
IMAGE RESTORATION UNDER WAVELET-DOMAIN PRIORS:
AN EXPECTATION-MAXIMIZATION APPROACH

Mário A. T. Figueiredo�

Institute of Telecommunications
Instituto Superior Técnico
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ABSTRACT

This paper describes an expectation-maximization (EM) algorithm
for wavelet-based image restoration (deconvolution). The observed
image is assumed to be a convolved (e.g., blurred) and noisy ver-
sion of the original image. Regularization is achieved by using a
complexity penalty/prior in the wavelet domain, taking advantage
of the well known sparsity of wavelet representations. The EM
algorithm herein proposed combines the efficient image represen-
tation offered by the discrete wavelet transform (DWT) with the
diagonalization of the convolution operator in the discrete Fourier
domain. The algorithm alternates between an FFT-based E-step
and a DWT-based M-step, resulting in a very efficient iterative
process requiring O(N logN) operations per iteration (where N
stands for the numper of pixels). The algorithm, which also esti-
mates the noise variance, is called WAFER, standing for Wavelet
and Fourier EM Restoration. The conditions for convergence of
the proposed algorithm are also presented.

1. PROBLEM FORMULATION

Image restoration, or image reconstruction, aims at recovering an
original image x from a degraded (or imperfect) observed version
y [1]. The class of observation models herein considered is the
standard “linear observation plus Gaussian noise” expressed as

y = Hx+ n: (1)

In Eq. (1), x and y are vectors of dimension Nx and Ny , re-
spectively, obtained by stacking the pixels of the corresponding
images; H denotes the (linear) observation operator (i.e., a Ny �

Nx matrix), and n is a sample of a zero-mean Gaussian vector
with covariance �2I. In image deconvolution problems, the obser-
vation operator models space-invariant (periodic) convolutions in
the original image domain. The corresponding matrix H is then
square (with Nx = Ny = N ) block-circulant and can be diago-
nalized by the 2D discrete Fourier transform (DFT):

H = UH
DU: (2)

In the above equation, U is the matrix that represents the 2D dis-
crete Fourier transform, (�)H denotes conjugate transpose, and D
is a diagonal matrix.
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In most cases,H is ill-conditioned or even non-invertible (there
are very small values, or even zeros, in the diagonal of D) and di-
rect inversion leads to a dramatic amplification of the observation
noise or is even impossible [1]. Therefore, some regularization or
prior information is required. Adoption of a Gaussian prior for x,
with mean � (usually zero) and block-circulant covariance matrix
G = UH

CU, leads to a maximum a posteriori (MAP) Bayesian
estimate of x which can be computed in the DFT domain as

bx = �+UH
CD

H

�
�
2
I+DCDH

�
�1

(Uy�DU�): (3)

This is also known as a Wiener estimate [1]. Since the matrix being
inverted in Eq. (3) is diagonal, the major computational cost is the
O(N logN) corresponding to the FFTs U� and Uy and to the
inverse FFT expressed by the left multiplication byUH .

Unfortunately, this FFT-based procedure only discriminates
between signal and noise in the frequency domain. It is well-
known that real-world images are not well modelled by station-
ary Gaussian fields. A typical image x will not admit a sparse
Fourier representation; the signal energy may not be concentrated
in a small subspace, making it difficult to remove noise and pre-
serve signal simultaneously.

2. WAVELET-BASED IMAGE RESTORATION

2.1. Introduction

In wavelet-based estimation, the image x is re-expressed in terms
of a wavelet expansion, x = W�, where W denotes the inverse
DWT. The vector of coefficients � is typically very sparse: a few
large coefficients and many very small ones [10]. As above, let
us consider a MAP (or maximum penalized likelihood – MPL) cri-
terion for our problem, expressed in terms of �, that is, taking
the likelihood function to be p(yj�). With some penalty pen(�)
emphasizing sparseness of the DWT coefficients, the MPL/MAP
estimate is given by

b� = argmax
�

�
�

1

2�2
ky�HW�k

2
� pen(�)

�
: (4)

The penalty function can be interpreted as minus the logarithm of
some (sparseness-inducing) prior, pen(�) = � log p(�), or it can
be a complexity-based penalty [12], [13].

