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Absolute Phase Image Reconstruction: A
Stochastic Nonlinear Filtering Approach
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Abstract—This paper formulates and proposes solutions to
the problem of estimating/reconstructing the absolute (not sim-
ply modulo-2�) phase of a complex random field from noisy
observations of its real and imaginary parts. This problem is
representative of a class of important imaging techniques such
as interferometric synthetic aperture radar, optical interferom-
etry, magnetic resonance imaging, and diffraction tomography.
We follow a Bayesian approach; then, not only a probabilistic
model of the observation mechanism, but also prior knowledge
concerning the (phase) image to be reconstructed, are needed.
We take as prior a nonsymmetrical half plane autoregressive
(NSHP AR) Gauss–Markov random field (GMRF). Based on a
reduced order state-space formulation of the (linear) NSHP AR
model and on the (nonlinear) observation mechanism, a recursive
stochastic nonlinear filter is derived. The corresponding estimates
are compared with those obtained by the extended Kalman–Bucy
filter, a classical linearizing approach to the same problem. A set
of examples illustrate the effectiveness of the proposed approach.

Index Terms—Absolute phase imaging, Bayesian estimation,
image reconstruction, interferometric imaging, Kullback–Leibler
divergence, nonlinear filtering, phase unwrapping, stochastic fil-
tering, 2-D Kalman–Bucy filtering.

I. INTRODUCTION

A. Absolute Phase Imaging and Its Applications

CONSIDER the conceptual imaging model depicted in
Fig. 1, in which a discrete image/surface,

, is observed through
a pair of nonlinear (sine and cosine) functions corrupted by
additive white Gaussian noise. This paper addresses the non-
linear image reconstruction problem that consists in estimating

from this pair of nonlinear noisy observations, and .
Interpreting the observed images, and , as noisy versions
of the real and imaginary parts of a complex image, the
problem can also be stated as that of estimating the (absolute)
phase of this complex image. This scenario captures the es-
sential common features of a general class of imaging/sensing
techniques where some physical quantity is inferred from
absolute (i.e., not simply modulo-) phase measurements
[39]. Following are examples of such techniques.
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Fig. 1. Observation model.

• Interferometric synthetic aperture radar(InSAR), where
phase measurements are used to produce topographic
maps. More precisely, (absolute) phase differences be-
tween complex SAR images acquired by different anten-
nas [24], [26], [60], or by the same antenna at separate
passes [21], [25], [27], are a function of the elevation
of the observed terrain; see reviews in [1] and [17], and
references therein.

• Optical interferometry, where (absolute) phase differences
are used to obtain information, such as shape, displace-
ment, or vibration, of a surface under inspection; see,
e.g., [28], [51] and [57].

• Magnetic resonance imaging(MRI), in which absolute
phase measurements allow increasing the dynamic range
of phase contrast velocity images; references [4], [12],
[30], and [54] consider this problem.

• Diffraction tomography(e.g. geophysical tomography or
ultrasound medical tomography), where the Rytov ap-
proximation yields a mapping between the observed ob-
ject and the absolute phase of the measured field; for
details, see [14], [15], and [34].

B. The “Phase Unwrapping” Approach

Conventional approaches to the problem of obtaining abso-
lute phase images follow a two-step procedure:

Step 1) determination of modulo phase values, the so-
called interferogramor wrapped phaseimage;

Step 2) phase unwrapping(i.e., determination of absolute
values from modulo ones) supported on some
heuristic orad hocphase continuity criterion.

This phase unwrappingapproach has been applied under sev-
eral forms to all of the above mentioned imaging modalities.

1057–7149/98$10.00 1998 IEEE
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Fig. 2. Original phase surface/image (example). The surface height values
are also gray-level coded.

References [20], [25], [29], [36], [42], [43], [45], [52], and [55]
describe applications to InSAR. Phase unwrapping techniques
for MRI have been presented in [4], [12], [30], and [54]. In the
field of optical interferometry, several methods were published
in [28], [46], [47], [51], and [57]. Reference [34] includes
a phase unwrapping algorithm in the context of diffraction
tomography.

