Sﬁ_etufu(:;ally, I_et the _observattlon_s ?ndd Y be_ '”depegge”t plicitly included as unknowns. Furthermore, we will write
w c'j; szsmag hnmsg con a2m|nade ) ver5|ons.B)(:‘k). ®) L0y, 02,02) = L(B1)), i.e., we assume that} ando? have
and B0, with varianceso; and o, respectively; 1.e., constant description lengths which can be dropped from (19).

p(x, Y100, 00y, 0%, ) = p(x|00sy, 02)p(y16%), o3), where  Now, since, for a givert, the minima w.r.t6(;, ande?,, do not

P[0, 02) = (2m02) =N/ depend o2 ando?, we can write
1 z 2
- exp {_E |Ix — B(k)a(k)” } ) k= arglrgn {L(H(k)) + Inizn [Ig}jn(— 10gp(x|0?k), Ji))]
p(y|oé’k), o) = (Qﬂgj)—(Nm) o | %%
1 , + min |min(— log p(y|6?,, o> . (20)
'exp{—@ ||Y—B<k>9é’k>ll2}- o [%( V106 7))
Then, the ML estimate d;, is After some simple manipulation, we obtain

AT e gy . e ——
O =100, 0(’“)] k= arg H%ll {L(a(k)) + Nlog < 0%(k)a§(k)) } , (21)

arg Igli}fp(xwap oy) argmaxp(y|6y,, 0’5)1

o7, wherea? (k) ando? (k) are the residual error variances (which

_mt i _ i are functions of:
=Byx Byl =B,V (17) ) e -
as in (16) (see also (13). Notice that the estimefgﬁandb?k; 3k = llx — N(k)XH ’ ;g(k) _ ly — N(k)YH .

do not depend on?2 ando?.
Since matrixB ;) is fully specified byk andV, from k, we also

A. MDL Criterion immediately obtai@®~. = BY. x, and#’. = B'. y.
To estimate:, we adopt aninimum description lengitMDL) (k) (k) (k) (k)
criteriqn [40], _adapted to the cgrrgnt_problem. T_he firstkey ok  parameter Description Length
servation behind MDL-type criteria is that looking for an ML . ) ) L
estimate is equivalent to looking for the Shannon code for which SPECIYINgL(0a.)) is a clrumal aspect of MDL criteria. The
the observations have the shortest code-length [40]: this is §@Mmonly used.(6)) = 3 log N is an asymptotically (large
cause Shannon’s optimal code-lengtfor datav, obeying a sample) optimal value, valid fpr (real) parameters that dep.end
probability density functiorp(V|0(k),rf£,rf§), is simply [11], on all the_data values [40]. Since this is not _true for B-spline
[40] control points, we propose what may be described asdheal
code-length for discrete contours.
L(v|84y,02,05) = —logp(V|Buy,o7,05).  (18)  Letfy,y = [0, 8¢, be afinite precision version dz, =

2In bits ornats respectively, if base-2 or natural logarithms are used [11]. [9&) 9?@], and |et§?k) = ( z}k) - &)) andﬁ?k) = (9?10 —ogk))
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be the associated error vectors. The error between the curve rep-
resented by vectcﬁr(k), v=[x y]= [B(k)a(k) B(k)o(k)] and
the exact ongx y| = [B)0(}, B(k)ogk)], is, by linearity

Now, let¢ be the maximal absolute error allowed in any of the
coordinates of the contour, i.e., let us impose3Haf’||.. < &
and thafl|e¥||c < &. In view of (22), it is clear that

)
Ol < o ) > ¥l <€ (23)
(1951~ = ) =

, £ ,
07, l|oo = ||e¥]|0 < €. 24
(1l < o) = Ieles e @0
Sincev is a discrete curveS = 1 is the natural choice. Con-
Cerning||B(k)||oo7 |nvok|ng thepartmon of the un|typroperty Fig. 1. Hand-drawn points (markea™), estimated spline (solid line), and
control points (small circles).
(7), and the positivity of the B-spline ,]( ) >0, leads to

