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ABSTRACT

We introduce a fully adaptive active contour model in
which no parameters have to be set a priorior tuned by
the user. It is based on elliptic Fourier contour descrip-
tion and on the minimum description length (MDL)
principle. The proposed technique estimates all the ob-
servation model parameters (e.g., noise variances), the
order of the contour description (number of Fourier co-
efficients), and the contour itself.

1. INTRODUCTION AND PREVIOUS
WORK

Contour estimation .is one of the most important, in-
teresting, and challenging problems in image process-
ing and computer vision. Originating from the semi-
nal work of Kass, Witkin, and Terzopoulos [11], snake-
type approaches (in which we may include deformable
contours, active contours, dynamic contours, and de-
formable templates) constitute one of the most suc-
cessful approaches.

In the original version [11], snakes work by mini-
mizing an energy function composed of an (internal)
elastic-type term which increases with the contour de-
formations, and an (external) attraction potential link-
ing the contour with the image. The goal is a compro-
mise between contour smoothness and adequacy to the
observed data. In recent years, several improvements,
modifications, and reformulations have overcome limi-
tations of the traditional model such as sensitivity to
initialization, myopia (i.e., insensitivity to distant fea-
tures), and inability to reparametrize itself during the
deformation process (see {1], [2], [8], [12], [13], [15], [18],
and references therein).

Deformable templates, though related to snake-type
approaches, use shape descriptions with small numbers
of parameters; the deformation energy term is usually
unnecessary (see [3], [10], [19] and references therein).

From a Bayesian estimation angle, deformable mod-
els are interpretable as mazimum a posteriori (MAP)
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estimators; the internal energy and the external poten-
tial terms are associated with the a priori probability
function and the likelihood function, respectively; for
details, see [6], [10], [19], [20]. The Bayesian estima-
tion perspective has the advantage of giving meaning
to all the involved entities; e.g., the form of the energy
term that links the contour with the image contents,
i.e. the likelihood function (in Bayesian terms) can be
derived from knowledge about the observation model
rather than simply from common sense arguments [5],
[6]. The main difficulty in this approach is the choice of
the parameters involved in the definition of the a prior:
probability function and of the observation model (e.g.,
noise variances). In [6], we have proposed an adaptive
Bayesian approach for a ventricular contour estimation
problem. In [5], a technique which adaptively estimates
the observation model parameters was proposed.

In this paper, we introduce a new fully adaptive
contour estimation technique in which no parameters
have to be set a priorior tuned by the user. It is based
on Fourier contour description and on the minimum de-
scription length (MDL) principle [16], [17]. In the pro-
posed criterion, the contour shapes are described by as
few parameters as possible. Basically, it is a template
matching approach with adaptive parametrization.

2. PROPOSED TECHNIQUE

2.1. Fourier Representation

Let a closed curve (i.e., a closed contour) on the im-
age plane be represented by a periodic vector function
v(t) = [z(t) y(t)]T, of period 2w, i.e., of unit funda-
mental angular frequency. The complex Fourier series
description of the closed curve is defined as

v(t) = [ ;g; ] :é;o [ o ]em’ t o, 2n],

(1)



where

[al=m [ e

are the complex Fourier coefficients [9], [19]. The dis-
crete version of this representation is obtained by con-
sidering a discretization of a period of the curve v(t)
into N points {v;, i = 0,1,..., N — 1}. The discrete
complex Fourier series representation is

e[ M I =2 [ ] e
with
[ ]z =k X [ gl ] com

(4)
By truncating series (3) to K terms (with K < N), a
smoothed version of the curve is obtained. We denote
the vector of 2K complex coefficients by
[eOyf()yel)fl) ey

Ox) = ex-1, fr-1]- (5)

The true unobserved contour is assumed to be smooth,
i.e., it can be exactly described by some O xc)-

2.2. The Likelihood Function

Given an N-point contour defined by a K-order dis-
crete complex Fourier series, the observed image I is
modeled by the likelihood fun(,tlon (16, ¢), where
¢ is the vector of parameters of the observation mech-
anism. Although this is an often overlooked aspect,
great care has to be put on the derivation of the like-
lihood function. For specific applications (e.g., finding
organ boundaries in medical images), all the available
knowledge about the image acquisition process should
be included [5], {6]. Not doing so may result in dis-
astrous results, specially on very low quality images
(see [6]). This approach naturally leads to region based
strategies which, unlike gradient based ones, are robust
in the presence of noisy or low contrast images [5], [6],
[8], [18].