C. The Proposed Approach

Phase estimation has been previously studied within the
stochastic nonlinear filtering (NLF) framework for (one-
dimensional) time signals [8], [9], [48]. In particular, recursive
absolute phase estimation algorithms have been studied in [40],
[41], and [49]. In this paper, we propose a stochastic NLF
approach to the problem of estimating/reconstructing absolute
phase (two-dimensional) images; it stems from recognizing
the fact that this is a two-dimensional (2-D) version of the
problem considered in [40], [41], and [49]. Being essentially a
Bayesian approach to the estimation of a random process/field
from its noisy observations, stochastic NLF is supported, not
only on probabilistic models of the observation mechanism,
but also on prior knowledge concerning the (phase) image to
be reconstructed.

Markov random fields (MRF) have been widely used as
(Bayesian) priors in many image processing and computer
vision problems; [6], [10], [13], [16], [23], [50], [58] are a few
relevant references on this subject. In this paper, the original
phase image is modeled as a sample of a Gauss–Markov
random field (GMRF) [10], [11], [13], [16], [58]. More specif-
ically, and having recursive filtering in mind, we consider
causal nonsymmetrical half plane (NSHP) autoregressive (AR)
GMRF’s; this class of models, formalizing prior knowledge
in a probabilistic way, allows building recursive filtering
algorithms.

A recursive stochastic filtering approach requires a state-
space formulation of the NSHP-AR model. Here, we adopt a
reduced order model(ROM) similar to the one proposed in

[2], [3], and [33], to build ROM Kalman filters (ROMKF) for
problems with linear observation models.

Supported on the ROM, and adopting stochastic nonlinear
filtering methodologies proposed in [40] and [41], we intro-
duce a recursive scheme that estimates the absolute phase
image directly from its noisy sine and cosine observations.
Accordingly, our technique should not be classified as a
conventional phase-unwrapping algorithm since it does not
start from wrapped phase data.

The extended Kalman–Bucy filter(EKBF) [8], [22], [32],
which is a classical solution to nonlinear stochastic filtering
problems, is also considered and compared with the developed
NLF algorithm.

Noncausal MRF priors could also be used, as in [5] and [50];
there, a recursive formulation of noncausal MRF’s is proposed
and image restoration/reconstruction is interpreted as a fixed
interval smoothing problem (with linear observations) solved
by double-sweep linear recursive filtering techniques. A main
issue with the nonlinear observation model herein considered
would be how to solve fixed interval smoothing problems by
applying the type of nonlinear algorithms presented in the
sequel.

D. Paper Overview

The next section formally describes the observation model
considered. Section III introduces the adopted prior model.
The proposed stochastic NLF algorithm and the EKBF are de-
scribed in Section IV. Section V presents experimental results
and Section VI ends the paper with some concluding remarks.

II. OBSERVATION MODEL

The structure of the observation model is depicted in Fig. 1.
Let

(1)

be the -valued, original phase image. Let the
observations be denoted by

(2)

and

(3)

the so-calledin-phase(cosine) andquadrature(sine) images
(associated to the phase field), which are additively corrupted
by the independent white Gaussian noise fields

(4)

and

(5)

Formally, the observation model is

for and (6)

We assume that the noise fields can be spatially variant;
thus, we write as the variance of the noise random
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Fig. 3. Noisy (� = 0:5) cosine and sine observations, of the image/surface of Fig. 2.

Fig. 4. �i;j ’s (interferogram) and�i;j ’s [see (10) and (11)] obtained from the observations shown in Fig. 3.

variables associated to pixel and , for
and . Finally, we mention

that, particularly in InSAR and optical interferometry, the
presence of additive white Gaussian noise in the in-phase and
quadrature components is in fact the commonly adopted model
[31], [38], [44], [53]. As an example of data produced by this
observation model, consider the phase surface/image of Fig. 2;
the corresponding observations and , with homogeneous
noise , are presented in Fig. 3.

From (6), and invoking the Gaussian nature of the noise, we
obtain the pixelwise conditional probability density function of
the pair of observations associated to , as

(7)

which can be rewritten as

(8)

where

(9)

(10)

(11)

Fig. 4 displays the ’s and ’s obtained from the noisy
data of Fig. 3.

