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Abstract
Co-training improves multi-view classifier learn-
ing by enforcing internal consistency between
the predicted classes of unlabeled objects based
on different views (different sets of features for
characterizing the same object). In some applica-
tions, due to the cost involved in data acquisition,
only a subset of features may be obtained for
many unlabeled objects. Observing additional
features of objects that were earlier incompletely
characterized, increases the data available for co-
training, hence improving the classification accu-
racy. This paper addresses the problem of active
learning of features: which additional features
should be acquired of incompletely characterized
objects in order to maximize the accuracy of the
learned classifier? Our method, which extends
previous techniques for the active learning of la-
bels, is experimentally shown to be effective in a
real-life multi-sensor mine detection problem.

1. Motivation

A fundamental assumption in the field of classifier design
is that it is costly to acquire labels; after all, if label acqui-
sition were cheap, we would have little need for classifiers
because we could simply acquire labels as and when we
needed them. But how does the situation change when it is
also costly to acquire features? This paper aims to answer
this question. We begin with a little more motivation.

In the simplest setting for classifier design, each object has
been characterized by a vector of features and a label, as

schematically depicted in Figure 1a. Assuming that labels
are indeed costly to acquire, we can imagine relaxing this
setting so that each object has been characterized by a vec-
tor of features, but only a small subset of the objects has
been labeled. If we are not permitted to acquire additional
labels for the unlabeled data, as shown in Figure 1b, we are
in a semi-supervised learning setting (Belkin et al., 2004;
Blum & Chawla, 2001; Corduneanu & Jaakkola, 2004; In-
oue & Ueda, 2003; Joachims, 1999; Joachims, 2003; Kr-
ishnapuram et al., 2004; Nigam et al., 2000; Seeger, 2001;
Zhu et al., 2003); on the other hand, if weare permitted to
label some of the unlabeled data (Figure 1c), we are in an
active learning setting (MacKay, 1992; Muslea et al., 2000;
Krishnapuram et al., 2004; Tong & Koller, 2001).

Expanding this framework still further, sometimes the ob-
jects to be classified can be characterized by vectors of fea-
tures in multiple independent ways; we will call each of
these characterizations aview. For example, a web page
may be described either using the words it contains or the
set of words in the links pointing to it. A person may be
identified on the basis of facial features in an image, speech
patterns in an audio recording, or characteristic motions in
a video. Buried mines may be investigated using radar,
sonar, hyper-spectral, or other kinds of physical sensors.
Assuming that only a small subset of the objects has been
labeled and that no further labels may be acquired (Fig-
ure 1d), we are in the setting of the original co-training
algorithm of Blum and Mitchell (1998), which has been
extended in a number of interesting directions in subse-
quent work (Brefeld & Scheffer, 2004; Collins & Singer,
1999; Dasgupta et al., 2001; Balcan et al., 2004). In partic-
ular, we recently reformulated co-training using a prior ina
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Figure 1.Schematic depiction of different settings. Throughout, rows correspond to objects, wide boxes to feature matrices, and narrow
boxes to vectors of class labels; black shading indicates available data, blue shading indicates missing data that can be acquired, and
whitespace indicates missing data that cannot be acquired. (a) Each object is characterized by one set of features and one label: super-
vised learning. (b) Some objects are missing labels that cannot be acquired: semi-supervised learning. (c) Some objects are missing
labels that can be acquired: active learning of labels. (d) Objects can becharacterized by more than one view, but some are missing labels
that cannot be acquired: co-training. (e) Same as (d) but labels can be acquired: active learning of labels with co-training (Krishnapuram
et al., 2004). (f) Some objects have not been labeled and not all objects have been characterized in all views: active learning of features
and labels (this paper).

Bayesian context (Krishnapuram et al., 2004). This refor-
mulation is based on logistic regression, yielding a convex
objective function with a unique local optimum.

As shown in (Krishnapuram et al., 2004), our formulation
enables us to consider active learning settings in which we
are now permitted to label some of the unlabeled data, as
depicted in Figure 1e. But this same formulation also en-
ables us to consider a new setting in which each object may
be characterized by only a subset of available views. This
can occur in real-life when features are also costly to ac-
quire, as is often the case when physical sensors need to
be deployed for each view of an object. If new views may
be acquired for any object, as depicted in Figure 1f, how
should we decide which view to acquire? And what is the
relative benefit of acquiring features versus labels?