When H = I, i.e., for simple denoising problems, wavelet-
based methods are extremely efficient (thanks to the fast imple-
mentations of the DWT) and achieve state-of-the-art performance



[5]. The excellent performance of wavelet-based denoising meth-
ods is due to the adequacy of the underlying priors/models of real
world images. Wavelet-based approaches are known to be very
effective also in image restoration problems. However, there is a
major difficulty: unlike W alone, HW is not orthogonal, thus
precluding efficient coefficient-wise denoising rules, in general.

2.2. Previous Work

A framework for restoration approaches of the form of Eq. (4), ap-
plicable with arbitrary linear operators (including all convolutions)
was proposed in [16]. The results are promising, but the algorithm
proposed is computationally very heavy, requiring O(N2 logN)
operations unless suboptimal simplifying approximations are made.

In some exceptional cases the operatorH is scale-homogeneous,
and hence (approximately) diagonalized byW; then, the so-called
wavelet-vaguelette (WV) procedure developed in [4] leads to very
efficient restoration procedures. However, most convolutions are
not scale-invariant and thus the WV procedure is not applicable.

An adaptation of the wavelet-vaguelette approach, based on
wavelet-packets designed to match the frequency behavior of cer-
tain convolutions, was proposed in [8]. This method was extended
to a complex wavelet hidden Markov tree scheme in [7]. Although
these methods are computationally fast, they are not applicable to
most convolutions and, moreover, choosing the (image) basis to
conform to the operator is exactly what wavelet methods set out to
avoid in the first place. The wavelet packets matched to the fre-
quency behavior of the convolution operator may not match image
structure as well as a conventional wavelet basis.

Other methods for more general deconvolution problems have
been proposed. In [2], the approach is to adapt the linear fil-
tering spatially, based on an edge detection test. The algorithm
presented in [14] combines Fourier domain regularization with
wavelet domain thresholding. Another interesting recent method
is the one in [9], which is based on gradient descent. The methods
of [7, 9, 14, 16] constitute the state-of-the-art.

3. THE BEST OF BOTH WORLDS

The approach proposed in this paper, is able to use the best of the
wavelet and Fourier worlds in image deconvolution problems. The
speed and convenience of the FFT-based Wiener filter, which is
well matched to the observation model, and the efficacy of wavelet-
based image models.

3.1. An Equivalent Model and the EM Algorithm

Let us write the observation model in Eq. (1) with respect to the
DWT coefficients � (recall that x =W�):

y = HW� + n: (5)

This equation clearly shows where the difficulties come from: al-
though H is diagonalized by the DFT, HW is not, and so FFT-
based methods are not directly applicable. To overcome this prob-
lem, we re-write the observation model as

y = H (W� + �n1)| {z }
z

+n2 (6)

n1 and n2 are independent zero-mean Gaussian noises with co-
variance matrices�1 = I and�2 = �2I��2HHT, respectively,
and � is a positive parameter [6].

Clearly, if we had z = W� + �n1, we would have a pure
denoising problem with white noise. This observation is the key
to our approach since it suggests treating z as missing data and
using the EM algorithm (see, e.g., [11]) to estimate �. The EM

algorithm produces a sequence of estimates fb�(t); t = 0; 1; 2; :::g
by alternatingly applying two steps:
� E-step: Computes the conditional expectation of the log-likelihood

of the complete data (y; z), given y and the current estimate b�(t).
The result is the so-called Q-function:

Q(�; b�(t)) � E
h
log p(y; zj�) j y; b�(t)i : (7)

� M-step: Updates the estimate according to

b�(t+1)
= argmax

�

fQ(�; b�(t))� pen(�): (8)

It is well known [11], that the EM algorithm produces a non-
decreasing sequence of penalized likelihoods, that is,

log p(yjb�(t+1)
)� pen(b�(t+1)

) � log p(yjb�(t))� pen(b�(t)):
Next, we derive the specific formulas for the E-step and the

M-step leading to the proposed WAFER algorithm.

