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ABSTRACT

The problem of inferring 3D orientation of a camera from video
sequences has been mostly addressed by first computing corre-
spondences of image features. This intermediate step is now seen
as the main bottleneck of those approaches. In this paper, we
propose a new 3D orientation estimation method for urban (in-
door and outdoor) environments, which avoids correspondences
between frames. The basic scene property exploited by our method
is that many edges are oriented along three orthogonal directions;
this is the recently introducedManhattan world(MW) assumption.

In addition to the novel adoption of the MW assumption for
video analysis, we introduce thesmall rotation(SR) assumption,
that expresses the fact that the video camera undergoes a smooth
3D motion. Using these two assumptions, we build a probabilis-
tic estimation approach. We demonstrate the performance of our
method using real video sequences.

1. INTRODUCTION

Applications in areas such as digital video, virtual reality, mobile
robotics, and visual aids for blind people, require efficient methods
to estimate the 3D orientation of a video camera from the images
it captures.

Most current approaches rely on an intermediate step that com-
putes 2D displacements on the image plane. This 2D displace-
ments are represented by either a dense map [1] or a set of cor-
respondences between image feature points [2]. Rigidity assump-
tions are sometimes used to further constraint the solution. These
assumptions lead to a nonlinear inverse problem relating the 3D
structure with the 2D displacements, which has been addressed
by using general non-linear optimization [3, 4, 5, 6], recursive
Kalman-type estimation [4, 7, 8, 9], and matrix factorization [10,
11]. Other authors have used correspondences between line seg-
ments [12] or surface patches [13], rather than feature points.

While computing correspondences is feasible in simple cases,
it is widely accepted that this is not so when processing real-life
video sequences. This has motivated approaches that estimate the
3D structure directly from the image intensity values [14, 15].
These approaches lead to complex time-consuming algorithms.

The key assumption behind all the methods referred above is
that some property of the scene, either the brightness pattern or
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the 3D positions of the features, remains (approximately) constant
from frame to frame.

In this paper, we propose a new 3D orientation estimation
method for urban (indoor and outdoor) environments, whichi) does
without computing the 2D-motion as an intermediate step, andii)
does not rely on scene constancy assumptions. The basic scene
property exploited by our method is that many edges are oriented
along three orthogonal directions; this is the so-calledManhat-
tan world(MW) assumption recently introduced by Coughlan and
Yuille [16, 17]. While these authors have used the prior knowledge
captured by the MW assumption to build a Bayesian approach to
3D orientation estimation from asingle image, we use it forse-
quencesof images.

The main building blocks of the method herein proposed are:
i) recent results in the geometry of 3D pose representation [18],
which allow a significant reduction of the computational cost of
the Bayesian estimation algorithm, andii) a newsmall rotation
(SR) model that expresses the fact that the video camera undergoes
a smooth 3D motion.

2. CAMERA ORIENTATION IN VIDEO SEQUENCES

2.1. 3D Orientation and Vanishing Points

Let (x,y, z) and(a,b, c) be the Cartesian coordinate systems of
the MW and the camera, respectively. We parameterize the cam-
era orientation with three angles (see Fig. 1):α, thecompass(az-
imuth) angle, corresponding to rotation about thez axis; β, the
elevationangle above thexy plane; andγ, thetwistabout the prin-
cipal axis. One thus denotes the camera orientation byO(α, β, γ).
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Fig. 1. Parameterization of the camera orientation. Left: compass
angleα and elevation angleβ (with Px ≤ 0, we have|α| < π/2).
Right: twist angleγ represented on the image plane.



For a radial-distortion-free pinhole camera, the three vanishing
points, corresponding to thex, y, andz axes, project on the image
plane at, respectively,

Fx = f Rγ

(
tan α

cos β
, tan β

)T

(1)

Fy = f Rγ

(
−cot α

cos β
, tan β

)T

(2)

Fz = f Rγ (0,− cot β)T , (3)

where(·)T denotes transpose,f is the focal length, andRγ is the
twist matrix,

Rγ =

[
cos γ − sin γ
sin γ cos γ

]
. (4)

Estimating the orientationO(α, β, γ) can thus be achieved by lo-
cating the vanishing points on the image plane [2].

2.2. Equiprojective Orientations

LetF = {Fx,Fy,Fz} be the set of vanishing points. Since these
vanishing points are mutually indistinguishable, it is the setF ,
rather than each elementper se, which provides the solution to the
orientation estimation problem.

In [18], we have introduced the concept ofequiprojective ori-
entations: two orientations are termedequiprojectiveif and only
if they lead to the same set of vanishing points. We have proved
that equiprojectivityis an equivalence relation and that each cor-
responding equivalence classEF contains12 elements, except for
singular cases. The general solution to the orientation estimation
problem is thus a 12-element setEF of possible camera orienta-
tions. We have also provided closed-form expressions for the so-
lution set given any particular element; this turns out to be very
important in reducing the space to be searched for a solution. Fi-
nally, we have proved that any equivalence classEF contains at
least one orientationO(α, β, γ) verifying
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, and γ ∈ ]−ϕ, ϕ] , (5)

where

ϕ =
π

2
− arctan

√
2

2
≈ 54.7◦.