Notice that is the likelihood function of
, given the observations and . Then, it is clear

from (8) that is the (infinite) set of
maximum likelihood (ML) estimates of , all yielding the
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Fig. 5. NSHP Markov model.

Fig. 6. Computation of the filtering density (see Section IV-F).

same maximum value of the likelihood function (observe that
, and , appearing in (8), are all independent

of ). Conventional phase unwrapping techniques, as the
ones mentioned in Section I-B, usually take the ’s (i.e.,
the interferogram) as the observations and try to determine
the ’s by imposing some continuity criterion.

Few approaches take into account, formally, the noisy nature
of the observations. References [46] and [47] consider the
observations as wrapped versions of the absolute phase, with
additive white Gaussian noise; this is an invalid assumption
[31], [38], [53]. The model based approach in [20] adopts
an observation model similar to ours, i.e., real and imaginary

Fig. 7. Phase image/surface estimate obtained by the NLF from the obser-
vations shown in Fig. 3 (compare with Fig. 2).

Fig. 8. Phase image/surface estimate obtained by the EKBF from the obser-
vations shown in Fig. 3 (compare with Fig. 2).

parts of a complex field with additive white Gaussian noise.
However, that work differs considerably from ours: instead of
a sample of a random field, it considers the original absolute
phase image/surface as a 2-D polynomial whose parameters
are to be estimated from the noisy data.

III. ORIGINAL ABSOLUTE PHASE IMAGE MODEL

A. AR Gauss–Markov Model

We model the original phase image/surface as a sample of
a causal, NSHP, AR GMRF [10], [13], [59]; specifically

(12)

where the ’s are independent and identically distributed
(i.i.d.) zero-mean Gaussian variables of variance, and
(see Fig. 5) is thesupportof pixel [13], [59]. Horizontal
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(line-by-line), left to right, top to bottom recursion order
(which coincides with the lexicographical order) is herein
assumed.

When the position of the support is such that it requires pix-
els from outside the image, some assumption has to be made
about those pixels. Here, we adoptfree boundary conditions
which, in the AR formulation, are equivalent to considering
that the pixels near the boundaries simply have a smaller
support. The model coefficients associated toexternalpixels
are set to zero, so that no boundary values have to be defined,
i.e.,

or or or (13)

For example, the first line of the image is taken as a one-
dimensional (1-D) AR process.

The surface presented in Fig. 2 is a sample of a NSHP AR
GMRF; its generating model (with the standard deviation of
the driving noise set to ) is

(14)

B. State Space Formulation

For recursive stochastic filtering purposes, a state-space
formulation of (12) is necessary. Adopting the procedure
proposed in [59], the state vector would have to include several
complete lines of pixels together with some boundary values;
this approach would lead to a huge state vector of which only
a few elements are really important. Alternatively, we adopt
a reduced order model(ROM), as proposed in [2] and [3],
where the state vector contains only the pixels in the support
of the AR model.

Since we are assuming a lexicographical recursion order,
the image pixels can be addressed by a single index, which
is related to the line and column coordinates by

(15)

where and are theline and columnfunctions

(16)

(17)

for . In (16) and (17), stands forthe
greatest integer smaller than. Notice that, if ,
then , and, if , then

.
The (reduced order) state vector, corresponding to pixel

, has to contain all the “past” necessary to pre-
dict pixel , i.e., all the pixels in the support

...

Fig. 9. Error histograms corresponding to the estimates of Figs. 7 (NLF)
and 8 (EKBF).

the meaning of , and being shown in Fig. 5, and the
superscript standing for vector transpose. The dimension of
this state vector is

(18)

The state vector is in fact all that is necessary to generate
, which is the first element of . Some other elements

of are also in , so they can be obtained by index
shifting operations. The elements of which are
not in , i.e., those in the rightmost column of the support

, have been previously generated and can be
included as deterministic inputs. Formally, the reduced order
state space model equivalent to (12), is then

(19)

where is the state transition matrix containing the
AR model parameters [the ’s in (12)], is the
matrix given by , the ’s are i.i.d. unit
variance zero mean Gaussian variables (thedriving noise),
is a matrix with only zeros and ones, and

