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ABSTRACT 

This paper formulates interferometric image reconstriiction 
as a 2D absolute phase estimation problem The original 
phase image is modeled as a sample of a Gauss Markov 
random field; the observations are the noisy in-phase (co- 
sine) and quadrature (sine) images. The proposed solution 
combines features of the iterated conditional modes algo- 
rithm with nonlinear stochastic absolute phase estimation 
concepts. Examples of important applications are: inter- 
ferometric synthetic aperture radar, optical iinterferometry, 
magnetic resonance imaging, and diffraction tomography. 

1. INTRODUCTION 

In interferometric imaging techniques, information concern- 
ing the observed objects is inferred from absolute (not sim- 
ply modulo 27r) phase measurements: 

In interferometric synthetic aperture radar (InSAR), 
phase measurements are used to produce topographic 
maps; specifically, phase differences are proportional 
to the elevation of the observed terrain (see, e.g., [I] 
and 12)). 

Similarly, in optical interferometric .imaging, phase 
differences are used to infer the position of each point 
of a surface under inspection (see, e.g., 131 and (41). 

In magnetic resonance imaging (MRI), absolute phase 
measurements are necessary, e.g., to increase the dy- 
namic range of phase contrast velocity images 151, 161. 

In diffraction tomography, to obtain the complex log- 
arithm of a normalized field, the determination of its 
absolute phase is needed (71. 

Conventional techniques use a two step procedure: 

1) determination of modulo 2a phase values (the wrapped 

2) phase unwrapping based on some heuristic or ad hoc 

To deal with interferometric image reconstruction in a 
systematic way, a Bayesian estimation appioadi is adopted 
in this paper. Accordingly, a probabilistic observation model 
and structured prior knowledge concerning the original im- 
age are needed. 

phases), i.e. the so-called interferogrtzm; 

surface (phase) continuity criterion. 

2. PROBLEM FORMULA'J!ION 

Figure 1: Base-band observation model of interfero- 
metric imaging techniques. 

2.1. Observation model 

The (base-band) observation model depicted in Fig. 1 cap- 
tures the essential features of the data acquisition mech- 
anisms used in the class of problems we are considering. 
The observations y' = {Y:~} and ys = {yfJ} are the in- 
phase (cosine) and quadrature (sine) images, associated to 
the phase field x = { x , ~ } ,  with additive white Gaussian in- 
dependent noises n' = {z:~} and ns = {xtJ}, respectively; 
for simplicity, homogeneous noises of variance U* are as- 
sumed. The (pixel-wise) observation model is then 

2.2. Original image model 

We take the original image/surface as a sample of a causal 
Gauss-Markov random field (GMRF) [SI, [9], specifically, 
the one generated according to the following 2D autore- 
gressive (AR) model 

where the uLLI's are i.i d. Gaussian variables of zero mean 
and variance p'. Although simple, model (2) expresses sur- 
face continuity in a formal way, and can easily be extended 
in several directions. 
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Fig. 2 shows the original phase field generated according 
to model (2), with p = 0.7, plus a deterministic Gaussian- 
shaped surface in the central region. Fig. 3 presents the 
noisy in-phase (cosine) and quadrature (sine) observations 
from the surface of Fig. 2,  according to (1) with U = 0.3. 

with 

ql, = arctan ($) . 

100 

Figure 2: Original phase surface/field. 
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Figure 3: Noisy in-phase (left) and quadrature 
(right) observed images. 

2.3. Estimation criterion 

The problem consists iii estimating the original image based 
on the models and assumptions above stated. We adopt the 
maxzmum a posterzora (MAP) estimation criterion, i.e., 

f,,, = arglnax {~(xly' ,  y")} = algm;x{(p(y', y"Jx)p(x)}, 

( 3 )  
where p(x) is the joint probability density function of the 
causal GMRF and 

X 

P(Y",Y"lX) = n P ( Y : J l  YIS3ln.13), (4) 
2 3  

where, fiom (I) ,  

P(Y,C,, Y / ~ S ~ I S Z ~ )  e v { h  cos(ntJ - 7723)) (5) 

Figure 4: Interferogram computed from the images 
of Fig.3, according to (7). 

Fig. 4 shows the interferogram whose pixels are com- 
puted according to (7). 

3. PROPOSED SOLUTION 

3.1. The approach 

To reconstruct x froin the observations y c  and ys,  we devel- 
oped a sub-optimal approach which inherits features from 
the zterated condztional modes (ICM) scheme 1101 and from 
the nonlinear stochastic phase estimation methodology pro- 
posed in Ill] and [ l2] .  

As in ICM, each pixel estimate is the maximizer of its 
conditional probability density function, given its neighbor 
estimates and the associated observation; the model ex- 
pressed in (2) implies a causal two-nearest-neighbors struc- 
ture yielding 

where ztj-l and zc-l j  are the two previous neighbor esti- 
mates. 

