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ABSTRACT

We address the problem of image deconvolution underlp norm
(and other) penalties expressed in the wavelet domain. We propose
an algorithm based on the bound optimization approach; this ap-
proach allows deriving EM-type algorithms without using the con-
cept of missing/hidden data. The algorithm has provable mono-
tonicity both with orthogonal or redundant wavelet transforms. We
also derive bounds on thelp norm penalties to obtain closed form
update equations for anyp ∈ ]0, 2]. Experimental results show
that the proposed method achieves state-of-the-art performance.

1. INTRODUCTION AND PROBLEM FORMULATION

Wavelet-based methods are currently the best choice for image de-
noising problems, both in terms of performance and computational
efficacy. However, image restoration in general (e.g., deconvolu-
tion) is much more challenging than simple denoising, and apply-
ing wavelets has proved to be a highly non-trivial problem.

In image reconstruction/restoration problems, we wish to esti-
mate an original imagex from an observationy, assumed to have
been produced by the linear observation model

y = Hx + n, (1)

where matrixH represents the observation operator, andn is a
sample of a zero-mean white Gaussian field of varianceσ2. Matrix
H can model many types of linear observations, but here we’ll
focus on deconvolution (deblurring) problems. In this case, for 2D
images,H is a block-circulant matrix with circulant blocks [1].

In the wavelet-based formulation, equation (1) becomes

y = HWθ + n, (2)

obtained by writingx = Wθ, whereθ is the vector of representa-
tion coefficients and the set of columns ofW is a wavelet basis (or-
thogonal,W is square, or redundant,W has more columns than
lines). Themaximum a posteriori(MAP) estimate ofθ, (a.k.a. the
maximum penalized likelihood estimate – MPLE), is given by

θ̂ = arg min
θ

{
‖y −HWθ‖22 − 2 σ2 log p(θ)

}
, (3)

wherep(θ) is usually a heavy-tailed prior expressing the sparse na-
ture of the wavelet coefficients of natural images [19]. Obviously,
(3) cannot be solved in closed form, even ifp(θ) is a Gaussian
prior, since we cannot invert matrices of the form(HW + λI).
Actually, HW can’t even be explicitly computed or stored;e.g.,
for 256× 256 images, it would be a2562 × 2562 matrix.

In [11], we have proposed an expectation-maximization (EM)
algorithm to computêθ in an iterative way. Other wavelet-based
approaches to image restoration are also reviewed in [11]. The EM
algorithm proposed in [11] relies heavily on the orthogonality of
W. However, it is well known that using orthogonal wavelet bases
yields unpleasant blocky artifacts, which can be avoided by using
over-complete translation-invariant (TI) representations (W with
more columns than lines). In denoising, TI representations are
known to significantly reduce these artifacts and yield better SNR
improvement [5, 10, 14]. In this paper, we describe an newbound
optimization algorithm1 (BOA) which, unlike the EM method pre-
sented in [11], does not rely on the orthogonality ofW. Although
BOAs have been used before in image reconstruction (mainly to-
mographic, see,e.g., [8, 15, 9]), to the best of our knowledge, they
have not been used for wavelet-based image deconvolution. A par-
tial exception is the very recent work in [7], where an algorithm re-
lated to ours has been derived in a different way, and applied only
with orthogonal representations. We should also mention the very
recent work [3], where a generalized EM algorithm is proposed,
which also does not rely on orthogonality ofW.

The independent generalized Gaussian density (GGD, see [19])

p(θ) ∝ exp
{
− τ

2

∑
i

|θi|p
}

, (4)

is a common prior for wavelet coefficients. The logarithm of this
prior is proportional to thep-th power of anlp norm2 plus some
irrelevant constantA, that is: log p(θ) = −(τ/2)‖θ‖p

p + A. It
is known that good wavelet-based image models are obtained for
p < 1 (e.g., p ' 0.7) [19]. By resorting to the bound optimization
approach, we will derive closed form update equations under any
GGD prior with0 < p ≤ 2. Experimental results will show that
the best performance, however, is obtained with the prior proposed
in [10], which also leads to closed form iterations.

In Section 2 we derive a BOA to solve (3). In Section 3, we
show how the approach can be used to obtain closed form updates
under GGD and other priors. Experimental results are presented
in Section 4, and Section 5 concludes the paper.

2. THE BOUND OPTIMIZATION APPROACH

2.1. Introduction

Let L(θ) be the function to be minimized. The well-known EM

algorithm [18] yields a sequence of estimatesθ̂
(t)

, for t = 1,2, ...,

1For a review of bound optimization algorithms, see [12]
2Recall that thelp norm is‖v‖p =

(∑
i
|vi|p

)1/p
.
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by iteratively minimizing the so-called Q-function

θ̂
(t+1)

= arg min
θ

Q(θ|θ′), (5)

where we use (throughout the paper) the notationθ′ = θ̂
(t)

. Un-
derlying the monotonicity of EM is the followingkey property:
Q(θ|θ′) ≥ L(θ), with equality forθ = θ′; that is,Q(θ|θ′) is an
upper bound onL(θ), touching it forθ = θ′. In fact,

L(θ̂
(t+1)

) = L(θ̂
(t+1)

)−Q(θ̂
(t+1)|θ′) + Q(θ̂

(t+1)|θ′)
≤ Q(θ̂

(t+1)|θ′) ≤ Q(θ′|θ′) = L(θ′) = L(θ̂
(t)

),

where the first inequality results fromL(θ) − Q(θ|θ′) ≤ 0, for
anyθ, and the second one from the fact that, by definition (see (5)),

Q(θ|θ′) attains its minimum forθ = θ̂
(t+1)

. It is well known that
the Q-function in standard EM does verify thiskey property, as a
consequence of Jensen’s inequality.