In terms of previous work, while several authors have pro-
vided criteria for deciding which objects should be labeled
(the setting of Figures 1c and 1e), we seek to answer a
new question: which incompletely characterized objects
(whether labeled or unlabeled) should be further investi-
gated in order to most accurately learn a classifier? To
the best of our knowledge, despite its clear importance,
the latter question has not been formally addressed before.
A few authors have developed intuitive but somewhatad
hocapproaches for acquiring features only for labeled ob-
jects (Melville et al., 2004; Zheng & Padmanabhan, 2002),
but we believe this is the first approach for feature acquisi-
tion on both labeled and unlabeled objects.

Section 2 summarizes the probabilistic model for multi-
view classifier design that we inherit from Krishnapuram

et al. (2004). Section 3 explains the information-theoretic
background for the criteria developed in Sections 4 and 5
for active label acquisition and active feature acquisition,
respectively. Experimental results are provided in Section 6
and a summary of our conclusions in Section 7.

2. Probabilistic model

2.1. Notation

For notational simplicity, we focus on two-class problems
for objects characterized by two views; the proposed meth-
ods extend naturally to multi-class and multi-view prob-
lems. Since we have only two views, we’ll use dot notation
to indicate them: leṫxi ∈ R

d1 andẍi ∈ R
d2 be the feature

vectors obtained from the two views of thei-th object. Let
xi = [ẋT

i
, ẍT

i
]T be thed-dimensional (d = d1 + d2) vec-

tor containing the concatenation of the feature vectors from
both views (with appropriate missing values if an object has
not been characterized in both views).

In addition to the features in the two views, binary class
labels are also collected for a subset of objects; the label
of the i-th object is denoted asyi ∈ {−1, 1}. The set
of L labeled objects isDL = {(xi, yi) : xi ∈ R

d, yi ∈
{−1, 1}}L

i=1, while the set ofU unlabeled objects isDU =
{xi : xi ∈ R

d}L+U

i=L+1
. Thus, the available training data is

Dtrain = DL

⋃
DU .

Let Ṡ, S̈, and ˙̈S = Ṡ
⋂
S̈ denote, respectively, the sets

containing the indices of objects characterized by sensor
1, sensor2, and both. The indices of the corresponding

labeled and unlabeled objects are denoted asṠL, S̈L, ˙̈SL
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andṠU , S̈U , ˙̈SU .

2.2. Multi-view logistic classification

In binary logistic regression, the predicted class probabil-
ities are modeled using the well-known logistic function
σ (z) = (1 + exp(−z))−1. For example, in the first view,

P
(
yi

∣∣∣ ẋi, ẇ
)

= σ
(
yiẇ

T ẋi

)
, (1)

whereẇ is the classifier weight vector for the first view.
A similar expression holds for the second view. Denot-
ing w = [ẇT , ẅT ]T , we can find the maximum likelihood
(ML) estimate of the classifiers for both sensorsŵML , by
maximizing the overall log-likelihood,

ℓ(w) = ℓ1(ẇ) + ℓ2(ẅ),

where

ℓ1(ẇ) =
∑

i∈ ṠL

log P
(
yi

∣∣∣ ẋi, ẇ
)

,

ℓ2(ẅ) =
∑

i∈ S̈L

log P
(
yi

∣∣∣ ẍi, ẅ
)

.

Given a priorp(w), we can find the maximuma posteri-
ori (MAP) estimateŵMAP by maximizing the log-posterior
L(w) = ℓ(w) + log p(w). Clearly, ML estimation can
be accomplished by independently maximizing the log-
likelihoods for each sensor,ℓ1(ẇ) andℓ2(ẅ). If the prior
factorizes asp(w) = p1(ẇ) p2(ẅ) (i.e. , it modelsẇ and
ẅ as a priori independent) we can clearly still perform
MAP estimation of the two classifiers separately. However,
if p(w) expresses some dependence betweenẇ and ẅ,
both classifiers must be trained simultaneously by jointly
maximizingL(w). In this case, the classifier learned for
each sensor also depends on the data from the other sensor.
This provides a Bayesian mechanism for sharing informa-
tion and thus exploiting synergies in learning classifiers for
different sensors.