We now make the following assumptions:

Conditional independence: given the true (unob-
served) contour, the image pixels are indepen-
dently distributed.

Inside and outside regions homogeneity: The con-
ditional probability function of each pixel depends
only on whether it belongs to the inside or out-
side region of the contour; i.e., all the pixels inside
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(resp. outside) have a common distribution char-
acterized by a parameter vector ¢;, (resp. by

$out), With ¢ = [in Pbout]-
Accordingly,

(L, ¢) =

H p(I(i,j)ld’out)

(1,)€0 (B(xy)

II »Uehieim)

(i.5)€T(Bxy)

where Z((x)) and O(fx)) are the inside and outside
regions of the contour defined by 0(x), respectively;
likewise, p(I;; j)léin) and p(I(; jy|Pont) are the pixel-
wise conditional probabilities, of the inner and outer
regions, respectively.

2.3. The Estimation Criterion

If K was known, maximum likelihood (ML) estimates
could in principle be obtained by maximizing p(I|6 k), P)
with respect to k) and ¢. However, since K is un-
known, there is a model order problem which can be
stated as (assuming, for simplicity, known ¢):

o for each K, there is a parameter space Ok 3
0.k, of dimension K;

o the spaces are nested, that is, for each Ox) €
O(k), there is some 9(K+1) € O(x 41) such that!

p(Ll8 k), &) = (1185 41y, D); (6)
e consequently, K can not be estimated directl ly by
maxxrmzmg the likelihood function since p(I|8 k), ¢),

where H(K) 1s the ML estimate of 0(x) given K,
Is a non-decreasing function of K [14].

To overcome this difficulty, we adopt Rissanen’s MDL
principle (see [16] or [17] for details) where

((—E(\), 35) = argmin {~ log p(1|16(xy, @) + 2K log N} ,
_ 0
with 6 standing for the joint estimates? of K and
Ox). The 2K log N term results from the fact that a
K-order parametrization involves 2K complex coeffi-
cients, i.e. 4K real ones, and the MDL principle pe-
nalizes each real coefficient with a (log N)/2 cost [17].

1In our case, G(K_[QOVf():elvflv wer—1, K~ 1]and9(1(+1)—

[60, fore1, f1,..,ex 1, frr—1,0,0] describe the same contour.
Notlce the different notation to be used throughout the > pa-

per: 9( k) denotes joint estimates of both K and 8 rcy, while G(K)
denotes an estimate of b 5y for a given K.



From a Bayesian point of view, (7) can be interpreted
as a MAP estimator,

(@9

arg max {p (6x), # 1) }
arg max {log p(I6x), ¢)+
logp (B(K)) ¢)} y

with the prior p(x), @) o exp {—2K log N}. Since K
is the number of terms in the Fourier description of the
contour, this is basically a smoothing prior (as in reg-
ularization) expressed in the Fourier domain; this has
the advantage of avoiding the shrinkage associated with
smoothing priors directly expressed on the contour co-
ordinates [19]. Finally, we stress that the estimator (7)
does not require the previous specification of parame-
ters, thus being fully unsupervised.

2.4. Implementing the Estimation Criterion
2.4.1. Introduction

To deal with the difficult task of solving (7) we de-
veloped an iterative scheme which can be seen as re-
lated to the expectation-mazimization (EM) algorithm
of Dempster et al [4] and to the auxiliary variables
methods described by Cohen [3].

