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ABSTRACT the 3D positions of the features, remains (approximately) constant

. . . . i from frame to frame.
The problem of inferring 3D orientation of a camera from video

. ) In this paper, we propose a new 3D orientation estimation
sequences has been mostly addressed by first computing cores,e4hq for urban (indoor and outdoor) environments, whidoes

spondence_s of image features. This intermediate step is now seel)ithout computing the 2D-motion as an intermediate step,ignd
as the main bottleneck of those approaches. In this paper, Weygeg not rely on scene constancy assumptions. The basic scene

3roposeda ne(;/v 3D orlt_antatlon es“";?t'r?n mgdthod for urba:jn (in- property exploited by our method is that many edges are oriented
oor and outdoor) environments, which avoids correspondences long three orthogonal directions; this is the so-caléahhat-

between frames. The basic scene property exploited by our metho an world (MW) assumption recently introduced by Coughlan and

is that many edges are oriented along three orthogonal directions;Yui”e [16, 17]. While these authors have used the prior knowledge

thisis the r'e.centlyintroducdkzlanhqttan worldMW) assumpt.ion. captured by the MW assumption to build a Bayesian approach to
In addition to the novel adoption of the MW assumption for - 3 grientation estimation from singleimage, we use it fose-
video analysis, we introduce treenall rotation(SR) assumption, quence®f images.

that expresses the fact that the video camera undergoes a smooth The main building blocks of the method herein proposed are:

3D motion. Using these two assumptions, we build a probabilis- i) recent results in the geometry of 3D pose representation [18],

tic estimation appro_ach. We demanstrate the performance of OUyhich allow a significant reduction of the computational cost of
method using real video sequences.

the Bayesian estimation algorithm, anyla newsmall rotation
(SR) model that expresses the fact that the video camera undergoes

1. INTRODUCTION a smooth 3D motion.

Applications in areas such as digital video, virtual reality, mobile
robotics, and visual aids for blind people, require efficient methods 2. CAMERA ORIENTATION IN VIDEO SEQUENCES

to estimate the 3D orientation of a video camera from the images . . o )
it captures. 2.1. 3D Orientation and Vanishing Points

Most current approaches rely on an intermediate step that COM-| o (x,y,2) and(a, b, ¢) be the Cartesian coordinate systems of

putes 2D displacements on .the image plane. ‘This 2D displace-the MW and the camera, respectively. We parameterize the cam-
ments are represented by either a dense map [1] or a set of corg . crientation with three angles (see Fig. 4)the compasgaz-

rfespondences Igetween image feature point§ [2]. Rigidit.y assumlo'lmuth) angle, corresponding to rotation about thexis; 3, the
tions are sometimes used to furthgr constraint the solut'lon. Theseelevatior‘angle above they plane; andy, thetwistabout the prin-
assumptions lead to a nonlinear inverse problem relating the 3D

) : ! ipal axis. One thus denotes the camera orientatic@ @y, 3, 7).
structure with the 2D displacements, which has been addressecf P 6y.6,7)

by using general non-linear optimization [3, 4, 5, 6], recursive
Kalman-type estimation [4, 7, 8, 9], and matrix factorization [10,
11]. Other authors have used correspondences between line seg-
ments [12] or surface patches [13], rather than feature points.

While computing correspondences is feasible in simple cases,
it is widely accepted that this is not so when processing real-life
video sequences. This has motivated approaches that estimate the
3D structure directly from the image intensity values [14, 15].
These approaches lead to complex time-consuming algorithms.

The key assumption behind all the methods referred above is
that some property of the scene, either the brightness pattern o

image plane

rFig. 1. Parameterization of the camera orientation. Left: compass
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For a radial-distortion-free pinhole camera, the three vanishing 2.3. Small Rotations M odel
points, corresponding to the y, andz axes, project on the image

plane at, respectively, Let us now assume that the camera is moving and acquiring a se-

quence of frames¢l,,...,Ix}. Itis clear that the variation of the
tan o T camera orientation only depends on the rotational component of
Fx=fR, ( , tan ﬁ) 1) the motion. LetOy (ax, Bk, vx) denote the orientation at theth
cos 3 frame. In typical video sequences, the camera orientation evolves
cot T in a smooth continuous way. We formalize this property by intro-
Fy=fR, (_@vt 5) @) ducing thesmall rotationg(SR) model, next described.
T Let R« (px, er) be the rotational component of the camera
F. = [ R, (0,—cot3)", ©) motion between thé-th and(k+1)-th frames, wherey, andey
denote the angle and the axis of rotation, respectively. The SR
where(-)T_ denotes transposg,is the focal length, an®k, is the model states, independently ef, that there exists a small fixed
twist matrix angle¢ such thatpx| < £. Here, we tak€ = 5°, which implies
R. — [ cos7y —siny } _ ) that for a sampling rate af2.5 Hz the rotation angle is less than
7 sinvy  cos?y 62.5° in each second,; this is an intuitively reasonable assumption.

