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Abstract

We describe a new method for fitting mixture models
to multivariate data which performs component selection
and does not require external initialization. The novelty of
our approach includes. an MML-like (minimum message
length) model selection criterion; inclusion of the criterion
into the expectation-maximization (EM) algorithm (increas-
ing its ability to escape from local maxima); an initializa-
tion strategy supported ontheinter pretation of EM asa self-
annealing algorithm.

1. Introduction

1.1. Finite Mixturesand EM

Finite mixtures (FM) are a flexible and powerful mod-
eling tool. In pattern recognition, mixtures underlie formal
approaches to unsupervised learning (clustering) [1]. FM
are also able to approximate arbitrary probability density
functions (pdf’s); this makes them well suited for modeling
complex class-conditional pdf’s in supervised learning [4].

Consider n i.i.d. samples of a (k-component) FM, y =
{yM, ..., y™}. The log-likelihood function is
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where aq, ..., a;, are the mixing probabilities, and G(k) =
{64,...,0r,a1,...,ap,_1 }; notice that oy, = 1 Zm 1 Q.
__ The maximum likelihood (ML) estimate, defined as
O = arg maxg L(B(),y), can not be found analyti-
cally. The same is true for the Bayesian MAP estimate,
" [L(O(k),y) + log p(B(x))], given some
prior p(@ ). The standard alternative is the EM algorithm
which, under mild conditions, converges to a local maxi-
mum of L0 1),y) or [L (B(x),y) +logp(Bx))] [2].

b\(k) = argmaxg
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EM is supported on the interpretation of y as incom-
plete data [2]. The missing part is a set of labels z =

(00, s, where 0 = (4., 2{0), wit o) = 1
and 2} = 0, for p # m, meaning that y 9 is a sample of

p(y'?|0,,). The (complete) log-likelihood (i.e., if complete

datax = {y,z} was observed) is [2]

n
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The EM algorithm proceeds by alternatingly applying
two steps (until some convergence criterion is met):
e E-step: Computes the conditional expectation of

L., given y and @EZ)) (the current parameter estimate):
), ~(t) .
E[Lc (O(x),y,2) |y, 0)] = Q(O(x),0y))- Since L. is

linear in the missing z, @ ’s, this step reduces to the compu-
tation of their conditional expectations. Moreover, because

they are binary, E[z,(,? |-] = Pr[z,(,? = 1|-]; then,
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e M-step: Updates the parameter estimates according to
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If we are looking for ML estimates, rather than MAP,
log p(6(1)) is flat and is removed from Eq. (2).

1.2. Model Selection for Finite Mixtures

Model selection (i.e., choosing the optimal number of
components) is a central question in FM fitting. Most ap-
proaches to model selection for FM obtain a set of candidate
models (usually by EM), for a range of values of &, and then
select one according to

k = arg mkin{c@k),k), k=1, ..., kmax}, 3)



where C(a(k),k) is some cost function. Several of these
methods (see [5, 6, 7]) have good model selection perfor-
mance, but a major drawback remains: a whole set of & max
candidates has to be obtained, and well-known problems
associated with EM emerge. (a) EM is highly dependent
on initialization; a common (time-consuming) solution uses
several random starts, and then chooses the highest likeli-
hood estimate [2, 4, 6]; other schemes initialize the wﬁ,’;t)
variables using clustering methods [2, 4]. Smarter methods
based on merge [5], or split and merge [8], operations were
recently proposed. (b) EM may converge to the boundary of
the parameter space, i.e., one of the a,,,’s goes to zero and
the corresponding component becomes singular (the likeli-
hood is unbounded); when £ is larger than the optimal/true
value, this may happen frequently.

Of course there is also the fully Bayesian alternative, via
MCMC, which does not suffer from these drawbacks [9];
however, despite their formal appeal, we think that MCMC-
based techniques are still far too computationally demand-
ing to be useful in pattern recognition applications.

2. Proposed Approach

2.1. TheCriterion

The minimum description length (MDL [10]) and mini-
mum message length (MML [7, 11]) are two well known
criteria which have been used for FM model selection [6, 7]
in the form of Eq. (3), thus having the drawbacks mentioned
above. We propose a new approach: a selection criterion
that can be embedded in the EM algorithm, leading to an
integrated model selection and estimation procedure.