(20)

is the referred deterministic input.
The above-mentioned free boundary conditions of the AR

model translate, in this state-space formalism, into arbitrarily-
valued boundary pixels and a space variant state transition
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(a) (b)

(c) (d)

Fig. 10. Diagonal profiles. (a) Original surface (Fig. 2). (b) NLF estimate (Fig. 7). (c) EKBF estimate (Fig. 8). (d) Wrapped phases (the�i;j ’s shown in Fig. 4).

equation: when the coordinates approach the im-
age boundary, the state transition matrixand the determinis-
tic input matrix are modified so that the (external) boundary
pixels correspond to zero coefficients in these matrices. This
space-variant behavior of the model only occurs near the image
boundaries and so we will not clutter the notation in (19)
by appending indices to matrices end . Of course, the
implementation will have to take these aspects into account.

An example will help elucidate the notation adopted. Con-
sider the following AR model for which , and

(yielding ):

(21)

The equivalent reduced order state-space model is

Concerning the boundary pixels, we adopt the following
approach: in the first line, a 1-D AR model of the type

is used; for the first pixel of each

Fig. 11. Original phase surface/image (second example).

line the model is ; the last
pixel of each line is obtained according to

. The ROM matrices have to be
adequately modified to reflect these boundary conditions.

Finally, notice that in terms of the state vector , the
observation equation (6) becomes

(22)

where , so that .
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Fig. 12. Noisy(� = 0:5) cosine and sine observations of the original image/surface of Fig. 11.

Fig. 13. �i;j ’s (interferogram) and�i;j ’s obtained from the observations shown in Fig. 12.

Fig. 14. Phase image/surface estimate obtained by the NLF from the noisy
observations shown in Fig. 12 (compare with Fig. 11).

Fig. 15. Phase image/surface estimate obtained by the EKFB from the noisy
observations shown in Fig. 12 (compare with Fig. 11).
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(a) (b)

(c) (d)

Fig. 16. Diagonal profiles. (a) Original surface (Fig. 11). (b) NLF estimate (Fig. 14). (c) EKBF estimate (Fig. 15). (d) Wrapped phases (the�i;j ’s
shown in Fig. 13).

IV. PROPOSEDSOLUTION

A. Introduction

Stochastic filtering is essentially a Bayesian approach to
the recursive estimation a random process from its noisy
observations. When the state transition (dynamics) and obser-
vation equations are linear, the driving and observation noises
are Gaussian, and the initial condition is a Gaussian random
variable, Kalman–Bucy (linear) filtering provides the optimal
solution [22], [32]. When (at least) one of these conditions
fails, the problem falls into the general framework of stochastic
nonlinear filtering [7]–[9], [22], [32], [48].

B. General Optimal Solution

Given the models defined by (19) and (22), consider the
problem of estimating , based on the set of “present” and
“past” observations . In the Bayesian
perspective, all the information concerning is contained in
the conditional probability density function ,
usually termedfiltering density. A nonlinear filter propagates
the filtering density by recursive (alternating) application of

Prediction: (23)

Filtering: (24)

where denotes convolution and means pointwise multi-
plication (both defined on the state space); the arguments of

Fig. 17. Deterministic phase surface/image (third example).

the functions were omitted to simplify the notation. The other
entities in (23)–(24) are as follows.

• The convolution kernel, which,
reflecting model (19), is Gaussian, i.e.,

(25)

where ; recall that the
’s [see (19)] are assumed to have unit variance. The

deterministic input contains previously obtained (in
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Fig. 18. Noisy(� = 0:4) cosine and sine observations of the original image/surface of Fig. 17.

Fig. 19. �i;j ’s (interferogram) and�i;j ’s obtained from the observations displayed in Fig. 18.

a lexicographical sense) estimates. Of course this is an
approximation because it treats these field estimates as
determinist, thus reducing their effect to a mean shift.

• The observation (or sensor) factor, ,
which, taking into account the observation model intro-
duced in (8) in Section II, is given by

(26)

where and , with and
as given by (10) and (11).

• The prediction density, .
• A normalizing constant .