As a consequence of the SR assumption, we can show that
the variations of the compass, elevation and twist angles between
consecutive frames are bounded as follows:

Estimating the orientatio®(«, 3, ) can thus be achieved by lo-
cating the vanishing points on the image plane [2].

2.2. Equiprojective Orientations loesr —ar| < &a (6)
Let F = {Fx, Fy,F,} be the set of vanishing points. Since these Brrr = Bel <€ ()
vanishing points are mutually indistinguishable, it is the &et et =l <&, (8)

rather than each elemegmér se which provides the solution to the
orientation estimation problem.

In [18], we have introduced the conceptegfuiprojective ori-
entations two orientations are termegquiprojectiveif and only
if they lead to the same set of vanishing points. We have proved
that equiprojectivityis an equivalence relation and that each cor- if |8k + Br+1| < ™ — &, andé, = 7/2, otherwise.
responding equivalence clags containsl2 elements, except for For an orientatiorOy, in the region defined by (5), it is guar-
singular cases. The general solution to the orientation estimationanteed thatGx + Br+1| < 7/4+m/4+& < m — £, In particular,
problem is thus a 12-element s&t of possible camera orienta- ~ With £ = 5°, we havef, < arccos(2cos5° — 1) = 7.1°. This
tions. We have also provided closed-form expressions for the so-enables a significant reduction of the search space for the estimate
lution set given any particular element; this turns out to be very of Ox11, given the previous orientatioQ.
important in reducing the space to be searched for a solution. Fi-
nally, we have proved that any equivalence clégscontains at 3. ORIENTATION ESTIMATION
least one orientatio®(«, 3, ) verifying

where

o = arccos (1 _ €08 |Bkt1 = Br| = COSE)
o )

cos Bk cos Br+1

Our goal is to estimate the sequence of orientat{@s, . . ., On }

ac } _r E] Be ]_37 E] L andyel-p,¢], (5) from the observed sequence of imag#s, .. ., L }. This is done
474 474 in a probabilistic estimation framework using the MW and SR as-
where sumptions.
™ \/5 ~ o
p =5 —arctan o= ~ 54.7". 3.1 Probabilistic Formulation

This means that, for any camera orientation, it is always possible The MW assumption states that all images contain many edges
to find one vanishing point inside the shaded area shown in Fig. 2.consistent with thex, y andz axes [16, 17]. Hence, we use the
statistics of the image intensity gradiewt, to extract this in-
formation. Non-relevant pixels are previously excluded by non-
maxima suppression followed by thresholding of the gradient mag-

9=547° nitude. Finally, the gradient magnitude is quantized, which allows
o building a discrete probabilistic model for edge strength. These
e~ pre-processing yields, for each image, a set of fairs= (Eu, ¢u),

whereFE, is the quantized edge strength, atdthe gradient di-
rection, for each relevant pix¢ia} = {(u1,u2)}. The probabilis-
film tic formulation is built from the following elements:

Pixel classes: each pixelu has a labein, € {1,...,5} which

. . o indicates thau1 belongs to: (1) an edge consistent with thaxis;
Flg. 2. Area of the image plang where it is guaranteed that there (2) an edge consistent with theaxis; (3) an edge consistent with
exists at least one vanishing point. the z axis; (4) an edge not consistent with either they or z
axes; (5) the set of non-edge pixels. These classesdavieri
probabilities{ P, (mu), mu =1, ...,5}.




Factorization assumption: at each pixel, the gradient magnitude

whereP (3, v) is a prior. In the first frame, this prior is flat over the

and direction are independent. Moreover, the gradient magnitudeentire domaing € ]—45°,45°] andy € ]—54.7°,54.7°], where

is independent of the orientation and of the pixel location, given
the class label. Thus,

P(EU|mU7 Ovu) = P(EU‘mU)P(QbU'mLU O7u)7 (9)
where P(Eu|mu) = Pon(FEu), if mu # 5, andP(Eu|mu) =
Pyt (Eu), if ma = 5. Here, Pon(Ew) and Py (Ew) are the
probability mass functions of the quantized gradient magnitude
conditionedon whether pixels is on or off an edge, respectively.

Decoupling: from (3), it is clear that the vanishing poilt, does

not depend on the compass angleThus, any estimation proce-
dure can be decoupled into two stages: the first ignores informa-
tion from the edges consistent with tkeandy axes, and uses the
remaining edges to estimatieand~y, a problem with 2 degrees of
freedom (dof); the second stage estimategiven the estimates

of 8 and~, which is a 1-dof problem. This decoupling avoids the
3-dof joint estimation of the three angles.