Consider a prior p(@),k) = p(@x)p(k), where
p(0(1y) is short for p(0)|k). With p(k) = 1/kmax, for
kmax known to be larger than the true £, let the sirﬂu\ltane—
ous selection of £ and estimation of @ ;, denoted 64, be

— log |I(6
0(r) = arg min {70g| Ow)l —L(Ow),y) — logp(H(k))}
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where I(0;)) = E[—V20 L(0(),y)] is the (expected)
(k)

Fisher information matrix, and [I(6 ))| its determinant.
This is an MML criterion (as used, e.g., in [7]), the only
difference being that we ignore the optimal quantizing lat-
tice constants, as is done in MDL [10].

Since I(6;)) can not, in general, be obtained analyti-
cally, we replace it by the complete-data Fisher information
matrix L.(6x)) = E[—VQH(k)LC(H(k),y, z)], which upper-

bounds! I(6)y,). This matrix has block-diagonal structure,
I.(0(1)) = n block-diag {a11(01), . .., ax1(0y), M},

where I(0,,,), for m = 1,..., k, is the Fisher matrix for a
single observation produced by the m-th component, and
M is the Fisher matrix of a multinomial distribution.

LIn matrix sense, i.e., L:(0(x)) — I(O (1)) is positive definite [2].

Since M| = (ajas - - o) (see, eg., [12]), we have
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where N is the dimension of the 8;’s.

For p(0 1)), we model the parameters of different com-
ponents as a priori mutually independent and also indepen-
dent from the mixing probabilities. Formally, p(8 () =
p(01) -+ - p(Oy) p(a, .., ay ), where each factor is the corre-
sponding non-informative Jeffreys’ prior [12], i.e,, p(0 ;) x

|1(0;)| and p(a1, .., ax) < +/|M]|. Inserting this prior
and Eqg. (5) into Eq. (4) we finally obtain

k
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From a Bayesian viewpoint, Eq. (6) is a MAP cri-
terion, for each k, with a Dirichlet prior p({a,,}) «
exp{—(N/2) )", loga,} on the mixing probabilities
(with negative parameters, thus improper [12]).

2.2. Implementation via EM

Since Dirichlet priors are conjugate to multinomial like-
lihoods [12], to implement Eq. (6) via EM, the M-step be-
comes (recall the constraints a,, > 0and > a,, = 1)

max {0, (Z wﬁn’t)> )
a(t+1) — =1
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The 6,,’s are updated by simply maximizing EM’s -
function with respect to them. Note that this M-step may
annihilate components; it is an explicit rule for moving from
a certain value of £ to a smaller one. Accordingly, we pro-
pose to start with a large value of &, and let EM, via Eq.
(7), annihilate redundant components. Moreover, this new
M-step provides increased robustness against local minima.
For example, configurations where, say, two components
have similar parameters are problematic. Under the crite-
rion in Eg. (6), such configurations are unstable; one of
them is eventually killed. Another key feature is that the
boundary of the parameter space, for a given k, is no longer
reachable: when one of the «,,’s becomes too small, it is
annihilated and the algorithm jumps to a mixture with k£ — 1
components.

It can be shown that ), log a; oc =Dy [{1/k} || {am }],
the Kullback-Leibler divergence between a uniform distri-
bution and the one specified by the «,,,’s. In other words,
our criterion favors less uniform (lower entropy) distribu-
tions, sharing the spirit of recent work in [13]. However, un-
like [13], we have a closed-form M-step and explicit com-
ponent annihilation (no additional tests).



3. The Self Annealing Behavior of EM

Deterministic annealing (DA) is a fast surrogate of
(stochastic) simulated annealing; it has been successfully
applied in many problems, namely in clustering [15, 16].

The DA approach to k-means clustering (as described
in [15]) leads to an algorithm that is similar to EM for fit-
ting mixtures of Gaussians with a common covariance ma-
trix of the form T'I (where I is the identity matrix and 7'
is called temperature). DA clustering starts at high tem-
perature (forcing high entropy assignments); 7" is then low-
ered according to some cooling schedule until 7" ~ 0. The
heuristic behind DA is that forcing the entropy of the assign-
ments to decrease slowly avoids premature (hard) decisions
that may correspond to poor local minima.

