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Abstract

We describe a new method for fitting mixture models
to multivariate data which performs component selection
and does not require external initialization. The novelty of
our approach includes: an MML-like (minimum message
length) model selection criterion; inclusion of the criterion
into the expectation-maximization (EM) algorithm (increas-
ing its ability to escape from local maxima); an initializa-
tion strategy supported on the interpretation of EM as a self-
annealing algorithm.

1. Introduction

1.1. Finite Mixtures and EM

Finite mixtures (FM) are a flexible and powerful mod-
eling tool. In pattern recognition, mixtures underlie formal
approaches to unsupervised learning (clustering) [1]. FM
are also able to approximate arbitrary probability density
functions (pdf’s); this makes them well suited for modeling
complex class-conditional pdf’s in supervised learning [4].

Consider n i.i.d. samples of a (k-component) FM, y �
fy���� ����y�n�g. The log-likelihood function is
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where ��� ���� �k are the mixing probabilities, and ��k� �
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The maximum likelihood (ML) estimate, defined asb��k�� argmax��k�

L���k��y�, can not be found analyti-
cally. The same is true for the Bayesian MAP estimate,b��k�� argmax��k�

�L���k��y� � log p���k���, given some

prior p���k��. The standard alternative is the EM algorithm
which, under mild conditions, converges to a local maxi-
mum of L
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�
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�
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� log p���k��� [2].

EM is supported on the interpretation of y as incom-
plete data [2]. The missing part is a set of labels z �

fz���� ���� z�n�g, where z�i� � �z
�i�
� � ���� z
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and z�i�p � �, for p �� m, meaning that y�i� is a sample of
p�y�i�j�m�. The (complete) log-likelihood (i.e., if complete
data x � fy� zg was observed) is [2]
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The EM algorithm proceeds by alternatingly applying
two steps (until some convergence criterion is met):
� E-step: Computes the conditional expectation of

Lc, given y and b��t��k� (the current parameter estimate):

E�Lc

�
��k��y� z

�
jy� b��t��k�� � Q���k�� b��t��k��. Since Lc is

linear in the missing z�i�m ’s, this step reduces to the compu-
tation of their conditional expectations. Moreover, because
they are binary, E�z

�i�
m j�� � Pr�z�i�m � �j��; then,
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� M-step: Updates the parameter estimates according to

b��t����k� �argmax
��k�

fQ���k�� b��t��k�� � log p���k��g� (2)

If we are looking for ML estimates, rather than MAP,
log p���k�� is flat and is removed from Eq. (2).

1.2. Model Selection for Finite Mixtures
Model selection (i.e., choosing the optimal number of

components) is a central question in FM fitting. Most ap-
proaches to model selection for FM obtain a set of candidate
models (usually by EM), for a range of values of k, and then
select one according to

bk � argmin
k
fC�b��k�� k�� k��� ���� kmaxg� (3)



where C�b��k�� k� is some cost function. Several of these
methods (see [5, 6, 7]) have good model selection perfor-
mance, but a major drawback remains: a whole set of kmax

candidates has to be obtained, and well-known problems
associated with EM emerge. (a) EM is highly dependent
on initialization; a common (time-consuming) solution uses
several random starts, and then chooses the highest likeli-
hood estimate [2, 4, 6]; other schemes initialize the w �i�t�

m

variables using clustering methods [2, 4]. Smarter methods
based on merge [5], or split and merge [8], operations were
recently proposed. (b) EM may converge to the boundary of
the parameter space, i.e., one of the �m’s goes to zero and
the corresponding component becomes singular (the likeli-
hood is unbounded); when k is larger than the optimal/true
value, this may happen frequently.

Of course there is also the fully Bayesian alternative, via
MCMC, which does not suffer from these drawbacks [9];
however, despite their formal appeal, we think that MCMC-
based techniques are still far too computationally demand-
ing to be useful in pattern recognition applications.

2. Proposed Approach

2.1. The Criterion
The minimum description length (MDL [10]) and mini-

mum message length (MML [7, 11]) are two well known
criteria which have been used for FM model selection [6, 7]
in the form of Eq. (3), thus having the drawbacks mentioned
above. We propose a new approach: a selection criterion
that can be embedded in the EM algorithm, leading to an
integrated model selection and estimation procedure.