3.2. The E-Step: FFT-Based Estimation

The complete-data log-likelihood is p(y; zj�) = p(yjz) p(zj�),
because, conditioned on z, y is independent of �. Then,

Q(�; b�(t)) / �
kW� � bz(t)k2

2�2
; (9)

where

bz(t) = bx(t) + �2

�2
H

T (y�Hbx(t)): (10)

Since computing bz(t) simply involves applications of the operator
H, which can be rapidly computed with the 2D FFT algorithm, the
complexity of each E-Step is O(N logN).

3.3. M-Step: Wavelet-Based Denoising

In the M-step, the parameter estimate is updated as shown in Eq.

(8), where Q(�; b�(t)) is as given by Eq. (9):

b�(t+1)
= argmin

�

�
kW� � bz(t)k2

2�2
+ pen(�)

�
: (11)

This is simply a MPL/MAP estimate of �, with penalty pen(�),
for a “direct” observation denoising problem. Thus, the M-Step
can be computed by applying the corresponding denoising rule tobz(t). For example, under an i.i.d. Laplacian prior,

pen(�) = � log p(�) / �k�k1 (12)

(where k�k1 =
P

i
j�ij denotes the l1 norm), b�(t+1)

is obtained
by applying a soft-threshold function to the wavelet coefficients ofbz(t) [12]. More specifically, letting b!(t) = W

Tbz(t) denote the

DWT of bz(t), each component of b�(t+1)
is given by

b�(t+1)

i
= sgn

�b!(t)

i

��
jb!(t)

i
j � � �

2
�
+

(13)

where (�)+ denotes the positive part operator, defined as (x)+ =
maxfx; 0g, and sgn(�) is the sign function, defined as sgn(x) = 1,
if x > 0, and sgn(x) = �1, if x < 0. Other penalties/priors will
lead to different wavelet denoising rules in the M-Step.



3.4. Remarks

A very important feature of the WAFER algorithm is that any
wavelet denoising procedure that can be interpreted as an MPL
rule can be employed in the M-Step. For example, pen(�) could
correspond to a hidden Markov tree model [3]. The computa-
tional complexity of the M-Step is dominated by the DWT, usually
O(N) for an orthogonal DWT. The computational load of the E-
step is dominated by the O(N logN) cost of the FFT. The cost of
the complete WAFER algorithm is thus O(N logN). The orthog-
onal DWT can be replaced by the undecimated DWT (UDWT). In
this case, W is a N � (N logN) matrix (rather than N � N ),
and the cost of the M-step increases to O(N logN), keeping the
global cost of the algorithm at O(N logN). Denoising with the
UDWT has the desirable property of being translation-invariant,
thus drastically reducing the blocking artifacts which characterize
the methods based on the orthogonal DWT.

Finally, let us summarize the several very attractive features of
this approach: (i) the computational complexity of each iteration
is O(N logN); (ii) we can employ any wavelet basis; (iii) we can
employ any wavelet-based penalization.

4. EXTENSION: UNKNOWN NOISE VARIANCE

Up to this point, we have assumed that the noise variance �2 is
known. We now present an extension of the proposed algorithm
which also estimates �2. This is simply done by inserting an ad-
ditional step (following each pair of E and M steps) in which the
noise variance estimate is updated based on the current estimate of
the true image bx(t) �Wb�(t). This noise variance update step is

c�2(t+1)

=
kHWb�(t+1)

� yk
2

N
: (14)

The complete algorithm is not an EM algorithm, but it is also
guaranteed not to decrease the penalized likelihood function. Let
us denote the penalized log-likelihood being maximized as

L(�; �2) = �
N

2
log �2 �

kHW� � yk
2

2�2
� pen(�): (15)

Concerning the EM step, of course L(b�(t+1)
;c�2(t)) �

L(b�(t);c�2(t)) [11]. The noise variance updating step is simply

a maximum likelihood estimate of �2, with � fixed at b�(t+1)
, i.e.,

c�2(t+1)

=
kHWb�(t+1)

� yk
2

N
= argmax

�2
L(b�(t+1)

; �
2);

thus L(b�(t+1)
;c�2(t+1)

) � L(b�(t+1)
;c�2(t)). In conclusion,

since both steps are guaranteed not to decrease the penalized log-
likelihood function, so is their combination.

