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ABSTRACT

In this paper, we present a new deconvolution method, able
to deal with noninvertible blurring functions. To avoid noise
amplification, a prior model of the image to be reconstructed
is used within a Bayesian framework. We use a spatially
adaptive prior, defined with a complex wavelet transform in
order to preserve shift invariance and to better restore var-
iously oriented features. The unknown image is estimated
by an EM technique, whose E step is a Landweber update
iteration, and the M step consists of denoising the image,
which is achieved by wavelet coefficient thresholding. The
new algorithm has been applied to high resolution satellite
and aerial data, showing better performance than existing
techniques when the blurring process is not invertible, like
motion blur for instance.

1. INTRODUCTION

The problem considered in this paper is the reconstruction
of high resolution satellite or aerial images from blurred and
noisy data. Such images are corrupted by different sources
of blur: the optical system, the integration over the pixels,
and the motion. The motion blur is generally difficult to
handle, because it is not invertible, since the transfer func-
tion has zeros (corresponding to the Fourier transform of a
box function, for instance). Inverting the observation pro-
cess without amplifying the noise in this case is difficult.

In this paper, we propose a solution based on two orig-
inal works proposed in [5, 9]. The former uses a spatially
adaptive prior model of the image based on complex wave-
lets, while the latter enables us to invert any type of blur just
by using a denoising algorithm.

The observation model is represented by
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where � is the observed data, � is the original image and �
denotes a circular convolution. The Point Spread Function
(PSF) � is supposed to be known. � is the additive noise

and is supposed to be Gaussian, white and stationary, of
known variance �� (� denotes the identity matrix).

Herein, �� ��� �� denotes the multivariate Gaussian
density function for a vector� , with zero mean and covari-
ance matrix �.

The noise � is decomposed in the following way:
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such as �� and � � are independent Gaussian processes
with respective covariance matrices �� and ��. This de-
composition was initially proposed by in [9], with both � �

and � � white noises. A similar approach has been used in
[10] in the case of Poisson noise.

We choose to define the covariance matrices in such a
way to recover the observation equation (1), such that � �
�������. Thus, the noise remains white. We choose � �

as a white noise, to keep the main interest of the algorithm
proposed in [9], consisting of replacing the deconvolution
by a denoising technique. Let us also suppose that these
matrices are diagonalized by a Fourier transform (like the
convolution operator) to simplify the problem. Then, the
white noise condition is expressed as
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where � �	� denotes the Fourier transform and � ���� � �
�
���

the eigenvalues of �� and ��. Let 
 be a positive real num-
ber, and � the blurring operator related to the convolution
by �. The condition (3) is fulfilled if we have
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2. EM ALGORITHM

To estimate the unknown image � , we choose a Bayesian
approach, consisting of computing the MAP
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The posterior density � �� � � � can be written as the prod-
uct of the observation density � �� � �� by the prior den-
sity � ���, using Bayes’ rule. The former is given by the
observation model (1), while the latter is chosen in order
to model the properties of the unknown image. In this pa-
per, we define a model expressed in the wavelet domain, but
other models can be used without loss of generality.

An efficient way to perform the MAP computation is to
use the EM algorithm [3]. This method is designed to solve
problems when some data are missing. The main interest
of applying EM is to get an optimization problem which
is simpler than the original one, thanks to the missing data
introduction at each iteration of the algorithm.

The user can freely choose the missing data and the pa-
rameters to be estimated when using an EM-like procedure.
In the case presented herein, it is useful to consider the noise
decomposition (2) to define the missing data:  � � �� �

[9]. The observation model remains globally unchanged,
but we consider two steps instead of one: first add � � to �
to get , and then � � � �  �� � (see. Fig. 1).
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Missing Observation

YX z

Fig. 1. Dependence graph of the model used in the proposed
method, representing the density � ����� ��.

The expression of the complete model, including the
missing data, is then given by
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The E step at iteration � consists of computing the ex-
pectation of ���� ���  � ��� ��� with  � � � � ���	�,
denoted �. After calculus in the Fourier space, we obtain
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which looks like the Landweber iteration [8], with an ac-
celeration factor 
, which has to be constrained within the
interval ��� �� for stability reasons.

The M step is the following:
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This equation corresponds to computing the MAP using an
observed image �, noisy but not blurred. The M step is
therefore a denoising step, assuming a white noise of vari-
ance 
�� and a prior model � ���. The corresponding iter-
ative algorithm is illustrated by Fig. 2.

3. COMPLEX WAVELETS DENOISING

3.1. The prior model

We propose to model the image using complex wavelets.
Satellite and aerial images exhibit both scale invariance and
non stationarity properties, which can be captured at the
same time by a wavelet transform. However, real dyadic
wavelet transforms have two drawbacks when they are ap-
plied to image denoising.

First, they are not shift invariant. This means that de-
noising the image by thresholding the coefficients often pro-
duces artefacts, depending on the alignment between the
image features and the wavelet basis. Second, they are not
rotation invariant, since artefacts can also appear near round
features. Indeed, such transforms essentially act like multi-
scale derivation operators w.r.t. rows and columns, which is
a drawback for diagonal edges for instance.

An elegant manner to ensure approximate translational
and rotational invariances is to use complex wavelets [7].
The Complex Wavelet Transform (CWT) is obtained by us-
ing 4 parallel interleaved trees, corresponding to real sepa-
rable biorthogonal wavelet transforms which are shifted and
subsampled differently to optimize the shift invariance. The
coefficients of the real transforms are combined together to
form complex coefficients, enabling us to separate 6 orien-
tations. The resulting directional selectivity enables us to
capture the small oriented features, the diagonal edges and
the textures present in satellite or aerial images, thus provid-
ing an efficient separation between signal and noise in the
wavelet domain.

