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RESUME

Cet article aborde la restauration d’images
floues et contamindes par bruit blanc gaussien.
Les approches bayesienes et de regularization
mennent 4 des problémes d’optimisation de trés
grande dimension. Si l'image originale est
modélisée par un champ de Markov gaussien
et le bruit est blanc et gaussien, le probléme
d’optimisation est quadratique, donc equivalent
4 un systéme linear d’équations, Une classe
d’algorithmes itératifs, dont le Gauss-Seidel et le
Jacobi sont des cas particuliers, est considérée.
La convergence de l’algorithme de Gauss-Seidel
est démontrée. On propose une version modifiée
de la methode de Jacobi, et on établie sa conver-
gence. Cet algorithme est bien adapté a mise en
oeuvre paralléle.

1 Introduction

The goal of image restoration is to recover an image that
was degraded, e.g. blurred and corrupted by noise. Recov-
ering the original image from the observed one is a severely
ill-conditioned inverse problem {1}, [2], [9]. To overcome
this difficulty a priori constraints are imposed, leading to
solutions that are compromises between closeness to the
data and obedience to the constraints [1]. Techniques like
regularization [2], [4], [7], [9] and Bayesian estimation [1],
[3], [5] are two approaches supported on different ways of
expressing prior knowledge.

Image restoration formulated in the Bayesian framework
requires statistical models of the original image and of the
degradation mechanism [1], [3}, [5]. The uncorrupted image
is modeled as a 2D noncausal Gauss Markov random field
(GMRF), and the degradation mechanism is assumed to
be a linear blur (LB) followed by additive white Gaussian
noise (AWGN). The adoption of the maximum a posteri-
ori probability (MAP) estimation criterion leads to a large
dimension quadratic optimization problem, equivalent to a
linear system of equations. The Tikhnov-Miller regulariza-
tion approach, with a quadratic stabilizing functional, leads
to a similar quadratic optimization problem.

A class of iterative methods, of which Gauss-Seidel and
Jacobi algorithms -are special cases, is considered. These
methods are strictly local, i.e. the updating process de-
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pends only on a neighborhood of each pixel, thus being eas-
ily implementable in parallel hardware. Other faster algo-
rithms require special purpose architectures (e.g. [8]). It is
proved that, for the problem under study, the Gauss-Seidel
algorithm converges and is equivalent to the sequential
iterative relaxation method - iterated conditional modes
(ICM) - proposed by Besag [3]. Aiming at parallel imple-
mentation (all sites updating their values simultaneously),
and since the original Jacobi method can not be guaranteed
to converge, a modified version is proposed. The structure
of this algorithm allows parallel implementation namely on
convolution oriented hardware.

2 Models
2.1 Markov Random Fields

Consider the images defined on a finite lattice Z3rx, with
M x N sites (pixels) [5]

Zun ={(j): 1 <i< M, 1<j< N}

A neighborhood system N = {Ny; : (ij) € Zun}, defined
on Zyn, is any collection of subsets such that

(2]) ¢ N,'j and (Z]) ENy & (kl) € N,’j.

A subset with only one site or a set of mutually neighbor
sites is called a clique. Let C denote the set of all cliques.
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Since the lattice is finite, special rules have to be provided
for the boundary sites. The free boundary condition [5] is
here adopted.

Let X = {X(;) : (ij) € Zmn} be a family of random
variables defined on a space A. Let Q be the set of all
possible configurations. If all configurations have nonzero
probability and

P (zapl{zan, (k1) # (1)) =
P (zapl{zny, (k1) € NijY),

for all (ij) in Zprv, the family X is said to be a Markov ran-
dom field (MRF) with respect to the neighborhood system
N. If A is continuous, P(-) stands for probability density
functions; if A is discrete P(-) denotes probability masses.
According to the Hammersley-Clifford theorem 3], [5], the
joint probabilty of a MRF has the Gibbs form

D Vel X)}, (1)

where Z, the partition functzon (PF), is a normalizing con-
stant. Each cliqgue potential Vo(x) has the property of
only depending on the sites in clique C, that is, Vo(x) =
Ve({zj) < (i7) € C}).