DA versions of EM (DAEM) have been proposed as a
means of overcoming its initialization dependence [14]. For
finite mixture fitting via EM, the average entropy of the as-
signments is given (at iteration t) by

n k
1 ) .
H(t) = - § : § : w(b log w(bh). (8)

i=1 m=1

In DAEM, this entropy is initially held high (by modifying
Eq. (1)), and then forced to decrease slowly [14].

In another front, self annealing (SA) was proposed in
[17] as a means of obtaining DA algorithms without pre-
specified cooling schedules. Formally, given some cost
function E(¢), whose minimum is to be found with respect
to ¢, consider the iteration

(t+1) — argmin { E(¢) + 3d , ®) , 9
@) = argmin {E(¢) + 8(8, 6}, ©)

where d(¢, ¢') > 0, and d(¢p,¢') = 0 & ¢ = ¢'. The
key observation in [17] is: if ¢ controls the entropy of the
assignments, and a high entropy initialization is used, this
iterative procedure exhibits “self annealing”. That is, due to
the presence of d(-, -), the “cooling” is self-controlled.

It turns out that Eq. (9) defines a so-called proximal point
algorithm (PPA) and it can be shown (see [18]) that EM is
a PPA with E(H(k)) = —L(H(k),y), 8 =1,and

~(t) ~(t)
d(O1),0(1)) = Du |P(2ly,01)) || P(2]y, O k)

This d(-, -) function is a relative entropy involving distribu-
tions of the (missing) assignment variables: as in DA and
SA, also in EM it is the entropy of these assignments that is
being controlled. Observe also that the function being min-
imized in Eq. (9) is analogous to the Helmholtz free energy
(see [15, 16]), for unit temperature, with the relative entropy

D p(zly, B || p(ly, 8x))] playing the role of entropy.
Accordingly, EM behaves like a SA algorithm, as long as a
high-entropy initialization is used; in the mixture case, this
simply means wi? = 1/k + &, where the &, are small
random perturbations (of course we can’t use w’? = 1/k
because that is a fixed point of EM).

4. Experiments

Fig. 1 shows 900 samples of a mixture used in [14]: three
equiprobable Gaussians (means [0, —2]7, [0, 0]%, [0, 2]7;
same covariance diag{2, 0.2}). Initialization (k¢ = 10), two
intermediate estimates (k = 8, k£ = 5), and the final result
are presented. The evolution of the criterion function (Eq.
(6)) and of the entropy H (t) (note its controlled decay) are
also shown. In conclusion, for this mixture, our method suc-
cessfully overcomes the initialization issue, like DAEM in
[14]; however, it (i) does not require a cooling schedule, and
(i) autonomously found the correct number of components.

The next example considers Gaussian mixtures to model
class-conditional densities (mixture discriminant analysis,
MDA, [4]). The specific problem we address is one with
3 (equiprobable) classes in 21-dimensional space, studied
in [4] (for details, see [4]). As in [4], the class-conditional
mixtures are fitted to sets of 300 samples (~100 per class);
the resulting MAP classifier is then tested on 500 samples.
We have compared two methods: (a) MDA based on our
new method, with diagonal covariances and initialized with
k = 7; (b) MDA with 3 common covariance components
per class, estimated via EM initialized as described in [4]:
k-means clustering is run from 10 random starts and the re-
sults used to initialize EM; the best final result is then cho-
sen. Method (b) was shown in [4] to clearly outperform
both linear and quadratic discriminant analysis. The results
in Table 1 show that MDA based on our method beats MDA
as used in [4]; moreover, it does not require external initial-
ization and it adaptively selects the number of components.

Table 1. Average error rates (over 10 simula-
tions) for the methods described in the text.

Method Average (standard error)
MDA - new method 0.158 (0.005)
MDA - as in [4] 0.167 (0.005)

The final example, reported in Fig. 2, illustrates the good
performance of our method in fitting a Gaussian mixture to
an arbitrary probability density. The 900 data points were
generated with the noisy shrinking spiral model described

in [8]:
i (13 — 0.5t;) cost; nj
zy | = | (0.5 — 13)sint;, | + | nh
T t; ng

for i = 1...900, the ¢; uniformly distributed in [0, 47], and
nY, n, and n} i.i.d. zero-mean Gaussian samples.