Then, we model the unknown image by a non stationary
multiscale Gaussian model. If we denote the coefficients of
the CWT of � by ��, we have
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where ��� is the local variance of the real or imaginary parts
of ��, which are supposed to be independent.

3.2. Adaptive parameter estimation and denoising

The observation model expressed in the wavelet domain is
simply �� � �� � ��� where � is the CWT of  and � �

represents a bidimensional white Gaussian noise of variance
�
��, the real and imaginary parts being independent. If the
parameters �� are known, the MAP is given by
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This is an adaptive thresholding. Since it does not modify
the phase, the shift invariance property is preserved.

To estimate the adaptive parameters, we use a hybrid
approach derived from the algorithm COWPATH 2 [5]. It



consists of performing the estimation from a good approxi-
mation of the original image, within a complete data frame-
work, which enables us to get a simple and robust estimate.
To compute the needed approximate original image, we use
an edge-preserving deconvolution method called RHEA [6],
which consists of performing a non quadratic regularization
using automatically estimated parameters. The CWT of the
result is filtered using a non informative Jeffrey’s prior to
remove the residual noise, which gives us the wavelet coef-
ficients denoted ���, i.e. the complete data.

Then, the parameter estimation step from ��� is simply
���� � �����

���. Finally, the M step becomes
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4. THE PROPOSED ALGORITHM: EM-DEC

The EM-DEC (“E M DEConvolution”) algorithm, based on
an EM method and a spatially adaptive complex wavelet
prior, is the following (see Fig. 2):

� Initialization: �� � � , 
 � ��� ��
� Compute �� from � using RHEA [6]
� Direct CWT of �� and noise thresholding to get ��
� Repeat until convergence:

- E step: Landweber iteration, Eqn. (8)
- M step: complex wavelet denoising

- Direct CWT
- Denoising using Eqn. (12)
- Inverse CWT to get �	��.

EM

X^

σY, h, 
X=Y, a, ε

ε ?||X−X’||<X

(Landweber)

Initialization

Expectation Maximization

Denoising of  z
Computation of  z

no

yes

Fig. 2. Diagram of the EM-DEC algorithm.

This method enables us to deal with any deconvolu-
tion problem using only a denoising algorithm at each step.
It also allows to use sophisticated wavelet-based models,
which could be difficult to handle within a deconvolution
context. But due to the denoising step, the computation is
quite easy, which is usually not the case for methods based
on gradient descent, like in [2, 11] for instance.

Furthermore, the approach presented here does not re-
quire the blurring operator to be invertible like in wavelet

packet or wavelet-vaguelette techniques such as [4]. To
illustrate this point, we have chosen to make experiments
with a 3�3 box convolution kernel, whose transfer function
has zeros in the frequency space.

The necessary conditions of convergence of EM-DEC
are the same as for the EM method: the function in Equ. (9)
has to be strictly concave to ensure the convergence to the
global optimum, independently on the initialization. The
chosen Gaussian prior fulfills this condition. It is not true
for other priors (such as Generalized Gaussian for instance),
which can lead to local optima depending on the initializa-
tion.

Another necessary condition is that the acceleration pa-
rameter 
 must be strictly lower than 2, like in the Landwe-
ber method. A value close to this bound gives the highest
convergence rate. However, this rate can be strongly en-
hanced by choosing a better initialization than the observed
image � , as illustrated by Fig. 3, related to the experiment
shown in next section.
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Fig. 3. SNR (in dB) as a function of the number of iterations,
for the algorithm EM-DEC. Solid: initalization using the observed
image, dashed: initalization using Wiener filter.

The idea of using a denoising method at each step of an
iterative deconvolution method has already been proposed
in [1]. The authors propose to denoise the residual � � � �
�	 at each step, but there is neither proof of convergence,
nor prior model of the unknown solution.

5. RESULTS

Fig. 4 shows a 128�128 area extracted from an image pro-
vided by the French Space Agency (CNES), this is the orig-
inal image X. The blurring kernel is a 3�3 box function.
We have �� � �.

The proposed algorithm has been compared to other al-
gorithms: Wiener filter, which gives poor results (noisy im-
age and blurred edges); RHEA method [6], which gives
sharp edges (but still noisy homogeneous areas); COWPATH
2 [5], which does not work properly because of the non in-
vertible blurring function; and EM-DEC 0, which is a sim-
plified version of the proposed method, where the denoising
step is a simple soft thresholding (with an optimal thresh-
old). The results and the related SNRs are shown in Fig. 4.



The new method performs better than other ones, and pro-
vides sharp edges, clear constant areas, and sharp oriented
features and textures, thanks to complex wavelets. Each it-
eration needs 2 FFTs and 2 CWTs, of complexity O(� log�)
where � is the number of pixels.

6. CONCLUSION

We have proposed a new deconvolution algorithm based on
the EM procedure, which enables us to solve deconvolution
problems using only a denoising technique. This approach
consists of alternating a Landweber step and a denoising
step. The latter is performed using a complex wavelet trans-
form, ensuring both translational and rotational invariance
properties, and a spatially adaptive prior model. The algo-
rithm can deal with any type of blur, and outperforms state
of the art wavelet packet deconvolution techniques when the
blur is not invertible.
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Fig. 4. Original, observed and restored image with different meth-
ods. The area is extracted from an aerial image of Nîmes c�CNES.