The local conditional probabilities are obtained from the

clique potentials as
nf- & ven)
) = C:(ij)ecC

P (2 {zan, (k) € Nij}) = p
ij

P(x) == exp i

(2)

where Z;;y, the local PF, is a normalizing constant.
If clique potentials of the form

2

Ve(x) = Z af:; ziiy | (3)
(ij)ec

are considered, the joint probability of the field can be writ-

ten in vector notation as

P(x) o exp{—%T AX}, (4)

where X is the (M N x 1) lexicographically ordered vector

- T
X= [x(ll);x(IZ)) s TN Z(21) - s TNy - - - )x(M'N)]

and A isa (M N x M N) symmetric positive definite matrix
(PDM). Equation (4) shows that, if A is the real line, X is
a zero mean Gaussian vector with covariance matrix 2A~1.
The elements of matrix A are given by

Agpyan = > BGBG (5)
Cec
where c
c_laj & (@)eC
Aij “{ 0 <« (ij)¢C. (6)
Notation:

1. The lexicographically ordered vector of any 2D field Z
will be denoted by Z.

2. Z(;j represents the element (i + (j — 1)M
Z.

) of vector

3. Agijyxn stands for the element (i+4 (j — )M, k+ (1 -
1)M) of matrix A.

2.2 Observation Model

The observed image is modeled as sample of a GMRF, lin-
early blurred and contaminated by AWGN. In vector nota-
tion L.

Y =BX + W, (7)

where B is the (MN x MN) blur matrix, and W is a
(M N x 1) zero mean Gaussian vector with covariance ma-
trix 021. The conditional probability of the observed image
given the original one is then

P(ylx) xexp

—~~
o
~—

I_l_.l Bz _ 3
1

2(7'

3 MAP Restoration
The MAP estimate is defined as [3], [5]

XMAP = arg max {P(xly)} = arg max {P(ylx) - P(x)}.

(9)
Introducing (4) and (8) in (9) leads to
- _ . Tz ofTz
Xmap = argmin {x Cx — 2b x} (10)

where C is the (M N x M N) symmetric PDM

1
C=A+—BTB, 11
and b is given by
S

Since (10) is convex it can be minimized by searching the
zero of the gradient,

CRmap = b. (12)

4 Relation with Regularization

The Tikhonov-Miller regularization approach to the inver-
sion of (7) leads to the minimization problem

Xppc = argmin {|| B - ¥ | +7 | DX [P},  (13)
X

where D, the constraint operator, incorporates a priori in-
formation about the solution, and v is the regularization
parameter [7], [9]. Equation (13) can be rewritten as

%rec = argmin { %" (B”B + 7D"D) % - 2 (B75) %}
X

which has the same form as (10),(11).

This means that all the techniques developed to perform
MAP restoration of images under the GMRF-LB-AWGN
assumption can also be used in the regularization approach.



5 TIterative Solutions

According to the preceding considerations, the image esti-
mate is, in general, the solution of a linear system CX = b.
The huge dimension of matrix C (MN x MN) for a M
by N pixel image) strongly suggests the use of iterative
schemes.

Splitting matrix C as C = G —H leads to the equivalent
system GX = HX + b and to the iteration

GR(k+1) = (H:‘c‘(k) + B) (14)

with initial condition X(0) [6]. Matrix G has to be such that
system (14) can be easily solved. Defining the error vector
&(k) = x(k) — X, where X is the solution of the system, it
follows that 8(k) = (G™'H)F &(0); therefore, iteration (14)
converges if and only if matrix M = G~ 'H is convergent
[6], i.e.

klingo(G‘lH)k =0. (15)

Matrix M is convergent if and only if p(M) < 1, where
p(M) stands for the spectral radius of M (the maximum of
the magnitudes of all the eigenvalues).

5.1 Sequential Algorithm

Choosing matrix G to be the lower triangular part of C
yields the Gauss-Seidel algorithm, also known as succes-
sive iterations. This scheme can be written in a sim-
ple way if the iteration is redefined as follows. Let a
cyclic sequential visit schedule to the field sites be given,
{(11),(12),...,(1N),(21),...,(MN),(11),...} (at each it-
eration, only the visited site is allowed to change its value);
if, at time ¢, site (mn) is being visited, its value is changed
according to

bemn) — E Cmn) (k1) 2 (x1)(t)
(k)£ (mn)
. 16
C(mn)(mn) ( )

x(mn)(t 4 l) =

The neighborhood defined by matrix C, i.e. Nj; = {(ki) :
Cijyrny # 0}, depends on the blur matrix B and on the
original neighborhood system C.

Convergence of this method is guaranteed by the follow-
ing theorem:

Theorem 1 Consider the system CX = b; if matriz C is
symmetric, has positive diagonal elements, and is ¢ PDM,
then the Gauss-Seidel method converges (see [6], page 71).

Since matrix C has positive diagonal elements,

1
Clmmymn) = 2, (Ban) + 55 O _(Bjymm)” > 0
cec G7)

and it is.also a symmetric PDM, the conditions of the the-
orem are verified and convergence is demonstrated.