Invoking Bayes law, 

In stochastic filteiing terminology, expiession (9) states that 
the predzctron denszty p ( ~ ~ , l ; ~  J - - l ,  3 )  is multiplied by 
the obseroatzon factor ~ ( y : ~ ,  y:,Jz,,), to give the filterzng 
densz ty  p ( a C 3  / .? , -I ,  ;*-I yz', , y,",). Accordingly, the pio- 
posed scheme pioceeds iecuisively as follows 
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A Predic t ion  step Following (2), and taking xaj-l  = Z , ~ - I  
h 

and zl-l = z,-~ 

- 4  1- 1 -  
p(xajIxa 3 - 1 r z a - 1 j )  = N(5~tj-l + -51-1 j , p 2 ) ,  2 

(10) 
where N(a, hi2) stands for a Gaussian density of mean 
CL and variance if2; in the sequel, we shall denote the 
mean of (IO) as T , ~  

Filtering s t e p  As stated in (9), the prediction density is 
updated by multiplying it by the obseivation factor. 
The estimate is obtained by maximizing the iesulting 
f i l t erang densaty .  

1- h h h 

+za3-l + T X ~ - ~ , .  

3.2. Nonlinear a lgor i thm 

It was shown in [12] that p(y:,, y t j 1 ~ 2 j )  (the positive periodic 
function of x,] given by ( 5 ) )  is well represented by a train 
of Gaussian functions 

+m 

f i ( ~ : j , ~ f j ~ ~ * j )  0; N(qaj +2ka,yZj),  (11) 
k = - m  

with common variance yz?, obtained by minimizing the Kull- 
back distance between the normalized central periods of 
p(y,',, Y:~~Z,,) and of its representation fi(yf,, y:jlzaj). A nu- 
merically obtained lookup table provides the optimal y,3 as 
function of A,, with a minoi computational effort 1121. 

to a weighted sum of Gaussian functions (:still all with a 
common variance VI",) ,  

Substitutingz-Wj, ylS31zt3! by iWj,.~:jl~t~), in (9), leads 

m 

k = - 0 0  

where the weights verify 

and the means are given by 

Since the variance is the same for all Gaussians in (12), 
the one with the highest maximum is simply the one with 
the largest weight, i.e. $e one with mean closest to the 
prediction density mean G e j .  Neglecting the small shift in- 
duced by lateral terms on the location of the maximum, the 
estimate is 

with 
(15) 

h k *  
5 1 3  = c, , 

IC* = argmjn { (& - ( ~ l i j  + 2 L : r ) ) ' }  ( 1 6 )  

100 

Figure 5:  Surface reconstructed by t h e  nonlinear al- 
gorit  hm. 

Fig. 5 shows the reconstructed phase image provided 
by the nonlinear algorithm from the noisy observations of 
Fig. 3. Notice the ability to follow the true phase surface, 
even though it contains a deterministic component (the pre- 
viously mentioned Gaussian-shaped elevation) which is not 
taken into account in the prior model. This reveals a certain 
degree of robustness against model mismatch. 

3.3. Linearized Algorithm 

The classical solution to phase tracking is the p h a s e  locked 
loop ,  which is equivalent to the e z t e n d e d  K a J m a n f i l t e r  (EKF) 
applied to the class of models herein considered [ll]. In the 
EKF there is no representation of the olbservation factor 
as in (11); instead, the nonlinear observation model is lin- 
earized, in each step, around the mean of the prediction 
density. As a consequence, the observation factor looses its 
periodic structure, reducing to the Gaussian form 

with variance q!$j and mean given by 

The maximum of (20) is then simply its imean, 

(22) 
A 

Xaj rr Pij. 

Fig. G shows the surface produced by this linearized 
estimator based on the same noisy observations of Fig. 3 
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and with the same parameter settings; it is very close to  
the true surface, except in the central region where it fails 
to accompany the steep ascent. 

100 

Figure 6: Surface estimate produced by the lin- 
earized algorithm. 

Fig. 7, plots the central cross sections of the original 
surface and of its estimates obtained according to (15) and 
(22); it is apparent that, besides the serious error in the 
middle (of about 2n), the linearized algorithm also produces 
a slightly oversmoothed estimate (when compared with the 
nonlinear one). 

- c 
c 
8 
d 

pixels 

Figure 7: Central cross sections of the original sur- 
face and of its estimates, obtained by the two con- 
sidered algorithms. 

4. FINAL REMARKS 

Whereas the observation model captures the essential fea- 
tures of interferometric imaging, the assumed image prior 
can be considered simplistic. The reasons that led to its 
adoption are severalfold: it formalizes (in Bayesian esti- 
mation context) surface continuity; it yields feasible algo- 
rithms; it can easily be generalized in a variety of directions. 

Future research will consider: non-causal GMRF priors 
and discontinuity detection, where approaches related to 

the ones proposed in [13] and [14] will be pursued. Cycle 
slipping, a phenomenon common to all phase estimation 
problems, may raise additional difficulties which will have 
to be addressed. 
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