This means that, for any camera orientation, it is always possible
to find one vanishing point inside the shaded area shown in Fig. 2.
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Fig. 2. Area of the image plane where it is guaranteed that there
exists at least one vanishing point.

2.3. Small Rotations Model

Let us now assume that the camera is moving and acquiring a se-
quence of frames{I1, . . . , IN}. It is clear that the variation of the
camera orientation only depends on the rotational component of
the motion. LetOk(αk, βk, γk) denote the orientation at thek-th
frame. In typical video sequences, the camera orientation evolves
in a smooth continuous way. We formalize this property by intro-
ducing thesmall rotations(SR) model, next described.

Let Rk(ρk, ek) be the rotational component of the camera
motion between thek-th and(k+1)-th frames, whereρk andek

denote the angle and the axis of rotation, respectively. The SR
model states, independently ofek, that there exists a small fixed
angleξ such that|ρk| ≤ ξ. Here, we takeξ = 5◦, which implies
that for a sampling rate of12.5 Hz the rotation angle is less than
62.5◦ in each second; this is an intuitively reasonable assumption.

As a consequence of the SR assumption, we can show that
the variations of the compass, elevation and twist angles between
consecutive frames are bounded as follows:

|αk+1 − αk| ≤ ξα (6)

|βk+1 − βk| ≤ ξ (7)

|γk+1 − γk| ≤ ξ, (8)

where

ξα = arccos

(
1 − cos |βk+1 − βk| − cos ξ

cos βk cos βk+1

)
,

if |βk + βk+1| ≤ π − ξ, andξα = π/2, otherwise.
For an orientationOk in the region defined by (5), it is guar-

anteed that|βk + βk+1| ≤ π/4 + π/4 + ξ ≤ π − ξ. In particular,
with ξ = 5◦, we haveξα ≤ arccos(2 cos 5◦ − 1) ≈ 7.1◦. This
enables a significant reduction of the search space for the estimate
of Ok+1, given the previous orientationOk.

3. ORIENTATION ESTIMATION

Our goal is to estimate the sequence of orientations{O1, . . . ,ON}
from the observed sequence of images{I1, . . . , IN}. This is done
in a probabilistic estimation framework using the MW and SR as-
sumptions.

3.1. Probabilistic Formulation

The MW assumption states that all images contain many edges
consistent with thex, y andz axes [16, 17]. Hence, we use the
statistics of the image intensity gradient∇Ik to extract this in-
formation. Non-relevant pixels are previously excluded by non-
maxima suppression followed by thresholding of the gradient mag-
nitude. Finally, the gradient magnitude is quantized, which allows
building a discrete probabilistic model for edge strength. These
pre-processing yields, for each image, a set of pairsEu = (Eu, φu),
whereEu is the quantized edge strength, andφu the gradient di-
rection, for each relevant pixel{u} = {(u1, u2)}. The probabilis-
tic formulation is built from the following elements:

Pixel classes: each pixelu has a labelmu ∈ {1, ..., 5} which
indicates thatu belongs to: (1) an edge consistent with thex axis;
(2) an edge consistent with they axis; (3) an edge consistent with
the z axis; (4) an edge not consistent with either thex, y or z

axes; (5) the set of non-edge pixels. These classes havea priori
probabilities{Pm(mu), mu = 1, ..., 5}.



Factorization assumption: at each pixel, the gradient magnitude
and direction are independent. Moreover, the gradient magnitude
is independent of the orientation and of the pixel location, given
the class label. Thus,

P (Eu|mu,O,u) = P (Eu|mu)P (φu|mu,O,u), (9)

whereP (Eu|mu) = Pon(Eu), if mu 6= 5, andP (Eu|mu) =
Poff (Eu), if mu = 5. Here,Pon(Eu) and Poff(Eu) are the
probability mass functions of the quantized gradient magnitude
conditionedon whether pixelu is onor off an edge, respectively.

Decoupling: from (3), it is clear that the vanishing pointFz does
not depend on the compass angleα. Thus, any estimation proce-
dure can be decoupled into two stages: the first ignores informa-
tion from the edges consistent with thex andy axes, and uses the
remaining edges to estimateβ andγ, a problem with 2 degrees of
freedom (dof); the second stage estimatesα, given the estimates
of β andγ, which is a 1-dof problem. This decoupling avoids the
3-dof joint estimation of the three angles.

Gradient direction pdf: let U (·) be a uniform pdf on] − π
2
, π

2
].

In the first stage (estimation ofβ andγ) we only consider edges
consistent with thez axis (mu = 3), thus

P (φu|mu, β, γ,u) =

{
Pang(ǫu) if mu = 3
U (φu) otherwise,

(10)

where

Pang (t) =

{
(1 − ǫ)/(2τ) if t ∈ [−τ, τ ]
ǫ/(π − 2τ) if t ∈ ] − π/2,−τ [ ∪ ]τ, π/2],

ǫ = 0.1, andτ = 4◦. In (10), ǫu = φu − θz (β, γ,u) (mod-π)
is the difference between the measured gradient direction and that
that would be ideally observed at pixelu, givenβ andγ.