The deterministic relaxation algorithm ICM [3}, that it-
eratively maximizes the a posteriori probability with re-
spect to each field site, works as follows:

A visiting schedule to the field sites is given (e.g. sequen-
tial). If at time t, site (kl) is being visited, z(z; is replaced
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by the value that maximizes the local conditional a poste-
riori probability, .

zan(t + 1) = arg max {P(zen{zqj), (G5) # (kD). ¥)} -

Invoking the Markovian nature of X, and using expres-
sions (2) and (3), it is easily found that ICM leads to up-
dating rule (16). This proves that ICM, under the GMRF-
AWGN assumption, is nothing more than the Gauss-Seidel
algorithm. A relation between ICM and the iterative so-
lution of a system of equations was already suggested by
Besag [3].

5.2 Parallel Algorithm

Choosing matrix G to be the diagonal of C, the resulting
scheme is the Jacobi algorithm or simultaneous iterations
[6]. As convergence can not be guaranteed for the system
under study, a modification has to be introduced. Instead
of the diagonal of C, let G = diag{eq11),€(12),-- - €Ny}
Since matrix G is diagonal, this iterative process can be
written explicitly as

1
zn(t+1) = — | bujy = D Cannzan(®) | + 25 (1)
‘ €(3i) (ki)
(17)

The conditions on the parameters £(;;) that assure conver-
gence are given by the following theorem:

Theorem 2 Let CX = b be the system to be solved. The
iterative algorithm defined by equation (17) converges if

1
£Gj) > 3 (ZIC@-J-)(H)I) » Vi) (18)

(k1)

See proof in Appendix.

Since all the image pixels update their values simultane-
ously, the algorithm defined by (17) can be parallelly imple-
mented. Although Jacobi-type algorithms converge slower
than the Gauss-Seidel scheme, they are specially adequate
to parallel implementation.

An important special case is obtained when the field \is
homogeneous and the blur is space-invariant (a convolu-
tion). In this case, matrices A, B and C are block-Toeplitz
and equation (17) can be rewritten as a 2D convolution,

zapn(t+ 1) =bay + > Y fanza-kj-n®),  (19)
k 14

and implemented on convolution oriented hardware. The
kernel fi) of equation (19) is given by

f(u)={ —Clijyi-k j-1/€G5) < (k1) #(00)
—C(;j)(;_k j..z)/E(,'j) +1 <« (k) =(00).

6 Example

In the examples presented in figures 1 and 2 a first or-
der neighborhood is adopted, i.e. Ngjy = {(1+1 J),(¢ -
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1 7),¢ 7+1),¢ j— 1)}, leading to cliques of the form
Ca = A{(@),(i+1 )} and Cp = {(#j),(i 7 + 1)}. The
clique potentials are

1
Vea(®) = 336 — 241 )

1
Veg(x) = p(z(u)—f(im))z-

Both figures show restored windows of a degraded image.

Figure 1: Blur: 5 x 5 uniform low pass. Additive white
Gaussian noise variance: o2 = 202.

Figure 2: Blur: 9 x 9 uniform low pass. Additive white
Gaussian noise variance: o2 = 502.

Appendix

The proof of theorem 2 is based on the following theorems:

Theorem 3 Let G be a non-singular and symmetric ma-
triz, and C = G — H be positive definite. Then, M =
G~H is convergent if and only f Q= G+H=2G - C
is a PDM (see [6], page 72).

Theorem 4 (Gerschgorin) Let M be a L x L matriz with
eigenvalues Ay and define the absolute row sum as

L

r = Z | M;;].

J=hij#i

Then, all eigenvalues lie in the union of the row circles,
L
Ap € U{Z : lz— Miil < T','}.
i=1

(see [6], page 135-137).

By theorem 3, M is convergent if and only if Q is a
PDM, i.e. all its eigenvalues are positive. Since C and Q
are symmetric, their eigenvalues are real. The elements of

Q are

25’," —Ci' ij
Qe = { _ézi)j)(k,)( 6D

<= (1) = (k)
<= (i) # (kD).

Using Gerschgorin’s theorem and (20) it can be stated that,
for any eigenvalue A, of Q,

(20)

A > min

min ¢ (266~ Canen) = 2. ICanwl

(kD)

> T(mgl 25— 3 1CGHH0] 7 s
Y (k1)

3 1020dr UL Gar vaa

sufficien
is then (18). This concludes the

bf:cause C(,'j)(,'j) > 0 ¥
eigenvalues to be positive
proof of theorem 2.
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