2.3. Co-training priors

The standard means of coordinating information from both
sensors is by using the concept ofco-training (Blum &

Mitchell, 1998): on the objects with indices in̈̇SU , the two
classifiers should agree as much as possible. In a logistic
regression framework, the disagreement between the two

classifiers on the objects in̈̇S can be measured by
∑

i∈ ˙̈SU

(
ẇT ẋi − ẅT ẍi

)2
= wT

C w, (2)

whereC =
∑

i∈ ˙̈SU

[ẋT

i
,−ẍT

i
]T [ẋT

i
,−ẍT

i
]. This suggests

the following Gaussian “co-training prior”

p(w) = p(ẇ, ẅ) ∝ exp
{
−(λco/2) wT

Cw
}

. (3)

This co-training prior can be combined with othera pri-
ori information, also formulated in the form of Gaussian
priors, derived from labeled and unlabeled data using the
formulation in (Krishnapuram et al., 2004). Formally,

p(w|λ) = N
(
w

∣∣∣ 0; (∆prior(λ))
−1

)
, (4)

where the prior precision matrix∆prior(λ), which is a func-
tion of a set of parameters (includingλco) collected in vec-
tor λ, is

∆prior(λ) = Λ + λcoC +

[
λ̇∆̇ 0

0 λ̈∆̈

]
(5)

with Λ = diag{λ1, ..., λd}; finally

∆̇ =
∑

i,j∈Ṡ,i>j

K̇ij (ẋi − ẋj) (ẋi − ẋj)
T

is the precision matrix for semi-supervised learning derived
in Krishnapuram et al. (2004), and̈∆ is a similar expres-
sion. All the parameters inλ formally play the role of
inverse variances; thus, they are given conjugate gamma
hyper-priors. If we leṫλ = λ̈ = λ0, then we have:

p
(
λ0

∣∣∣ α0, β0

)
= Ga

(
λ0

∣∣∣ α0, β0

)
,

p
(
λi

∣∣∣ α1, β1

)
= Ga

(
λi

∣∣∣ α1, β1

)
,

p
(
λco

∣∣∣ αco, βco

)
= Ga

(
λco

∣∣∣ αco, βco

)
.

Under this formulation, it is possible to interpretλ as a
hidden variable and write a generalized EM (GEM) algo-
rithm for obtaining an MAP estimatêwMAP. It is easy to
check that the complete-data log-likelihood is linear with
respect toλ; thus, in each iteration of the GEM algorithm,
the E-step reduces to the computation of the conditional
expectation ofλ given the current parameter estimate and
the observed data (this can be done analytically due to con-
jugacy). The (generalized) M-step then consists of maxi-
mizing a lower bound on the complete log-likelihood (see
(Böhning, 1992)) to obtain the new classifier estimate. The
steps are repeated until some convergence criterion is met.

3. Information-theoretic criteria for active
data acquisition

This section is devoted to answering the following ques-
tion: what additional information should be added toDtrain

so that the classifier parametersw are learned most accu-
rately, at minimum expense? Observe that there are several
ways in whichDtrain can be augmented: (1) label infor-
mationyi for a previously unlabeled objectxi ∈ DU ; (2)

features from sensor1 for anunlabeledobjecti ∈ S̈U \ ˙̈SU

(i.e., such that sensor 2 has been acquired, but 1 has not);
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(3) features from sensor2 for an unlabeledobject i ∈

S1
U
\ ˙̈SU ; (4) and (5) same as (2) and (3), but for labeled

objects. In this section, we show how information-theoretic
tools can be used to choose the best object to be queried for
further information under each scenario.