Gradient direction pdf: let U () be a uniform pdf o) — Z,
r

3]
In the first stage (estimation @f and~) we only consider edges
consistent with the: axis (n. = 3), thus

Pang €u if My =3
P(¢u|mu, B,7,1) :{ U(¢>.E) ) otherwise (10)
where
| 1=-¢/@2r) ifte[-T,7]
R Tl L i

e = 0.1, and7 = 4°. In (10), €u = ¢u — 0, (83,7, u) (Mod-r)

is the difference between the measured gradient direction and that

that would be ideally observed at pixe) given3 and~.
In the second stage (estimatiagvith fixed 5 and®),

Pang(€u)
U (¢u)

wheree,, has a similar meaning as in (10), now fag, € {1,2, 3}.

Joint likelihood: the joint likelihood for the relevant data of the
k-th frame,{E,} (we omit the index, for economy) is obtained
by marginalizing (summing) over all possible models at each rele-

if mu € {1,2,3}

P($ulmu, a, 3,7, 1) = { if my € {4,5}, (h

(5) guarantees the existence of a solution. For the other frames,
k > 1, the prior expresses two assumptiomssmall rotations
(see (7) and (8)), and) smoothness of the motion. These as-
sumptions are formalized by takirf®(3, v) as a truncated bivari-
ate Gaussian with mez{ﬁk_l, Ax—1]T, defined over the region
B € 1Bk—1—&, Br—1 + &l andy € [yx—1— &, k-1 +¢&]. The vari-
ance of this Gaussian allows controlling the tradeoff between the
smoothness of the estimated sequence of angles and the accuracy
of this estimates.

Given g3, and~y, we then estimate the compass angile

ay = arg max log P({Eu} |, Bkﬁk) + log P().

For the first frame, the prioP(«) is flat over]—45°,45°]. For
k > 1, as above, the prior is a truncated Gaussian with mgan,
defined ovetax—1— £a, Qk—1 + &al-

If a given estimate@k(akﬁkﬁk) is located outside of the
minimal region defined in (5), we replace it by an equiprojective
orientation inside that region. As explained in the last paragraph of
subsection 2.3, this allows.| to be less thafi.1°, hence keeping
a small search space.

A consequence of the fact that we sometimes replace an es-
timate O, by an element of its equiprojective equivalence class
£(Oy), is that the resulting sequence of estimates may not verify
the SR assumption. Thus, as a final step, we pick an orientation
from each equivalence cla$§(@k)}, such that the resulting se-
quence satisfies the SR model.

4. EXPERIMENTS

We tested our algorithm with outdoor MPEG-4 compressed video
sequences, acquired with a hand-held camera. The sequences are
of low quality due to some radial distortion and several over and
underexposed frames. Our algorithm estimated successfully the
orientations for the vast majority of the sequences tested. Typical
running time for each288 x 360)-pixels frame is less than 10
seconds, on a 1.5 GHz Pentium 1V, using a straightforward non-
optimized MATLAB implementation.

Figs. 3 and 4 show some frames of two sequences with su-

vant pixel, and assuming independence among data from differentperimposed cubes indicating the estimated orientations of the MW

pixels:

P{{Eu}|Ok) =
I1 > P(Eulmu) P(¢ulmu, Ok, u) Pru(ma).  (12)

whereP(¢u|mu, Ok, u) represents (10) an@, stands for3, v),
in the first stage, whild(¢u|mu, Ok, u) represents (11), an@y,
stands for(«, 3, 7), in the second stage.

3.2. Locating the Estimates

As explained above, the estimation procedure is decoupled into
two stages. In the first stage, we find MAP estimaieand~y,

(Br. 3 ) = arg maxlog P({Bu},, 8.7) + log P(8.7) (13)

axes. Notice that the algorithm is able to estimate the correct ori-
entation, despite the presence of many edges not aligned with the
MW axes €.g, people in Fig. 4).

Fig. 5 plots the estimates of the orientation angles, for these
two sequences. Note that the estimates on the right hand plot are
slightly noisier than those on the left, due to the worse quality of
the image sequence. Obviously, we can control the smoothness of
these estimates by adjusting the prior variances referred in Subsec-
tion 3.2; here, these variances are the same for both sequences and
all the three angles. Of course, there is a tradeoff between smooth-
ness and the ability to accurately follow fast camera rotations.

5. CONCLUSIONS

We have proposed a probabilistic approach to estimating camera
orientation from video sequences of urban scenes. The method
avoids standard intermediate steps such as feature detection and



Fig. 3. Frames 20, 30, 40, and 50 of a video sequence with super-

imposed cubes representing the estimated orientation of the MW
axes.
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Fig. 4. As in Fig. 3, for frames 110, 130, 150, and 170 of another
vide sequence.
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Fig. 5. Camera angle estimates, for the sequences of Figs. 3 and 4.
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