5. CONVERGENCE OF WAFER ALGORITHM

Being an instance of EM, each iteration of the WAFER algorithm
produces an image with a penalized likelihood value no smaller
than the previous image. Under certain conditions, the EM algo-
rithm is guaranteed to converge to a global maximum of the penal-
ized likelihood criterion. If the penalty function is concave (but not
strictly concave) in �, then all stationary points are global maxima,

and the sequence of penalized log likelihood values converges to
the global maximum. However, since there may be many global
maxima the WAFER algorithm may not converge to a fixed im-
age. If it does converge to a fixed image (this limit could depend
on the initialization of the WAFER algorithm), then that image
maximizes the penalized likelihood criterion.

The WAFER algorithm converges to the (unique) globally op-
timal solution of the penalized likelihood criterion if either of the
conditions below are met:

a) H and W are invertible and the penalty function is concave
(e.g., soft-threshold).

b) The penalty function is strictly concave (e.g., the modified
soft-threshold penalty, described below).

The following modification of the log-Laplacian leads to a
strictly concave penalty function and a threshold rule nearly the
same as the soft-threshold function, except that it is differentiable
at all points. Instead of the log-Laplacian, which has the form
log e��j�j = ��j�j, consider

pen(�) = �
p
�2 + �2; (16)

for some small number �. Notice that as � ! 0, this penalty tends
to the log-Laplacian. However, for every � > 0 this penalty is
strictly concave.

Finally, recall the that WAFER algorithm coupled with the
adaptive update of the noise variance, given by eq. (14), produces
a non-decreasing sequence of penalized likelihood values (with the
noise variance �2 treated as an unknown parameter to be inferred
jointly with �). However, the corresponding likelihood function is
non-concave and convergence is not guaranteed in this case.

6. EXPERIMENTAL RESULTS

In all the experiments, we adopt the UDWT with Haar wavelets.
Parameter � does not affect the monotonicity properties of the EM
algorithm; however, since the penalized log-likelihood being min-
imized is not strictly convex, it may affect the local maximum to
which the algorithm converges. In all the experiments reported,

we use �(t) = 1:9c�2(t), where c�2(t) is the current noise vari-
ance estimate; we found experimentally that this is a good general-
purpose choice. The algorithm is initialized with a Wiener esti-
mate, as given by (3). In the M-step we use the denoising rule that
we have proposed in [5]; this rule is fixed (has no free parameters)
and yields excellent denoising performance.

First we adopt the experimental condition of [7]. The point
spread function of the blur operator is hij = (1 + i2 + j2)�1,
for i; j = �7; :::; 7. Noise variances considered are �2 = 2 and
�2 = 8. Fig. 1 shows the original “cameraman” image, together
with the observed and restored versions. The SNR improvements
obtained by our method are 7:43dB and 5:32dB, for �2 = 2 and
�2 = 8, respectively, versus 6:75dB and 4:85dB reported in [7].

In the last example, we consider the setup of [14]: 9 � 9 uni-
form blur, and noise variance such that the SNR of the noisy image,
with respect to the blurred image without noise (BSNR), is 40dB.
Fig. 2 shows the observed and restored versions for this example.
The improvement in SNR achieved by our method is 7.57dB, bet-
ter than the 7.30dB improvement reported in [14]. For the same
conditions, the SNR improvement obtained in [2] is 6.7dB.



Fig. 1. Original image (top), blurred and noisy images (second
row), and restored images (third row). Left column: �2 = 2; right
column: �2 = 8.

7. CONCLUSIONS

We have proposed an EM algorithm for image deconvolution that
alternates between Fourier domain filtering and wavelet domain
denoising. Our new approach achieves state-of-the-art perfor-
mance with a low computational cost (O(N logN)) and its im-
plementation is very simple; it only involves iterating between a
Wiener-like filter and a wavelet-based denoising rule.
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