C5 sor ™\ Description length
. o+ . i
~ (tk — to)'L
= ms Bt ~~ 7 ) =1. A0
m;lx Z ' < o+ N1 }
J 5001 - ‘
Itis also clear that if all the control points are inside thfex w¥ TR 3 5 30 a5 @
image plane, thery, will also be inside the image plane (a spline Number of contro} points

is inside the convex hull of its control points [17]). Accordingly

) or variance
LOu) :k<10g wIBwlleo o wIBwl )

=klog(w® wY). (25)
The final estimation criterion, obtained by in§ertiﬁg9(k)) = 3 Tl '157 - 55 1;,,"0 CR—
klog(w® wY)into (21), has the following intuitively reasonable Numiber of control points

features: . Fig. 2. Plots of the description length (minimum at 21) and error variance
1) for given N and (w® wY), increasingk decreases (relative to Fig. 1).
N log( ;Z(k) ;'g(k')) butincrease4.(6;,), forcing an
MDL-typical compromise between these two terms;  with the prior
2) larger N (more data) gives more relative weight to the x 2 2 P
: err?)r varigmce, ie. m)O?e control points will be allowed; ( <’“)’0(k)’0’”’0 ) o expi—klog(w® w’)}. 27)

3) when the coordinate ranges and/orw¥ increase, the This prior can be interpreted as a (parametrsthvothingtype”
variance term receives a smaller relative weight, i.@rior which favors Simplef (in the sense of having fewer con-
smaller fitting precision is imposed. trol points) contours. Another prior for the number of B-spline

This last property, which at first sight may look strange, dodd0ts was proposed in [8].

make sense if one admits that the same data points, on a larger

image, are relatively less meaningful and can then be fitted with SOmMe Examples

less precision; in other words, we are talking about relative, andAdaptive spline fitting, although not our final goal, is an im-
not absolute, precision. Anyway, notice that this effect is veportant problem in itself. Moreover, to the authors’ knowledge,
weak; because it appears inside a logarithm, only orders of métgere exist no published automatic general criteria to determine
nitude changes in the produet w¥ will have a strong influence the optimal number of knots. Accordingly, we present now a few
on the result. examples. Figs. 1 and 3 show two sets of data poirty,(the

It is well known that MDL-type criteria can be interpreteditted splines (solid lines) and the corresponding control points

under a Bayesian perspective [12], [40]. Equation (19) can femall circles). The evolution of the error variances (we plot

seen as a MAP estimator (o2(k)o2(k))'/?) and the description lengths as functions of
(om 92 2) k are shown in Figs. 2 and 4; notice that, the first shape, being
(k)7 (k) 75y more complex, requires more control poifiks= 21) than the
~ A8 ?UH%?? 2 second onék = 7). In Fig. 5, the data from Fig. 1 was per-

turbed with additive noise; as a result, a smaller number of con-
{p(x, yw(k)’o(k)’%’a )P (o(k)’o(k)’%’a )} (26) o points was found optimal; this shows that the criterion is
SHere,|ul|  is thel... vector norm|[ul|. = max; |u.; the induced matrix @Pl€ to distinguish intrinsic curve complexity from noisy data,
norm is|| By [l ee = max; 3 [[Bewy)ij)- thus behaving as an adaptive smoother.
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Fig. 3. Hand-drawn points (marked™), estimated spline (solid line), and

control points (small circles).
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cations in mind, and region based models are known to be ro-
bust with respect to local artifacts and poor image quality. Sec-
ondly, region-based models allow an easy derivation of the like-
lihood function, which is a main ingredient of our formulation.
Of course it is also possible to write models and derive likeli-
hood functions for other (e.g., gradient-based) approaches.