For a detailed derivation of these equations see [7]–[9], [32],
[48]. As a brief justification, insert (23) into (24) and explicitly
rewrite the result as

(27)

(28)

(29)

(30)

(31)

(32)

Obtaining (29) from (28) requires noticing that
and that

(i.e., with given,
does not depend on ). From (29) to (30), notice that

(i.e., conditioned on the
current state, the current observation does not depend on the
past ones). Equality between (30) and (31) is simply Bayes
law. To write (32), notice that and that

is a constant (with respect to ).
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Fig. 20. Phase image/surface estimate obtained by the NLF from the noisy
observations shown in Fig. 18 (compare with Fig. 17).

C. Implementation Aspects

To implement operations (23) and (24), approximate finite
representations of the operands are required. Each (normal-
ized) period of is a Tikhonov function [56] that tends to a
Gaussian function for large values of and becomes flat as

goes to zero. This fact suggests representing the periodic
positive function by a train of Gaussian terms

(33)

centered on (the maxima of ) with
common variance (notice that is scalar) [40], [41].
Representation (33) should reproduce, as much as possible,
the shape of , for all values of . As in [40] and [41], we
adopt the following minimum Kullback divergence criterion.

• Take for simplicity, and consider the normalized
central periods of and . Denote these probability
density functions as and , respectively,
where the recursion index dropped and is simply
referred to as .

• Consider the Kullback divergence

(34)

a dissimilarity measure between the probability density
functions and [35], [40].

• For any given , obtain the optimal representation
by determining the value of that minimizes

[40].
• Since the Kullback divergence is a convex functional

with respect to both probability density functions involved
[35], the minimum can be found by computing its partial
derivative with respect to and setting it equal to zero;

Fig. 21. Phase image/surface estimate obtained by the EKFB from the noisy
observations shown in Fig. 18 (compare with Figs. 17 and 20).

this leads to

(35)

• Inserting the particular forms of and into
(35), yields a nonlinear integral equation. A look-up table
of numerical solutions, built off-line, can be accessed with
a minor computational effort.

Notice that only two parameters are needed to represent:
the location of a maximum of [given by (11)] and the
common variance obtained from this look-up table. To
have an idea of the quality of these representations see the
related figures in [40].

At each step , the estimate is obtained by minimizing
the expectation (with respect to the filtering density) of an
adopted cost function [7], [32].

D. Prediction

Assume that is a finite sum of Gaussian
functions

(36)

with means , common covariance matrix
(dimension ), and the weighting factors such that

is a normalized density. According to (23) [see also
(28)–(30)], the prediction density is
obtained by the convolution of [given by (36)] with the
kernel [given by (25)], i.e., by computing
the integral inside the parenthesis in (28). The result is a finite
sum of Gaussian terms

(37)
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(a) (b)

( c) (d)

Fig. 22. Diagonal profiles. (a) Original surface of Fig. 17. (b) Estimate of Fig. 20 (nonlinear algorithm). (c) Estimate of Fig. 21 (EKBF algorithm). (d)
Wrapped phases (the�i;j ’s) of Fig. 19.

where

(38)

(39)

(40)

Constant affecting all the terms of can be omitted. Since
(25) is a single Gaussian, there is no creation of new modes,
i.e., . Prediction is thus a bank of
discrete Kalman–Bucy prediction steps [32].

E. Filtering

To implement the filtering step (24), the representation,
given by (33), is used instead of . Since multiplying two
Gauss functions yields a third Gauss function, the result of
multiplying the th term of by the th mode of , denoted
by , is itself Gaussian; specifically

(41)

with

... (42)

...
...

...
... (43)

(44)

where is the first component of , and stands
for the element of matrix .

Equations (42) and (43) correspond, formally, to an infinite
bank of Kalman–Bucy filtering steps [weighted according
to (44)], each one guided by the (pseudo)observations
with the same data-dependent (equivalent) “noise variance”

. Notice that the covariance matrix in (43) is not
subscripted by the index, i.e., all the modes of have the
same covariance matrix.

Straight application of the filtering step would produce an
infinite number of Gaussian terms; in the implementations
described in [41] and [49], the dimension of the filter (i.e.,
the number of Gaussian terms) is controlled by the following
mechanisms.