3.1. Laplace approximation for the posterior density

Ignoring the hyper-priors on the regularizerλ (i.e. , assum-
ing a fixedλ), after estimating a classifier̂wMAP from train-
ing dataDtrain, a Laplace approximation models the poste-
rior densityp(w|Dtrain) as a Gaussian

p(w|Dtrain) ≈ N
(
w|ŵMAP; (∆post)

−1
)
. (6)

Under the logistic log-likelihood and the Gaussian prior
(4) herein considered, the posterior precision matrix of the
Laplace approximation is given by:

∆post = ∆prior(λ) + Ψ (7)

where∆prior(λ) is the prior precision matrix in (5) and
Ψ = block-diag{Ψ̇, Ψ̈} is the Hessian of the negative log-
likelihood (see,e.g., (Böhning, 1992)) where

Ψ̇ =
∑

i∈ṠL

ṗi (1 − ṗi) ẋiẋ
T

i
,

with ṗi = σ
(
ẇT ẋi

)
; a similar expression holds for̈Ψ.

The differential entropy of the Gaussian posterior under the
Laplace approximation is thus (| · | denotes determinant)

h(w) = −
1

2
log

|∆post|

2πe
. (8)

3.2. Mutual information

After estimating a classifierŵMAP from Dtrain, the
(un)certainty in the labelyi predicted for an unlabeled
object xi ∈ DU is given by the logistic model (1):
P (yi|xi, ŵMAP). For a object (labeled or not) for which

we haveẋi but notẍi (i ∈ Ṡ \ ˙̈S), the uncertainty in the
latter can be modeled by some representation ofp(ẍi|ẋi)

learned from the training objects in̈̇S.

The mutual information (MI) betweenw andyi is theex-
pecteddecrease in entropy ofw whenyi is observed,

I (w; yi) = h(w) − E [h(w|yi)]

= E
[
log

∣∣∆yi

post

∣∣] − log |∆post| ,
(9)

where the expectation is w.r.tyi with probability distribu-
tion P (yi|xi, ŵMAP), while∆

yi

post is the posterior precision
matrix of the re-trained classifier after observingyi.

Similarly, the MI betweenw and a previously unobserved

featureẍi (for i ∈ Ṡ \ ˙̈S) is given by

I (w; ẍi) = h(w) − E [h(w|ẍi)|ẋi]

= E

[
log |∆ẍi

post|
∣∣∣ ẋi

]
− log |∆post|,

(10)

where the expectation is over the uncertaintyp(ẍi|ẋi) and
∆

ẍi

post is the posterior precision matrix of the retrained clas-
sifier after seeing features from sensor2 for objecti.

The maximum MI criterion has been used before to iden-
tify the “best” unlabeled object for which to obtain an ad-
ditional label (MacKay, 1992):

i∗ = arg max
i:xi∈DU

I (w; yi) = arg max
i:xi∈DU

E
[
log

∣∣∆yi

post

∣∣] .

(11)
Based on the same criterion, the best object for which to
acquire sensor 2 features—amongṠ \ S̈ for which we have
features from sensor 1, but not sensor 2—would be

i† = arg max
i∈Ṡ\ ˙̈S

E

[
log |∆ẍi

post|
∣∣∣ ẋi

]
. (12)

3.3. Upper bound on mutual information

Unfortunately,E[log |∆ẍi

post|] is very difficult to compute
for our models. Alternatively, we compute an upper bound
and use it in the maximum MI criterion just presented.
Since the functionlog |X| is concave (Boyd & Vanden-
berghe, 2003), by Jensen’s inequality we obtain

E [log |X|] ≤ log |E [X]| . (13)

Hence, our sample selection criterion will be

i† = arg max
i∈Ṡ\ ˙̈S

∣∣∣E
[
∆

ẍi

post

∣∣∣ ẋi

]∣∣∣ , (14)

instead of the original (12). Intuitively, we try to maximize
the expected posterior precision of the parameters.

3.4. Simplifying assumptions

We make two simplifying assumptions, fundamental in
making our approach practical for real-life problems.

Assumption 1: Let the posterior density of the parame-
ters, given the original training dataDtrain, bep(w|Dtrain).
Consider that we obtain additional featuresẍi, for some

i ∈ Ṡ\ ˙̈S and retrain the classifier, obtaining a new posterior
p(w|Dtrain, ẍi). When computing the utility of̈xi, we as-
sume that the the modes ofp(w|Dtrain, ẍi) andp(w|Dtrain)
coincide, although their precision matrices may not. It
turns out that it will be possible to obtain the new preci-
sions, without actually re-training, which would be very
computationally expensive. It is important to highlight that,
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after a “best” indexi† is chosen (under this simplifying as-
sumption), we actually observëxi† and re-train the clas-
sifier, thus updating the mode of the posterior. Since this
re-training is done only once for each additional feature ac-
quisition, tremendous computational effort is saved.