A. Observation Model

Let the observed imagE (a w* x w¥ array of gray levels)
be a random function of an ideal (in the sense of [25]) object
whose (closed) boundary = B0, is a discretized uni-
form periodic spline, with: andé, both unknown. An image
observation model is, in probabilistic terms, a likelihood func-
tion p(I|0x), ¢), where the image plays the role of observed
data, while the control points play the role of unknown param-
eters; other parameters characterizing the observation mecha-
nism, which we will also consider unknown, are collected into
vectorg. Although other choices would be possible, let us con-
sider the region-based model characterized by the two following
hypotheses:

1) Conditional IndependenceGiven the contour, the image
pixels are independently distributed.

2) Region HomogeneityThe conditional probability func-
tion of each pixel depends only on whether it belongs to the in-
side or outside region of the contour, i.e., all pixels inside (resp.
outside) have a common distribution characterized by a param-
eter vectorp,,, (resp.¢...), With ¢ = [¢,,,, d..:]- From these
assumptions, the likelihood function is

0, ¢) = 11

(¢,5)€T(v)

p(I(Z,j)|¢1n)

Fig. 4. Plots of the description length (minimum at 7) and error variance

(relative to Fig. 3).

*

o

Fig. 5. Noise contaminated points (marked); estimated spline (solid line),

and control points (small circles); see text for comment.

IV. CONTOUR ESTIMATION

I[I pUaHldor)| (28)
(4, )EO(V)

wit_h v = Byl andl; ;) denot_ing the va_Iue_ of pixét, ), _
while Z(v) and O(v) are, respectively, the inside and outside
regions of contouw. Finally, p(1(;, |$i,) and p(Z, j|Pout)
are the pixel-wise probability functions, of the inner and outer
regions, respectively. Notice that there is no guarantee that the
normalizing constant of(I|v, ¢), if written as in (4), does not
depend onv.

The conditional independence assumption leads to a simple
expression for the joint probability of all the image pixels. For
other region models, such as the inner and outer regions being
characterized by two different textures, exact expressions for the
joint probability are, in general, very difficult or even impos-
sible to obtain. In those situations, one may resort to approxi-
mations, with obvious candidates being the mean field approxi-
mation (see, e.g., [51] and references therein), the pseudo-likeli-
hood approximation [4], [20], or the technique proposed in [48].
However, notice that this is not a fundamental limitation of our

We will now address our main problem: contour estimatio@Pproach, but just a computational/implementation issue.
not from a set of points, but from an observed image. To do so, . .
we need an image model (or observation model), i.e., a profi- COMplete Estimation Criterion
bilistic formulation of how the observed image is related to the Any unsupervised scheme has to estimate, from the observed
underlying contour. In this paper, we adopt region-based modéetsagel, not only the number of control points and their po-
for two types of reasons. First, we have medical imaging appéitionsé;,, but also the observation parametgrsCombining
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Fig. 8. Synthetic image (same mean, different variances) and estimated
contour (see text for parameter values). The dashed line is the user-provided
initial contour.

Fig. 6. Example with synthetic image; evolution of the contour shape for 3.16% 105 ;
several numbers of control points 5, 8, 10, and 11 (chosen estimate). The
dashed line is the initial contour. | Description length
31610 : : ‘ ‘ . 3.15¢
Description length
3.14¢
3.15¢
Iy 1 1416 18020
Number of control points
Fig. 9. Evolutions of the description length for the example of Fig. 8.
M0 12 14 16 18 20
Number of control points V. ALGORITHMS
Fig. 7. Evolution of the description length for the example of Fig. 6. We address the minimization in (29) with a three-level hier-

archical scheme of nested algorithms: the inner scheme (Algo-
rithm 1) solves w.r.tf;,, with k and¢ fixed; Algorithm 1 is
then used by Algorithm 2 to solve w.r.t. bofly,, and¢, still
with &£ held constant. Finally, the solution w.rit.is found by
(b): $) = arg k%(li?qb{_ logp(I|0y, @) + klog(w®w?)}.  exhaustive search over a range of values.