• Each mode of is multiplied by only the nearest
modes of ; i.e., in (42), (43), and (44), ranges
over only different values. Call the multiplication
parameter.

• In the resulting function, those modes which are closer
than some threshold distance are agglutinated, while those
which weight less than another threshold are eliminated
(pruned).

Adjusting the corresponding control parameters is an important
issue which depends on many aspects of the particular model
considered. Another critical point is the choice of an estimation
criterion (cost function) considering the multimodal shape of
the filtering density; [41] and [49] adopted the minimum mean
squared error criterion which, in some cases, may not lead to
good local (modulo- ) estimates.
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(a)

(b)

Fig. 23. Error histograms corresponding to the estimates of Figs. 20 and 21;
notice the multimodal nature of the second histogram due to the2� phase
jumps.

F. Simplification

To avoid the above details and the corresponding implemen-
tation complexity, we adopt, in this paper, the simplification
next described. The key feature lies in setting the multipli-
cation parameter equal to one, . Assuming that the
prediction density is unimodal (i.e., ), the filtering
density, which is obtained by multiplying only by the
nearest mode (since ) of , will also be a single
Gaussian. Agglutination and pruning loose any sense and the
next prediction density will automatically be unimodal.
Furthermore, the Gaussianity of this filtering density implies
that the optimal estimate, with respect to any reasonable cost
function, is simply its mean.

The complete final structure of the (simplified) NLF is next
described. As just stated, assume thatis a single Gaussian

with mean and covariance matrix .
NLF Algorithm:

Step 1: Given , function of the observed
data via (10), consult the look-up table (see
Section IV-C) to find the optimal (in a minimum
Kullback divergence sense) .

Step 2: Find which mode of the representation of the
observation factor (i.e., of ) is closer to the first
component of the prediction density (see Fig. 6).

Fig. 24. Surface obtained by superimposing a Gaussian “hill” with a sample
of model (54).

Call it , where is given by

round (45)

Step 3: Correct according to

... (46)

which is (42) without the indices(since )
and (because ). This corrected value is the
estimate .

Step 4: Compute the covariance matrix according to
(43).

Step 5: Compute the parameters of the (Gaussian) predic-
tion density, as follows.

• Mean: , according to (38).

• Covariance: , accord-
ing to (39)

where contains previously obtained estimates,
according to its definition (20).

Step 6: Increment by one and go back toStep 1.
Notice that Steps 1, 2, 3, and 4 implement the filtering

operation (24), while Step 5 implements the prediction (23).
Steps 2 and 3 are illustrated in Fig. 6.

G. Extended Kalman–Bucy Filter

Assume a Gaussian prediction density, now denoted as,
with mean and covariance . The extended EKBF is
obtained by linearizing the nonlinear observation model (22)
around . As a consequence of this linearization, the sensor
factor, now denoted as , looses its multimodal structure
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Fig. 25. Reconstruction of the surface of Fig. 24, obtained by the NLF.

reducing to the Gaussian form

(47)

where is the observation noise variance at
pixel , and

(48)

The filtering density, now , is obviously also a single
Gaussian. The structure of the EKBF is next described.

EKBF Algorithm:

Step 1: Filtering. Compute the mean and covariance of the
filtering density according to

...

(49)

...
...

...
...

(50)

The state estimate at each step is, simply,
.

Step 2: Prediction.Convolving the Gaussian filtering den-
sity with (25), one has again a Gaussian pre-
diction density, , with mean and covariance
matrix given, respectively, by

(51)

(52)

Step 3: Increment by one and go back toStep 1.

Fig. 26. Reconstruction of the surface of Fig. 24, obtained by the EKBF.

Fig. 27. Profiles of the surfaces of Figs. 24–26.

V. EXPERIMENTAL RESULTS

The set of simulations next presented are not extensive nor
statistically meaningful studies. Examples have been selected
as they correspond to plausible real world situations and/or
illustrate special features of the approach and algorithms here
described.