Consider a prior p���k�� k� � p���k�� p�k�, where
p���k�� is short for p���k�jk�. With p�k� � ��kmax, for
kmax known to be larger than the true k, let the simultane-
ous selection of k and estimation of � �k�, denoted d��k�, be

d��k�� arg min
k���k�

�
log jI���k��j
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�L���k��y� � log p���k��

�
�

(4)
where I���k�� � E��r�

��k�

L���k��y�� is the (expected)

Fisher information matrix, and jI�� �k��j its determinant.
This is an MML criterion (as used, e.g., in [7]), the only
difference being that we ignore the optimal quantizing lat-
tice constants, as is done in MDL [10].

Since I���k�� can not, in general, be obtained analyti-
cally, we replace it by the complete-data Fisher information
matrix Ic���k�� � E��r�

��k�

Lc���k��y� z��, which upper-

bounds1 I���k��. This matrix has block-diagonal structure,

Ic���k�� � n block-diagf��I����� � � � � �kI��k��Mg �

where I��m�, for m � �� ���� k, is the Fisher matrix for a
single observation produced by the m-th component, and
M is the Fisher matrix of a multinomial distribution.

1In matrix sense, i.e., Ic���k��� I���k�� is positive definite [2].

Since jMj � ����� � � ��k�
�� (see, e.g., [12]), we have
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(5)
where N is the dimension of the �i’s.

For p���k��, we model the parameters of different com-
ponents as a priori mutually independent and also indepen-
dent from the mixing probabilities. Formally, p�� �k�� �
p���� � � � p��k� p���� ��� �k�, where each factor is the corre-
sponding non-informative Jeffreys’ prior [12], i.e., p�� i� �p
jI��i�j and p���� ��� �k� �

p
jMj. Inserting this prior

and Eq. (5) into Eq. (4) we finally obtain
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(6)

From a Bayesian viewpoint, Eq. (6) is a MAP cri-
terion, for each k, with a Dirichlet prior p�f�mg� �
expf��N���

P
m log�mg on the mixing probabilities

(with negative parameters, thus improper [12]).

2.2. Implementation via EM

Since Dirichlet priors are conjugate to multinomial like-
lihoods [12], to implement Eq. (6) via EM, the M-step be-
comes (recall the constraints �m � � and

P
�m � �)
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The �m’s are updated by simply maximizing EM’s Q-
function with respect to them. Note that this M-step may
annihilate components; it is an explicit rule for moving from
a certain value of k to a smaller one. Accordingly, we pro-
pose to start with a large value of k, and let EM, via Eq.
(7), annihilate redundant components. Moreover, this new
M-step provides increased robustness against local minima.
For example, configurations where, say, two components
have similar parameters are problematic. Under the crite-
rion in Eq. (6), such configurations are unstable; one of
them is eventually killed. Another key feature is that the
boundary of the parameter space, for a given k, is no longer
reachable: when one of the �m’s becomes too small, it is
annihilated and the algorithm jumps to a mixture with k��
components.

It can be shown that
P

i log�i � �DKL�f��kg k f�mg�,
the Kullback-Leibler divergence between a uniform distri-
bution and the one specified by the �m’s. In other words,
our criterion favors less uniform (lower entropy) distribu-
tions, sharing the spirit of recent work in [13]. However, un-
like [13], we have a closed-form M-step and explicit com-
ponent annihilation (no additional tests).



3. The Self Annealing Behavior of EM
Deterministic annealing (DA) is a fast surrogate of

(stochastic) simulated annealing; it has been successfully
applied in many problems, namely in clustering [15, 16].

The DA approach to k-means clustering (as described
in [15]) leads to an algorithm that is similar to EM for fit-
ting mixtures of Gaussians with a common covariance ma-
trix of the form T I (where I is the identity matrix and T
is called temperature). DA clustering starts at high tem-
perature (forcing high entropy assignments); T is then low-
ered according to some cooling schedule until T � �. The
heuristic behind DA is that forcing the entropy of the assign-
ments to decrease slowly avoids premature (hard) decisions
that may correspond to poor local minima.

DA versions of EM (DAEM) have been proposed as a
means of overcoming its initialization dependence [14]. For
finite mixture fitting via EM, the average entropy of the as-
signments is given (at iteration t) by

H�t� � �
�

n
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m logw�i�t�
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In DAEM, this entropy is initially held high (by modifying
Eq. (1)), and then forced to decrease slowly [14].