(k)

the likelihood function in (28) with the MDL criterion derived
above yields

As in the previous section, this minimization can be rearrangéd Algorithm 1: Solving fo#;,, givenk and ¢

into a nested pair of minimizations Our first building block implements the inner maximization
. _ , in (29) for fixed k£ and¢. The maximization w.r.té;, can be
k = argmin {k log(w*w?) — X {log p(T/6y, ¢)}} rewritten as a constrained maximization with respest to
2V (k
(29) Igl(aﬁ{logp(IW(k), ¢)}
k

however, unlike in the fitting problem studied above, the inner
joint maximization is not simple and can not be split and ana- = solution 0f<
lytically solved. We postpone this issue to the following subsec-
tions simply by denoting the result, necessarily a functioh of WhereR(B)) is the range space &), i.e., the search is con-

méxx{logp(ﬂ"v $)} ) (31)

subject tov € R(B,))

andI, asG(I, k). With this notation strained to those contours that can be writtew as B0 ),
. ’ for somed ;. To solve it, we use a form of thgradient projec-
k= arg m’jn{klog(w’”wy )— GLE)}. (30) tion method (i.e.gradient ascentwvhere each gradient is pro-

. jected onto the constraint space [33]), also related to the itera-
Once this minimization problem is solved, bqihmde(,;) will  tive technigues considered in [9]. A description of the algorithm
be natural byproducts. follows.
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Fig. 10. Example with a real (magnetic resonance) image; the task is to find the boundargafithe callosumwe show estimates for 6, 8, 10, 12, 14, and 16
(the chosen number) control points. As above, the dashed line is the initial contour.

Algorithm 1 steps. Although resembling te&pectation—maximizatiqiEM)
Inputs: k, ¢, and an initial valid contou(® e R(Bw))- algorithm [14], notice that this is not an EM algorithm. More-
Output: a contour estimaté. over, it is not guaranteed to converge to a joint global maximum.
Step 0:Build Bz, and computdBy;,. Letn = 0. This type of schemes have been used by several authors, in dif-
Step 1:Compute the gradient with respect to the contour ferent areas, under different names; see, e.gadaptive seg-
6v = (V(log p(I|v, ) |y_om )- (32) mentation algorithnin [32], or adaptive versions of thterated

Step 2: Update the contour estimate accordingrtg+?) = con_ditior_1a| modeg¢ICM) algorithm [4], [18]. Formally, the al-
v + B, év, i.e,, taking a step in the direction of thegorithm is as follows.
projection of the gradient ont& (B, ); parametes controls

the step-size. Algorithm 2
Step 3:1f a stopping criterion is met, stop and output=  Inputs: &, and an initial valid contouf(® ¢ R(Bw))-
v+ if not, increment, and go back to Step 1. Outputs: estimatesp andv

Step O:Letq = 0.
The gradient w.r.t. the contour coordinates (Step 1), since thesstep 1: Given v(¥, compute the ML estimatgy” =
are (integer) pixel locations, is approximated by discrete differ- 1~ @ . <q>] according to
ences. It can be shown that this gradient is normal to the contoul " out
[52]; this fact can be used to speed up the computations. Param- __
etere should be kept small to avoid instabilities near the minima. ¢, ~ = argmax H (i, jy @) (33)
(4, HET(¥(D)

B. Solving forg andé;,, with fixedk

To implement this joint maximization, we use an iterative es- qg(:t(q) = arg max H p(Le, jy|Pout) ¢ - (34)
timation/maximization scheme having Algorithm 1 as one of its Poue (i, ) COD)
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2.36r 10 ‘
Description length
2.35%
PR 10 12 14 16 18 20
Number of control points
Fig. 11. Evolution of the description length corresponding to the example in
Fig. 10.