5. Conclusions

A new unsupervised algorithm for selection and estima-
tion of finite mixture models is proposed. It is based on
an MML-type criterion and on the observation that EM ex-
hibits self-annealing. Examples have shown the good per-
formance of the approach. Future work includes further
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Figure 1. A 3-component Gaussian mixture.
The ellipses are isodensity curves of each
component. In (e) and (f), vertical dotted lines
signal the annihilation of one component.

experimental evaluation (e.g., with non-Gaussian mixtures,

and

with latent variable models such as mixtures of factor

analyzers [8]).

References

[1]
(2]
(3]

[4]

[5]

[6]

[7]

A. Jain and R. Dubes, Algorithms for Clustering Data. En-
glewood Cliffs: Prentice Hall, 1988.

G. McLachlan and K. Basford, Mixture Models: Inference
and Application to Clustering. Marcel Dekker, 1988.

D. Titterington, A. Smith, and U. Makov, Satistical Analy-
sis of Finite Mixture Distributions. Chichester (U.K.): John
Wiley & Sons, 1985.

T. Hastie and R. Tibshirani, “Discriminant analysis by Gaus-
sian mixtures,” Journal of the Royal Statistical Society (B),
vol. 58, pp. 155-176, 1996.

M. Figueiredo, J. Leitdo, and A. K. Jain, “On fitting mix-
ture models,” in Energy Minimization Methods in Computer
Vision and Pattern Recognition (E. Hancock and M. Pellilo,
eds.), pp. 54-69, Springer Verlag, 1999.

S. Roberts, D. Husmeier, . Rezek, W. Penny, “Bayesian ap-
proaches to Gaussian mixture modelling,” IEEE Trans. on
PAMI, vol. 20, pp. 1133-1142, 1998.

J. Oliver, R. Baxter, and C. Wallace, “Unsupervised learn-
ing using MML,” in Proc. of the 13th Int. Conf. on Machine
Learning, (San Francisco), pp. 364-372, 1996.

[17] A. Rangarajan, “Self annealing:

(b)

(@ Initialization
Data
1
10
0 0
-10 >0
(c)
. 1 2D
E]:nla)t 0r(d) projection
. 5
0
10 ®
10
5 B
5 10
-10"10 0 5 0 5 10 15

Figure 2. The 3D noisy shrinking spiral. The
line segments in (b) and (c) are the axes of

the isodensity ellipsoids. A 2D projection of

(c) (with isodensity curves) is shown in (d).

[8] N. Ueda, R. Nakano, Z. Gharhamani, and G. Hinton,

“SMEM algorithm for mixture models,” Neural Computa-
tion. To appear.

[9] S. Richardson and P. Green, “On Bayesian analysis of mix-

tures with unknown number of components,” Journal of the
Royal Statistical Society B, vol. 59, pp. 731-792, 1997.

[10] J. Rissanen, Sochastic Complexity in Sastistical Inquiry.

Singapore: World Scientific, 1989.

[11] C. Wallace and P. Freeman, “Estimation and inference via

compact coding,” Journal of the Royal Statistical Society (B),
vol. 49, no. 3, pp. 241-252, 1987.

[12] J. Bernardo and A. Smith, Bayesian Theory. Chichester, UK:

J. Wiley & Sons, 1994.

[13] M. Brand, “Structure learning in conditional probability

models via entropic prior and parameter extinction,” Neural
Computation, vol. 11, pp. 1155-1182, 1999.

[14] N. Ueda and R. Nakano, “Deterministic annealing EM algo-

rithm,” Neural Networks, vol. 11, pp. 271-282, 1998.

[15] K. Rose, “Deterministic annealing for clustering, compres-

sion, classification, regression, and related optimization
problems,” Proc. of the |EEE, vol. 86, pp. 2210-2239, 1998.

[16] T. Hofmann and J. Buhmann, “Pairwise data clustering by

deterministic annealing,” |EEE Trans. on PAMI, vol. 19,
pp. 1-14, January 1997.

unifying deterministic
annealing and relaxation labeling,” in Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition
(M. Pellilo and E. Hancock, eds.), pp. 229-244, Springer
Verlag, 1997.

[18] S. Chretien and A. Hero, “Kullback proximal algorithms for

maximum likelihood estimation,” Submitted to |EEE Trans.
on Info. Theo., 1999.



