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ABSTRACT

This paper exploitsindependent component analysis(ICA)
to obtain transform-based compression schemes adapted to
specific image classes. This adaptation results from the
data-dependent nature of the ICA bases, learnt from train-
ing images. Several coder architectures are evaluated and
compared, according to both standard (SNR) and percep-
tual (picture quality scale– PQS) criteria, on two classes
of images: faces and fingerprints. For fingerprint images,
our coders perform close to the well-known special-purpose
wavelet-based coder developed by the FBI. For face images,
our ICA-based coders clearly outperform JPEG at the low
bit-rates herein considered.

1. INTRODUCTION

Independent component analysis (ICA) considers a class of
probabilistic generative models in which a random vectorX
is obtained according toX = AS, whereA is anN ×M
unknown mixing matrix andS is a vector of independent
sources [2, 6, 9]. The standard goal of ICA is to infer (learn)
A from a set of samples ofX. To apply ICA to images, each
sample ofX usually contains the pixels in an image block.

It is known that natural images are well modelled when
the columns ofA are wavelet-like (or Gabor-like) and the
independent sources (elements ofS) have super-Gaussian
(also called sparse) distributions [1, 6, 9]. Specially in the
case of over-complete ICA (M > N ), this sparse nature of
the distribution ofS means that only a small number of its
components have significant values; this fact underlies the
potential usefulness of ICA to compression and denoising
of natural images [6, 9]. Despite this, few attempts have
been made at using ICA for image compression [12].

In this paper, we exploit the data-dependent nature of the
ICA decomposition (onto the basis defined by the columns
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of A) to develop low bit-rate compression schemes adapted
to specific image classes. We use Hyvärinen’s FastICA al-
gorithm (see [6, 7] for details) to learn complete and over-
complete bases from training images. Since these bases are
non-orthogonal, we apply variants of thematching pursuit
(MP) algorithm [10] to perform image decomposition.

The paper is organized as follows. Section 2 describes
how the basis vectors are extracted from faces and finger-
print images using ICA. In Section 3, we review orthog-
onal and non-orthogonal matching pursuit algorithms, and
present their energy compaction ability on the ICA bases.
The coder architecture is described in Section 4, while Sec-
tion 5 shows experimental results. Finally, Section 6 presents
some concluding remarks.

2. BASIS ESTIMATION

We apply the FastICA algorithm [6, 7] to estimate both
complete (N = M ) and over-complete (M > N ) bases
for randomly selected training sets of (8 × 8) image blocks
(400 per image), after mean removal and sphering by prin-
cipal component analysis [6]. In this paper, we consider a
set of fingerprint images1 and a set of face images2. Fig. 1

fingerprints faces

Fig. 1. Complete bases obtained by FastICA.

1bias.csr.unibo.it/fvc2000/databases.asp
2www.uk.research.att.com/facedatabase.html



shows the vectors of complete (M = N = 64) bases ob-
tained from one fingerprint and one face image; notice the
more pronounced edge-like nature of the fingerprint basis.
Observation of histograms of relative angles between all the
ICA basis vectors reveals that most angles are above40◦.
Since these bases are non-orthogonal, representations can
not be obtained by the standard orthogonal projection pro-
cedure. Alternatively, we consider the use of matching pur-
suit algorithms, described in the next section.

3. MATCHING PURSUIT

Matching pursuit (MP) is a greedy iterative algorithm that
approximates a signal by successive projections on the vec-
tors of a (possibly over-complete) basis [10]. Formally, let
D = {f1, . . . , fM} be a dictionary withM unit vectors
(||fi|| = 1) on anN -dimensional Hilbert spaceH with in-
ner product〈·, ·〉 : H × H → IR. Given some function
g ∈ H, MP obtains a sequence of linear representations

ĝn =
n∑

i=1

αi fi, n = 1, 2, ...

by applying the following steps.

Step 0: Let n = 0 andĝ0 = 0.

Step 1: ComputeRn
g = g − ĝn, the residue of the repre-

sentation withn terms.

Step 2: Choose the index of the next basis vector to include
in the representation according to

δn = arg max
δ ∈ {1,...,M}

|〈Rn
g , fδ〉|.

Step 3: Update the representation,

ĝn+1 = ĝn + αn+1fδn ,

whereαn+1 = 〈Rn
g , fδn〉.