Step 2: Run Algorithm 1, providingt, ¢, andv(@ as in-
puts. The output is an updated contour esting&téL) (which

is still in R(By)), by construction of Algorithm 1).

Step 3: If some stopping criterion is met, stop, and provide

~ ~ 1 . .
as outputg = ¢<q+ S andv = v(#tD): otherwise, increment
q and return to Step 1.

The particular form of (33) and (34) depends on the image
model. In the experiments presented in this paper, we will
assume the two following image models:

1) Gaussian: All pixels are independent and Gaussian dis-
tributed with meang:;,, and py. and variances2, ando?2,,,
for the inside and outside regions, respectively. In this case,
i = [1tin 02.), Do = [Hous 02,;], andStep 1consists simply
of computing the (inside and outside) sample mean and variance
(which are the ML estimates).

2) Rayleigh: In this case, which adequately models ultra-
sound images [15], the pixels are Rayleigh distributed. For the
inside pixels, we have

. 1% .
2y _ 10, 4) @, 4)
P, plom) = o2 XP {_ 202 } (35) Fig. 12. Three other examples on magnetic resonance brain images; the
m m estimated numbers of control points are indicated in the figures.
and a similar expression (with?,,) for the outside. The pa-

rameter vector is now = [of; og,,.] whose ML estimates are jnm 2 ysing each obtained contour estimate to initialize the
simply one half of the sample means of squares [15]. . next run (of course, an initial estimate is needed for the first
We are also now in a position to obtain particular expressioRsy) and storing the output estimates. With these, we compute
for the function o {klog(w,w,) — G(I, k), for k € K} and find the minimum
G(L k) = gglx{logp(1|o(k)a¢)} =logp(I|6r),¢) (36) with respect ta, i.e.,
(k)

which, of course, depend on the particular image model being k= arg i%i,%{klog(wmwy) — G(L k), fork € K}.

adopted. For both the Gaussian and Rayleigh image models, the ) ) o

result is the same (up to an additive constant) and given by Although this exhaustive search may seem inefficient, on a Pen-
Nin(k) . Nows (k) o tium-11 (300 MHz) personal computer, the complete algorithm

G(L k) ox ——2 Nog(o2 (k) — —22 log(02,(k))  usually takes less than 1 min.
where N, (k) and N, (k) are, respectively, the number of
image pixels inside and outside the estimated contour. VI. EXPERIMENTS

. ) The first two examples (Figs. 6-9) use synthetic images

C. Solving with Respect to obeying the Gaussian model above defined. In Fig. 6, the inner
Finally, the full scheme simply proceeds as follows. For ea@nd outer regions have the same variaficg = oo, = 60),
k in a given setC = {kmin, kmin + 1, -, kmax}, run Algo- but different meangu;,, = 80, powe = 160). The initial
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Fig. 14. Two examples on real (ultrasound) images: (top) a cardiac (left
ventricle) image and (bottom) an intravascular image.

estimates argi;, = 119.53, fioyy = 120.67, 63, = 99.12,

dout = 51.02, again very close to the true values. Notice that in
this example the initial contour is outside the true contour, and
still the correct solution is obtained.

The next example considers the task of estimating the contour
of the corpus callosunon a magnetic resonance (MR) brain
Fig. 13.  Three more examples, now with cardiac MR images. The estimajgflage. Fig. 10 displays the evolution of the contour estimate
number of control points are indicated in the figures. . L . . .