The same assumption is made for label acquisition.

Assumption 2: For the purpose of computing the utility of
acquiring some new data (a label or a set of features), we
treatλ as deterministic, and fixed at the value of its expec-
tation after convergence of the GEM algorithm mentioned
in Section 2.3. This value is substituted in (7) to compute
the entropy and the mutual information.

4. Acquiring additional labels

For the sake of completeness, we now review the approach
in Krishnapuram et al. (2004) for acquiring labels.

According to Assumption 1, the MAP estimatêwMAP does
not change whenDtrain is augmented with a new labelyi;
consequently, the class probability estimates are also un-
changed. Based on (7), if we obtain the labelyi, for some
xi ∈ DU , regardless of whetheryi = −1 or yi = 1, the
posterior precision matrix becomes

∆
yi

post = ∆post+ ṗi (1 − ṗi)

[
ẋi

0

] [
ẋi

0

]T

+ p̈i (1 − p̈i)

[
0

ẍi

] [
0

ẍi

]T
(15)

The unlabeled object maximizing|∆yi

post| is thus queried for
its label. Intuitively, this favors objects with uncertainclass
probability estimates (̇pi and/orp̈i close to1/2).

5. Acquiring additional features

In this section we show how to computeE[∆ẍi

post|ẋi], which
is needed to implement the criterion in (14). Due to sym-
metry, E[∆ẋi

post|ẍi] is computed in a similar fashion, and
hence will not be explicitly described. Two different cases
must be studied: whenxi is labeled or unlabeled.

5.1. Additional features for unlabeled objects

Equation (7) shows that if we acquirëxi on a object previ-
ously characterized bẏxi, matrix∆

ẍi

post becomes

∆
ẍi

post = ∆post+ λ̈
∑

j∈S̈

K̈ij

[
0 0

0 Sij

]

+ λco

[
ẋiẋ

T

i
−ẋiẍ

T

i

−ẍiẋ
T

i
ẍiẍ

T

i

]
, (16)

where

Sij = ẍiẍ
T

i
− ẍiẍ

T

j

− ẍjẍ
T

i
+ ẍjẍ

T

j
. (17)

To compute the conditional expectationE[∆ẍi

post|ẋi] (see
(14)) we need a model forp(ẍi|ẋi). To this end, we use
a Gaussian mixture model (GMM) to represent the joint
density:

p(ẍi, ẋi) =
∑

c

πc N
(
ẋ|µ̇

c
, Σ̇c

)
N

(
ẍ|µ̈

c
, Σ̈c

)
.

Notice that, although using component-wise independence,
this joint GMM globally models the dependency between
ẋ and ẍ. From this joint GMM, it is straightforward to
derive the conditionalp(ẍi|ẋi), which is also a GMM, with
weights that depend oṅx:

p(ẍ|ẋ) =
∑

c

π′
c
(ẋ)N

(
ẍ|µ̈

c
, Σ̈c

)
. (18)

Further, theK̇ij andK̈ij are set to Gaussian kernels;e.g.,

K̇ij = N (ẋi|ẋj ,Σκ) . (19)

Using (18), (19) and standard Gaussian identities, the re-
quired expectations are obtained analytically:

E [ẍi|ẋi] =
∑

c

π′
c
(ẋi) µ̈

c
= m1

E
[
ẍiẍ

T

i

∣∣ ẋi

]

=
∑

c

π′
c
(ẋi)

(
µ̈

c
µ̈T

c
+ Σ̈c

)
= M2

E

[
K̈ij

∣∣∣ ẋi

]
=

∑

c

π′
c
(ẋi) zcj = m3j

E

[
K̈ijẍi

∣∣∣ ẋi

]
=

∑

c

π′
c
(ẋi) zcj µ

cj
= m4j

E

[
K̈ijẍiẍ

T

i

∣∣∣ ẋi

]

=
∑

c

π′
c
(ẋi) zcj

(
µ̈

cj
µ̈T

cj
+ Λc

)
= M5j .

where

Λc =
(
Σ̈

−1

c
+ Σ

−1
κ

)−1

µ
cj

= Λc

(
Σ̈

−1

c
µ̈

c
+ Σ

−1
κ

ẍj

)
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and

zcj = (2π)−d/2 |Λc|
1/2|Σ̈c|

−1/2|Σκ|
−1/2

exp

{
−

µ̈T

c
Σ̈

−1

c µ̈
c
+ ẍT

j Σ
−1

κ ẍj − µT

cj
Λ

−1

c µ
cj

2

}
.