Step 4: Check stopping condition; if it is not verified, let
n ← n + 1 and go back to Step 1.

The stopping condition depends on the particular appli-
cation; usually, it is of the type‖ Rn

g ‖≤ d, whered is a
threshold. The residue energy‖Rn

g ‖2 converges exponen-
tially to zero, if the dictionary is at least complete [3, 10].

Orthogonal matching pursuit(OMP) [3] is a variant of
MP, in which Step 3 is redefined to be

Step 3: Update the representation,

ĝn+1 = ĝn + αn+1un+1,

where

un+1 =
fδn −

∑n
p=1〈fδn , up〉up

‖ fδn −
∑n

p=1〈fδn , up〉up ‖ ,

andαn+1 = 〈Rn
g , un+1〉.

In words, each selected basis vector, before being included
in the representation, is orthogonalised with respect to all
previously selected basis vectors, and then normalised. All
the other steps of the algorithm remain unchanged. The or-
thogonalisation procedure guarantees convergence in a max-
imum ofN iterations [3].

3.1. Energy Compaction

In this section, we compare the MP and OMP algorithms in
terms of energy compaction, that is, in terms of their abil-
ity to extract good representations with as few as possible
terms. To quantify the goodness of the representations, we
consider the standard SNR measure

SNRn = 10 log10

(
σ2/MSEn

)
[dB],

whereσ2 is the original image variance, andMSEn is the
mean squared error between the original image and its block
by blockn-term representation.

Fig. 2 showsSNRn, for MP and OMP with complete
and over-complete bases extracted from a set of three im-
ages (not including the one being compressed). The results
of the Karhunen-Lòeve transform(KLT) [8] are also dis-
played for comparison, since, among all orthogonal trans-
forms, the KLT has the highest energy compaction ability.

 
 

Fig. 2. Energy compaction for image representations ob-
tained with MP and OMP on complete (suffix “c”) and over-
complete (“ov”) ICA bases.

These results show that, for both image classes, an over-
complete basis yields up to 2 dB more energy compaction
than the complete basis. For the same basis, in the first few
iterations, OMP and MP produce roughly the same results;
that is, MP chooses nearly orthogonal basis vectors without
the need for explicit orthogonalisation (see also [3]). Due
to its larger coding and decoding complexity (compared to
MP), OMP will thus not be further considered. The com-
parison with KLT suggests that MP expansions will be ad-
vantageous in the case of a small number of coefficients.

3.2. Coding/Decoding Complexity: Incomplete Bases

Consider a set ofM vectors from anN -dimensional space.
To represent (i.e., code) a vector (i.e. an image block) with



respect to this set, each iteration of the MP algorithm in-
volvesMN scalar products (M inner products ofN - dimen-
sional vectors). If each block is coded withL coefficients,
the total number of scalar multiplications isLMN . To
re-synthesize (i.e., decode) the block,LN scalar multipli-
cations are performed. Thus, reducing the cardinalityM
of the basis, reduces linearly the coding complexity. The
same applies toL with respect to both coding and decod-
ing. These facts suggest that it would be advantageous to
use an incomplete (M < N ) basis; notice also that we typ-
ically haveL ¿ M .

To obtain an incomplete basis, withM < N , we have
devised the following procedure. We start by obtaining an
over-complete basis withM ′ > N vectors. Each of these
vectors receives one vote for each time it is chosen by the
MP algorithm to represent one of the training blocks. The
M most voted vectors constitute the incomplete basis.

4. CODER ARCHITECTURE

The proposed image coder is transform-based, as shown
in Fig. 3. The transform coefficients are obtained by MP
over the (complete, over-complete, or incomplete) ICA ba-
sis. Operation modes with fixed and variable block sizes are
considered. Two methods to code the coefficients are stud-
ied: sending only the non-zero coefficients and the corre-
sponding indexes (this option is represented by the dashed
lines in Fig. 3); sending allM coefficients, regardless of
their being zero or not. The mean value of each block is
separately quantised (Lloyd I) and entropy-coded.

Fig. 3. Non-orthogonal transform-based coder architecture.

Coefficient quantisation is performed using a Lloyd I
quantiser, learnt off-line from the MP coefficients. Entropy
coding of the quantiser output and of the indexes is carried
out by adaptive arithmetic coders, using source models (his-
tograms obtained off-line from several test images of the
specific class being considered). In the coding method with
indexes, the first coefficient of each block is quantised with
a larger number of bits and entropy-coded separately using
an arithmetic coder.