In the second stage (estimatingα with fixed β̂ andγ̂),

P (φu|mu, α, β̂, γ̂,u) =

{
Pang(ǫu) if mu ∈ {1, 2, 3}
U (φu) if mu ∈ {4, 5} ,

(11)

whereǫu has a similar meaning as in (10), now formu ∈ {1, 2, 3}.

Joint likelihood: the joint likelihood for the relevant data of the
k-th frame,{Eu} (we omit the indexk, for economy) is obtained
by marginalizing (summing) over all possible models at each rele-
vant pixel, and assuming independence among data from different
pixels:

P ({Eu} |Ok) =

∏

u

5∑

mu=1

P (Eu|mu) P (φu|mu,Ok,u) PM (mu) . (12)

whereP (φu|mu,Ok,u) represents (10) andOk stands for(β, γ),
in the first stage, whileP (φu|mu,Ok,u) represents (11), andOk

stands for(α, β̂, γ̂), in the second stage.

3.2. Locating the Estimates

As explained above, the estimation procedure is decoupled into
two stages. In the first stage, we find MAP estimatesβ̂k andγ̂k,

(
β̂k, γ̂k

)
= arg max

β,γ
log P ({Eu}k |β, γ) + log P (β, γ) (13)

whereP (β, γ) is a prior. In the first frame, this prior is flat over the
entire domainβ ∈ ]−45◦, 45◦] andγ ∈ ]−54.7◦, 54.7◦], where
(5) guarantees the existence of a solution. For the other frames,
k > 1, the prior expresses two assumptions:i) small rotations
(see (7) and (8)), andii) smoothness of the motion. These as-
sumptions are formalized by takingP (β, γ) as a truncated bivari-
ate Gaussian with mean[β̂k−1, γ̂k−1]

T , defined over the region
β ∈ ]β̂k−1− ξ, β̂k−1 + ξ] andγ ∈ ]γ̂k−1− ξ, γ̂k−1 + ξ]. The vari-
ance of this Gaussian allows controlling the tradeoff between the
smoothness of the estimated sequence of angles and the accuracy
of this estimates.

Givenβ̂k andγ̂k, we then estimate the compass angleαk:

α̂k = arg max
α

log P ({Eu} |α, β̂k, γ̂k) + log P (α).

For the first frame, the priorP (α) is flat over]−45◦, 45◦]. For
k > 1, as above, the prior is a truncated Gaussian with meanα̂k−1,
defined over]α̂k−1− ξα, α̂k−1 + ξα].

If a given estimateÔk(α̂k, β̂k, γ̂k) is located outside of the
minimal region defined in (5), we replace it by an equiprojective
orientation inside that region. As explained in the last paragraph of
subsection 2.3, this allows|ξα| to be less than7.1◦, hence keeping
a small search space.

A consequence of the fact that we sometimes replace an es-
timate Ôk by an element of its equiprojective equivalence class
E(Ôk), is that the resulting sequence of estimates may not verify
the SR assumption. Thus, as a final step, we pick an orientation
from each equivalence class{E(Ôk)}, such that the resulting se-
quence satisfies the SR model.

4. EXPERIMENTS

We tested our algorithm with outdoor MPEG-4 compressed video
sequences, acquired with a hand-held camera. The sequences are
of low quality due to some radial distortion and several over and
underexposed frames. Our algorithm estimated successfully the
orientations for the vast majority of the sequences tested. Typical
running time for each(288× 360)-pixels frame is less than 10
seconds, on a 1.5 GHz Pentium IV, using a straightforward non-
optimized MATLAB implementation.

Figs. 3 and 4 show some frames of two sequences with su-
perimposed cubes indicating the estimated orientations of the MW
axes. Notice that the algorithm is able to estimate the correct ori-
entation, despite the presence of many edges not aligned with the
MW axes (e.g., people in Fig. 4).

Fig. 5 plots the estimates of the orientation angles, for these
two sequences. Note that the estimates on the right hand plot are
slightly noisier than those on the left, due to the worse quality of
the image sequence. Obviously, we can control the smoothness of
these estimates by adjusting the prior variances referred in Subsec-
tion 3.2; here, these variances are the same for both sequences and
all the three angles. Of course, there is a tradeoff between smooth-
ness and the ability to accurately follow fast camera rotations.

5. CONCLUSIONS

We have proposed a probabilistic approach to estimating camera
orientation from video sequences of urban scenes. The method
avoids standard intermediate steps such as feature detection and



Fig. 3. Frames 20, 30, 40, and 50 of a video sequence with super-
imposed cubes representing the estimated orientation of the MW
axes.

Fig. 4. As in Fig. 3, for frames 110, 130, 150, and 170 of another
vide sequence.
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Fig. 5. Camera angle estimates, for the sequences of Figs. 3 and 4.

correspondence, or edge detection and linking. Experimental re-
sults show that the method is able to handle low-quality video se-
quences, even when many spurious edges are present.
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