Finally,

E

[
∆

ẍi

post

∣∣∣ ẋi

]
= ∆post+ λ̈

∑

j∈ S̈

[
0 0

0 Sij

]

+ λco

[
ẋiẋ

T

i
−ẋim

T

1

−m1ẋ
T

i
M2

]
, (20)

where

Sij = m3jẍjẍ
T

j
− ẍjm

T

4j
− m4jẍ

T

j
+ M5j .

Substituting (20) into (14) gives us our selection criterion.

5.2. Additional features for labeled objects

From (7), we can derive∆ẍi

post for the case whenxi is a
labeled object (xi ∈ DL):

∆
ẍi

post = ∆post+ p̈i (1 − p̈i)

[
0

ẍi

] [
0

ẍi

]T

+ λco

[
ẋiẋ

T

i
−ẋiẍ

T

i

−ẍiẋ
T

i
ẍiẍ

T

i

]

+ λ̈
∑

j∈ S̈

K̈ij

[
0 0

0 Sij

]
. (21)

Using standard Gaussian identities and the approximation

σ(z)σ(−z) ≈ N

(
z

∣∣∣ 0,
8

π

)
,

we can show that,

E
[
p̈i (1 − p̈i) ẍiẍ

T

i

∣∣ ẋi

]

=
∑

c

π′
c
(ẋi)

(
uc uT

c
+ Uc

)
lc = M6, (22)

where

lc = N

(
ẅT µ̈

c

∣∣∣ 0,
8

π
+ ẅT

Σ̈cẅ

)
,

Uc =
(
Σ̈

−1

c
+

π

8
ẅẅT

)−1

,

anduc = Uc Σ̈
−1

c
µ̈

c
. Finally, we can compute

E

[
∆

ẍi

post

∣∣∣ ẋi

]
= ∆post+ λ̈

∑

j∈ S̈

[
0 0

0 Sij

]

+

[
0 0

0 M6

]
+ λco

[
ẋiẋ

T

i
−ẋim

T

1

−m1ẋ
T

i
M2

]

and substitute it into (14).

5.3. Sample requirements and practical
approximations

The conditional distribution (18) used to compute
E[∆ẍi

post|ẋi] in Sections 5.1 and 5.2 relies on a Gaussian
mixture model (GMM) forp(ẍi, ẋi). Unfortunately, fit-
ting an accurate GMM demands a large number of sam-

ples; i.e. , ˙̈S must be large relative tod1 + d2. While our
(unreported) studies on simulated data confirmed that the
statistical methods proposed above work well when a suffi-

cient number of samples is already available in˙̈S, in many
real-life problems each sensor provides a large number of
features, and the above requirement may not be satisfied
(especially in early stages of the active learning process).
The estimation of covariances is particularly problematic
in these small-sample cases.

Due to this difficulty, in the results presented in the
next section we use an alternative surrogate forE[∆ẍi

post].

Specifically, in the formulae for∆ẍi

post ((16) and (21)) we
simply replaceẍi with m1 = E[ẍi|ẋi]—which can still
be reliably estimated from limited data, since it does not
involve covariances—and subsequently compute the deter-
minant of the resulting matrix. As demonstrated in the next
section, this approximation still yields very good experi-
mental results as compared to the random acquisition of
additional features.

6. Experiments: Multi-view feature
acquisition vs. label acquisition

To evaluate the methods proposed in this paper, we use the
same data used in Krishnapuram et al. (2004) to study the
performance of co-training and active label acquisition al-
gorithms. Mirroring their experimental setup, we also op-
erate our algorithms transductively, testing the accuracyof
the classifier on the same unlabeled data used for semi-
supervised training. In brief, the goal was to detect sur-
face and subsurface land mines, using two sensors: (1) a
70-band hyper-spectral electro-optic (EOIR) sensor which
provides 420 features; and (2) an X-band synthetic aper-
ture radar (SAR) which provides 9 features. Our choice of
dataset was influenced by two factors: lack of other pub-
licly available multi-sensor datasets; a need to compare the
benefits of the proposed active feature acquisition strategy
against the benefits of adaptive label querying methods.