(again, the initialization is shown as a dashed line) for increasing

values ofk (6, 8, 10, 12, 14, and 16). As shown in Fig. 11, the
contour provided by the user is represented by a dashed lingnimum of the description length corresponds:te: 16.
while the final estimates, for each value bf are drawn as  Figs. 12 and 13 show six more examples on real medical im-
solid lines. Contour estimates for five, eight, ten, and 11 contragjes (all using the Gaussian regions model). Notice how, even
points are shown, revealing that the algorithm adequately chagi¢h nonhomogeneous regions (specially the outer ones), the
k = 11, the smallest number of control points that is enougbbtained contours are excellent. The final pair of examples (in
to represent the contour shape; more control points would Bigy. 14) deal with ultrasound data: one cardiac (left ventricle)
clearly unnecessary. The evolution of the description lengihage and an intravascularimage. Here the Rayleigh model was
as a function of the number of control points is plotted insed.
Fig. 7. The image model parameter estimates obtained werdt is important to stress the fact that, in all the previous exam-
frin = 80.74, fioys = 159.48, Gin = 60.91, anddoy = 60.32, ples, the exact same algorithm was applied (apart from the selec-
whose closeness to the true values also testifies for the gaiath of the Rayleigh model for the ultrasound images) without
performance of the method. any parameter tuning (in fact, there are no parameters to tune).

In the example of Fig. 8, the inner and outer regions havéese examples also testify for the robustness of our method
the same meafu;,, = pow: = 120) but different variances against poor initializations. The key factor controlling the suc-
(o = 100, ooyt = 50). The description length evolution (with cess of a given initial contour is the resulting initial parameter
minimum fork = 10) is plotted in Fig. 9. The final parameterestimate; more precisely, the first estimateofust be such that
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-

Fig. 15. Outlining thecorpus callosunin a MR brain image. The first five cases are successful estimates from very different initializations, while the last one
failed due to inappropriate initialization (as explained in the text).

the likelihood function will pull the contour in the right direc- We do not report comparisons of our method versus other de-
tion. In the absence of model mismatch (i.e., if the image reaflgrmable contour estimation schemes since we are not claiming
follows the assumed model), a good initial contour is one whot®at our approach achieves estimates that other methods can not.
inside shares alarger area with the inside of the true contour th&a are simply stating that we can do it in an unsupervised way
with its outside; in this way, initial parameter estimates will reand with a high degree of robustness with respect to initializa-
spect the order relations between the true parameters (e.gtioifi. For example, we have tried the method proposed in449],
hin > Hout, the same should be true for their first estimateshich is representative of the state of the art in snake-type
and the contour will move in the right direction. Of course reahethods, with most of the images considered in this paper (a
(medical) images do not exactly follow the region-based modelptable exception in the one in Fig. 8, for which gradient based
namely the outside regions tend to be somewhat honhomogeethods do not work). In most tests, that method was able to
neous, and the initialization may be more problematic. For prdaid good contour estimates, at the cost of careful tuning of the
tical applications (and in all the examples presented), the ugmrolved parameters (which are at least three/3, and, in
indicates a point inside the boundary and the algorithm is initidhe notation of [49], controlling aspects like the resistance of
ized with a small contour around that point (which is guarantedte contour to stretching and bending, and the relative weight
to be completely inside the inner region). In Fig. 15, we illusef the internal and external forces); some images require stiffer
trate the robustness of our method with respect to initializati@ontours, while some others demand more flexible ones, etc. In
using the MR image from Fig. 10; we show five successful coeontrast, as already mentioned above, our method found all the
tour estimates from five very different initializations. Still, incontours in a totally unsupervised manner (apart from initializa-
Fig. 15, we present an example of a wrong estimate due to tien) without any tuning or parameter adjustments.

fact that the initial contour had more overlap with the external

region than with the inner one (as mentioned above). 4Available at http://iacl.ece.jhu.edu/projects/gvf.
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VIl. CONCLUDING REMARKS [21]

This paper described a new approach to unsupervised smooth
contour estimation based on a new adaptive B-spline representg?!
tion. All the model parameters are considered unknown and esti-
mated from the observed image. Examples presented, using syn-
thetic and real (medical) images, showed the ability of the prok23]
posed method to estimate contours in an unsupervised manner,
i.e., adapting to unknown shape and observation parameters.
With the synthetic images, the good match between the estjz4]
mated and the true parameters also shows the good performance

of the approach.
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