Given some f, let v(8k)) = [vo,v1,...vN-1]
be an explicit contour description obtained from the
Fourier series (3); of course, v()) contains the same
information as 6k itself. Then, writing p(I|6x), ¢) is
equivalent to writing p(I{v(f(x)), ¢)-

Now, let r be a noisy version of v(6)); specifi-
cally, r = v(f(x)) + n, where the elements of n are
all independent and identically distributed zero mean
Gaussian variables of variance ¢, Assume that the
observed image is not a function of the true contour
v(6(x)), but rather of the noisy contour r. As in incom-
plete data problems, we consider r = [rg,r1,...,rn-1]
as missing data and write

(9(,{), qs) = arg min{~ log p (I, r|6),6)+ 2K log N'}
(8)
where the complete data (I,r) has an observed part I
and a missing part r [4]. Here, r plays the role of
the auxiliary variables used in Cohen’s methods [3].
Invoking Bayes law we can write

p(Lr|0x),¢) = p(Ilr,8k),0)p (r|6x), D)
= p(Iir,#) p (v|6x)) 9)
since, given the contour r, the observed image I does

not depend on ), and, given 8, the contour r does
not depend of ¢.
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Notice that, if K was known, we would be facing a
typical missing data problem [4]; i.e., in the presence
of both T and r, ML estimates of § i) and ¢ are easy
to obtain:

e given r, and since r = v(fx)) + n, the ML es-
timate 6 is simply obtained by computing the
K first Fourier series coefficients of r; this is true
independently of the value of o2 [14];

e given I and r, ML estimates of ¢;, and @,y are

q/si; = arg max H P(I(i,j)|¢in) (10)
in (i,j)eZ(r)
¢/o:t = arg max H I j)ldout) (11)

in (i,j)eo(r)

where Z(r) and O(r) denote the inside and out-
side regions of the contour r, respectively.

However, r is not observed, it is missing; moreover, K
is also unknown. Criterion (8) can then be classified as
an MDL principle with incomplete data. In [7], we have
proposed a similar criterion for adaptive discontinuity-
preserving image restoration.

2.4.2. Algorithms

Assuming temporarily that K is known, the problem
reduces to

(5(1(), 745) =argmin{—logp (Ilv, ¢) —logp (vI6x))}
(12)
Let £(*), ?)((,‘()), and ;,i\)(t) denote estimates in iteration

t; our iterative scheme proceeds as follows:

Fixed-K Algorithm

Step 0 (Initialization): Lett = 0 and assume some
initial contour estimate T(®).

Step 1: Fromt(®), the ML estimate ;ﬁ(t), which is given
by (10) and (11), is computed.

Step 2: From the current contour estimate T®), the
~(t .

ML estimate 6((,{)) is obtained by computing the

K first complex Fourier series coefficients of 7).

-(t '
Step 3: Given 6((,()), an intermediate contour is ob-
tained according to:

~(t)

v =v(f))- (13)



Step 4: Each point of v is moved in the direction of
ascent of log p(I|v, a(t))‘ To avoid instability, this

ascent step should be small [3]; typically,

) ()

where « is a small constant and V,, denotes an

rt) — v 4 o Vy log p(Ilv, ;]\S(t

approximate gradient obtained by local differences.

Step 5: If |§((;{)) ——5&%] < ex the algorithm stops; oth-
erwise, ¢ is incremented and we go back to Step
1. Here, ¢ is a suitable stopping threshold.

Notice that steps 1 and 2 perform a projection of the
current contour estimate onto the subspace of contours
with only K Fourier coefficients different from zero.
Since a subspace 1s a convex set, this scheme is also
related to the projection onto conver sets (POCS) [21].

When K is unknown, which is the general case, the
previous algorithm is inserted into an outer loop which
sweeps a range of values {1,2,..., Kmax}.

Unknown-K Algorithin

Step 1: For each K € {1,2,..., Kmax}, run Fixed-
K Algorithm and store the final estimates 6

and 35

Step 2: For each pair 5(,(), 35 compute

—log p(1|6xcy, }) + 2K log N (15)

and choose the one which yields the lowest value.

3. FINAL NOTE
For lack of space, experimental results can not be shown
here. These will be included in an expanded forthcom-
ing paper.
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