The first experimental test considers the original im-
age/surface of Fig. 2, which was generated according to (14).
The noisy (with ) real (cosine) and imaginary (sine)
observations are presented in Fig. 3, while Fig. 4 displays the

’s (i.e., the wrapped phase values, or interferogram) and
the ’s. The estimate produced by the NLF is presented in
Fig. 7, while Fig. 8 shows the estimate obtained by the EKBF,
both visually indistinguishable from the original. However, the
errors between the original image and the estimates, whose
approximately Gaussian shaped histograms are presented in
Fig. 9, have different standard deviations: 0.485 for the NLF,
and 0.581 for the EKBF. Fig. 10 shows diagonal profiles of
the original and estimated surfaces and also of the wrapped
phase values.

The second test regards an unstable AR model,

(53)
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with the standard deviation of the driving noise set to
; a sample surface is shown in Fig. 11. The noisy observed

images are in Fig. 12; Fig. 13 shows the ’s
and the ’s. The surfaces estimated by the NLF and the
EKBF algorithms, displayed in Figs. 14 and 15, respectively,
are again visually indistinguishable. The histograms of the
errors (not shown) are again approximately Gaussian with
different standard deviations: 0.529 for the NLF and 0.621
for the EKBF. In Fig. 16, profiles obtained along line 98
of the surfaces are shown. Notice how, despite the unstable
nature of the phase surface model, both algorithms are able
to follow its absolute value. In this example, there are phase
differences between adjacent pixels exceeding; many phase
unwrapping methods often adopt the criterion that adjacent
phase values can not differ by more than. This surface could
never be recovered by such techniques.

The next example illustrates the ability of the proposed ap-
proach to reconstruct surfaces for which there is no knowledge
about the generating model. The surface to be reconstructed
was deterministically generated as the sum of two 2-D Gauss
functions, as shown in Fig. 17. The observations, with

, are shown in Fig. 18; the ’s and the ’s are displayed
in Fig. 19. The algorithms were implemented assuming the
following a priori model:

(54)

with unit variance driving noise. This simple model is enough
to express, in a formal way, the desired phase surface “continu-
ity”; i.e., that each pixel is expected to be close to the average
of its two nearest causal neighbors. The surface estimates
obtained with the NLF and the EKBF are exhibited in Figs. 20
and 21, respectively. In this example, only the NLF succeeds
in estimating the absolute phase surface, as is evident from the
profiles shown in Fig. 22 and the error histograms presented
in Fig. 23.

In the last example, a mixed situation is studied (similar
to the one in [39]); a sample of a random surface generated
according to (54) (with driving noise standard deviation

) is superimposed on a deterministic Gaussian shaped “hill”
(see Fig. 24). Both filters were implemented assuming model
(54); as in the previous example, only the NLF was able to
adequately estimate the original surface. This is clear from
the reconstructions shown in Figs. 25 and 26, and from the
profile displayed in Fig. 27.

VI. FINAL REMARKS

This paper formulated absolute phase imaging as a Bayesian
nonlinear image reconstruction problem. The considered ob-
servation model captures the essential common features of a
wide range of phase imaging techniques, appearing namely
in InSAR, MRI, optical interferometry, and diffraction to-
mography. The prior model adopted for the original image
is a nonsymmetrical half plane autoregressive (NSHP AR)
Gauss Markov random field (GMRF). A reduced order state
space formulation of this model allowed casting the problem
into a stochastic nonlinear filtering framework. Specifically,
nonlinear absolute phase estimation algorithms (studied in

[40], [41], and [49]) were adapted to this 2-D problem. The
extended Kalman–Bucy filter (EKBF), a classical approach to
stochastic nonlinear filtering, was also applied to the problem
under study.

In the four examples presented, the nonlinear filter was
able to adequately estimate absolute phase images; the EKBF
failed in two of the examples and presented about 20% higher
error standard deviation in the other two. This behavior was
expectable from what has been shown in systematic studies
on 1-D phase estimation problems (see [41] and references
therein): nonlinear filters, designed to capture essential in-
formation contained in the conditional probability density
functions, perform better than the EKBF, where linearization
of the observation model may destroy important information.

In this paper, we have not addressed the setting of the
involved model parameters, which is a critical issue of any
model-based technique. One approach to this problem, which
we intend to explore in future work, is to embed the proposed
algorithm as part of an adaptive scheme, such as those in,
e.g., [18], [19], and [37].
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