4.1. Fixed and Variable Size Blocks

We first consider blocks with fixed size (8×8). Each block
is encoded with a variable number of coefficients; this num-
ber is selected as the smallest that guarantees that the maxi-
mum absolute difference between the original and the coded

block does not exceed a predefined threshold∆. Blocks for
which this criterion can not be met, are coded with a prede-
fined maximum number of coefficientsLmax. Several tests
showed that most image blocks require less thanLmax co-
efficients. Consequently, this method reduces the coding
complexity and the bit rate, when compared to the use of a
fixed number of coefficients.

In the case of variable size blocks, image analysis is per-
formed using blocks of sizes 16×16, 8×8, and 4×4, organ-
ised in a quad-tree structure [8]. Splitting each 16×16 or
8×8 block into its four sub-blocks is done when the “max-
imum absolute difference” (referred in the preceding para-
graph) exceeds a given value. The resulting tree decompo-
sition is encoded using an adaptive arithmetic coder.

5. EXPERIMENTAL RESULTS

5.1. Face Images

In our experiments with face images, we useLmax = 10,
∆=24, and fixed8× 8 block size. We consider incomplete,
complete, and over-complete bases, obtained from one or
three images, and the two coding methods described: with-
out indexes (with 5 bits/coefficient); with indexes (5 bits for
the first coefficient and 4 bits for the remaining ones). In
both cases, the block mean value is quantised with 5 bits.

Fig. 4 shows SNR as a function of bit-rate. The plot on
the left hand side refers to bases extracted from one single
image, while the one on the right corresponds to bases ex-
tracted from three images. For comparison, we also include
JPEG results, since it is the standard (8×8) block coder.

Fig. 4. Face image tests: SNR versus bit-rate. Leg-
end: MPai, where a∈ {i, c, o} denotes the type of basis
(incomplete,complete,over-complete), and the presence of
“i” indicates the use of the coding method with indexes.

There is no meaningful performance difference between
the ICA bases obtained from just one or from three images.
The proposed coder clearly outperforms JPEG for the low
bit-rates considered. Fig. 5 shows a face image coded with
JPEG and with the proposed coder (using an incomplete
basis of 32 vectors and index-free coding), and the corre-
sponding values of two distortion measures: SNR andpic-
ture quality scale(PQS), which is based on a model of the



Fig. 5. Coded images with JPEG, and ICA at 0.62 bpp.

Fig. 6. Coded images with WSQ, and ICA at 0.31 bpp.

human visual system [11]. In addition to better SNR and
PQS, the ICA-coded image is clearly less blocky.

5.2. Fingerprint Images

WSQ (wavelet scalar quantisation[4]) is a wavelet-based
special-purpose coder for fingerprint images. In tests simi-
lar to those reported in Fig. 4, WSQ outperforms the ICA-
based coders by2 ∼ 4 dB. The variable block-size coder
(Sec. 4.1), with a complete basis learnt from 3 images, yields
∼ 2 dB lower distortion than the fixed block-size coder.
Fig. 6 shows images compressed with WSQ and the variable
block-size ICA coder. Although the ICA-coded image has
slightly worse SNR and PQS values than the WSQ-coded
image, they are visually indistinguishable. Thus, our ap-
proach was able tolearn a coder which is competitive with
a method specially tailored to a specific image class.

6. CONCLUDING REMARKS

We have shown how to exploit the data-dependent nature
of ICA to obtain low bit-rate transform-based compression
schemes adapted to specific image classes (concretely, face
and fingerprint images). Several image representation bases
and coder architectures, supported onmatching pursuit[10],
were evaluated and compared against standard coders (JPEG
for face images, and WSQ [4] for fingerprints).

Incomplete, complete, and over-complete bases, learnt
from one or several images, were shown to produce roughly
the same results. This suggests that, for specific classes, it
is not worth to use over-complete bases. For face images,
at low bit-rates, the 8×8 fixed block-size coder, using an in-
complete basis, yields better SNR and PQS than JPEG, and
also less blocky images. For fingerprint images, the variable
block-size coder, using a complete basis, has performance
close to that of the special-purpose WSQ coder. Elsewhere
[5], we show that orthogonalised ICA bases perform simi-
larly to WSQ over a wide range of bit-rate values.
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