The results for active feature acquisition on the unlabeled
samples (Section 5.1), and on the labeled samples (Sec-
tion 5.2) are shown in Figure 2. Additionally we let the al-
gorithm automatically decide whether to query additional
features on labeled or unlabeled data at each iteration,
based on the bound on mutual information for the best can-
didate query in each case. The results for this are also pro-
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(c) Features on unlabeled objects
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Figure 2.Multi-sensor adaptive data acquisition with EOIR and SAR features. (a) (dotted) Number of land mines detected during
the querying for 100 labels (solid) ROC for the remaining objects. Reproduced from Krishnapuram et al. (2004). (b) ROC after
acquiring 27 additional feature sets for incompletely characterized labeled objects. (c) ROC after acquiring 129 additional feature sets
for incompletely characterized unlabeled objects. (d) ROC after acquiring 85 features for either labeled or unlabeled objects. Error bars
represent one s.d. from the mean.

vided in Figure 2. In all cases, for a baseline comparison,
we also provide average ROCs for 100 trials with random
querying, with error bars representing one standard devia-
tion from the mean. For additional insight, we also repro-
duce the results from Krishnapuram et al. (2004) for active
label query selection (Section 4) on the same data.

Analysis of results: all the adaptive data acquisition al-
gorithms show significant benefits over the baseline ran-
dom methods. Nevertheless, as compared to random sam-
ple query selection, active learning exhibits maximum ad-
ditional benefits in two scenarios: label query selection and
additional feature acquisition on the unlabeled samples.

Since labeled data is more valuable than unlabeled data, the
intelligent choice of a small set of additional label queries
improves the classifier performance most. The acquisition
of additional features on the unlabeled data also serves to

disambiguate the most doubtful test objects, in addition to
improving the classifier itself. Since the labeled data do
not need further disambiguation, we expect active acquisi-
tion of features for labeled objects to exhibit a smaller (but
still statistically significant) improvement in accuracy,es-
pecially in a transductive experimental setting. We have
verified these intuitions by experimentally querying a vary-
ing number of objects in each case, although we present
only one example result in Figure 2.

7. Conclusions

Using simple but practical approximations, this paper relies
on an information-theoretic criterion to answer the ques-
tion: Which feature sensor should be used to make mea-
surements on objects in order to accurately design multi-
sensor classifiers? Since a sensor may be used to obtain
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more than one feature simultaneously, this is a more gen-
eral problem than that of greedily choosing which feature
must be obtained in a myopic way, although it subsumes
the latter problem as a special case (especially in super-
vised settings when co-training effects are ignored by fix-
ingλco = 0). Despite the potentially wide applicability, we
have not seen this question addressed systematically in the
literature. Results on measured data indicate that the pro-
posed criterion for adaptive characterization of unlabeled
objects significantly improves classifier accuracy; results
using the corresponding criterion for labeled objects are
less impressive though.

In learning a classifier, one attempts to minimize the error
rate on an infinite set of future test samples drawn from the
underlying data-generating distribution. However, in trans-
ductive settings, one may sometimes only care about classi-
fying the unlabeled training samples. Future work includes
extensions of the ideas proposed here to automatically se-
lect the sensor whose deployment will most improve the
accuracy onthe remaining unlabeled training samples, in-
stead of attempting to learn accurate classifiers.

We will also consider non-myopic active learning strategies
that evaluate the benefits of improved classification accu-
racy in a setting that explicitly considers both the cost of
obtaining class labels and the costs involved in using vari-
ous sensors to make feature measurements. This would al-
low us to automatically decide which of the following is the
best course of action in any situation: (a) obtain many in-
dividually less effective feature measurements (with regard
to improving the classification accuracy) using a cheap sen-
sor; or (b) obtain fewer, but more useful feature measure-
ments using an alternative, costlier sensor; or (c) obtain a
small number of additional class labels at a significant cost.
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