In another front, self annealing (SA) was proposed in
[17] as a means of obtaining DA algorithms without pre-
specified cooling schedules. Formally, given some cost
functionE���, whose minimum is to be found with respect
to �, consider the iteration

��t��� � argmin
�

n
E��� � � d�����t��

o
� (9)

where d������ � �, and d������ � � � � � ��. The
key observation in [17] is: if � controls the entropy of the
assignments, and a high entropy initialization is used, this
iterative procedure exhibits “self annealing”. That is, due to
the presence of d��� ��, the “cooling” is self-controlled.

It turns out that Eq. (9) defines a so-called proximal point
algorithm (PPA) and it can be shown (see [18]) that EM is
a PPA with E���k�� � �L

�
��k��y

�
, � � �, and

d���k�� b��t��k�� � DKL

�
p�zjy� b��t��k�� k p�zjy���k��� �

This d��� �� function is a relative entropy involving distribu-
tions of the (missing) assignment variables: as in DA and
SA, also in EM it is the entropy of these assignments that is
being controlled. Observe also that the function being min-
imized in Eq. (9) is analogous to the Helmholtz free energy
(see [15, 16]), for unit temperature, with the relative entropy

DKL�p�zjy� b��t��k�� k p�zjy���k��� playing the role of entropy.
Accordingly, EM behaves like a SA algorithm, as long as a
high-entropy initialization is used; in the mixture case, this
simply means wi��

m � ��k � �m, where the �m are small
random perturbations (of course we can’t use w i��

m � ��k
because that is a fixed point of EM).

4. Experiments
Fig. 1 shows 900 samples of a mixture used in [14]: three

equiprobable Gaussians (means ������T� ��� ��T� ��� ��T ;
same covariance diagf�� ���g). Initialization (k � ��), two
intermediate estimates (k � 	, k � 
), and the final result
are presented. The evolution of the criterion function (Eq.
(6)) and of the entropy H�t� (note its controlled decay) are
also shown. In conclusion, for this mixture, our method suc-
cessfully overcomes the initialization issue, like DAEM in
[14]; however, it (i) does not require a cooling schedule, and
(ii) autonomously found the correct number of components.

The next example considers Gaussian mixtures to model
class-conditional densities (mixture discriminant analysis,
MDA, [4]). The specific problem we address is one with
3 (equiprobable) classes in 21-dimensional space, studied
in [4] (for details, see [4]). As in [4], the class-conditional
mixtures are fitted to sets of 300 samples (	100 per class);
the resulting MAP classifier is then tested on 500 samples.
We have compared two methods: (a) MDA based on our
new method, with diagonal covariances and initialized with
k � �; (b) MDA with 3 common covariance components
per class, estimated via EM initialized as described in [4]:
k-means clustering is run from 10 random starts and the re-
sults used to initialize EM; the best final result is then cho-
sen. Method (b) was shown in [4] to clearly outperform
both linear and quadratic discriminant analysis. The results
in Table 1 show that MDA based on our method beats MDA
as used in [4]; moreover, it does not require external initial-
ization and it adaptively selects the number of components.

Table 1. Average error rates (over 10 simula-
tions) for the methods described in the text.

Method Average (standard error)
MDA - new method ���
	 �����
�

MDA - as in [4] ����� �����
�

The final example, reported in Fig. 2, illustrates the good
performance of our method in fitting a Gaussian mixture to
an arbitrary probability density. The 900 data points were
generated with the noisy shrinking spiral model described
in [8]:� xi�

xi�
xi�

�� �

� ��� ��
ti� cos ti
���
ti � �� sin ti�

ti

���

� ni�
ni�
ni�

��
for i � �������, the ti uniformly distributed in ��� ���, and
ni�, ni�, and ni� i.i.d. zero-mean Gaussian samples.

5. Conclusions
A new unsupervised algorithm for selection and estima-

tion of finite mixture models is proposed. It is based on
an MML-type criterion and on the observation that EM ex-
hibits self-annealing. Examples have shown the good per-
formance of the approach. Future work includes further
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Figure 1. A 3-component Gaussian mixture.
The ellipses are isodensity curves of each
component. In (e) and (f), vertical dotted lines
signal the annihilation of one component.

experimental evaluation (e.g., with non-Gaussian mixtures,
and with latent variable models such as mixtures of factor
analyzers [8]).
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