This perspective opens the door to the derivation of EM-style
algorithms, where the Q-function (or bound function) doesn’t have
to be derived from missing-data considerations, as in standard EM,
but using any properties ofL(θ), such as convexity or bounded
Hessian matrix [12]. These bound optimization algorithms (BOA)
have two (obvious) properties, of which we will make use below:

Property 1: Any function Qa(θ|θ′) differing from Q(θ|θ′) by
an additive constant and/or a multiplicative factor (both in-
dependent ofθ) defines the same algorithm.

Property 2: Let L(θ) = L1(θ)+L2(θ) (as in (3)); consider two
bounds,Q1(θ|θ′) ≥ L1(θ) andQ2(θ|θ′) ≥ L2(θ), both
with equality forθ = θ′. Then, all the following functions
upper-boundL(θ) (with equality forθ = θ′): Q1(θ|θ′) +
Q2(θ|θ′), L1(θ) + Q2(θ|θ′), andQ1(θ|θ′) + L2(θ).

2.2. Hessian Bound

Let us consider thatL(θ) is convex and has bounded Hessian, that
is, there is some matrixD such that, for anyθ, ∇2L(θ) ¹ D,
where∇2L(θ) denotes the Hessian computed atθ, andA ¹ B
(for two square matricesA andB of the same dimension) means
that matrixB−A is positive semi-definite. Under this condition,
and for anyθ′, we have the bound

L(θ) ≤ L(θ′)+(θ−θ′)T∇L(θ′)+
1

2
(θ−θ′)T D(θ−θ′), (6)

where∇L(θ′) denotes the gradient ofL(θ) atθ′. InvokingProp-
erty 1 to drop additive constants, we finally have the Q-function

Q(θ|θ′) = θT (∇L(θ′)−Dθ′) +
1

2
θT Dθ. (7)

InvokingProperty 2, we will now derive a Hessian bound for
the first term in (3). We begin by computing the Hessian

B = ∇2 1

2
‖y −HWθ‖22 = (HW)T HW = WT HT HW.

The fact thatθT Bθ = ‖HWθ‖22 ≥ 0, for any θ, shows that
‖y−HWθ‖22 is indeed convex, though not necessarily strictly so.

If the spectral norm ofB (its largest eigenvalue) is bounded
above by someD, i.e., ‖B‖2 ≤ D, thenB ¹ DI, whereI denotes
an identity matrix. In fact, the eigenvalues ofDI − B are of the

form D− λi, whereλi are the eigenvalues ofB. If no λi is larger
thanD, the eigenvalues ofDI − B are all non-negative and thus
DI º B. It turns out that it is easy to compute‖B‖2,

‖B‖2 = ‖HW(HW)T ‖2 = ‖HWWT HT ‖2 = ‖H‖22 = 1

assuming the following: the convolution operator is normalized
(‖H‖22 = 1); the columns of matrixW correspond to a normal-
ized tight frame,i.e., WWT = I, although, of course,WT W
may not equalI, becauseW is not necessarily orthogonal [4, 17].
We have also used the fact that, for any matrixA, ‖AAT ‖2 =
‖AT A‖2. Consequently, we have the Hessian boundB ¹ I.

Finally, to use (6), we need the gradient of(1/2)‖y−HWθ‖22,
at θ′, which is simplyWT HT (y −HWθ′). Plugging this gra-
dient, and the Hessian boundD=I, into (7), we finally have

θ̂
(t+1)

= arg min
θ

{
‖θ − φ‖22 − 2 σ2 log p(θ)

}
, (8)

where
φ = θ′ + WT HT (y −HWθ′). (9)

Notice that (8) corresponds to applying the pure denoising rule as-
sociated to the priorp(θ) to the “noisy coefficients”φ. In (9),
the multiplications byH andHT can be done efficiently via FFT,
since these matrices represent convolutions. For the multiplica-
tions byW andWT, when these matrices correspond to orthogo-
nal or redundant wavelet bases, there are very efficient algorithms
which do not explicitly use these matrices [17]. The computational
cost of each iteration isO(N log N), for N ×N images.

3. SOLVING THE UPDATE EQUATION

We focus only on independent priors,i.e., for which log p(θ) =∑
i
log p(θi). In this case, (8) can be solved separately with re-

spect to each component:

θ̂
(t+1)
i = arg min

θi

{
(θi − φi)

2 − 2 σ2 log p(θi)
}

. (10)

There are two standard cases for which (10) has simple closed
form solutions. For a zero-mean Gausian prior with variance(1/τ),
since−2 σ2 log p(θi) = σ2τ θ2

i + A (whereA is an irrelevant
constant), the solution is simply

θ̂
(t+1)
i = (1+ σ2 τ)−1φi. (11)

For a Laplacian prior (i.e., a GGD prior withp = 1), we have
−2 σ2 log p(θi) = σ2τ |θi|+ A, and the solution is

θ̂
(t+1)
i = soft

(
φi, σ

2 τ/2
)

where soft(x, δ) = sign(x)max{0, |x| − δ} denotes the well-
knownsoft thresholdfunction [19].

3.1. Bounding the GGD Priors, forp 6= 1, 2

For a GGD prior, with1 < p < 2, the update equation (8) doesn’t
have a closed form solution [19]. We circumvent this difficulty by
invoking Property 2 and deriving a bound for the prior term, to
be added to the Hessian bound underlying (8). Since‖θ‖p

p (for
1 < p < 2) is convex, it makes sense to use a quadratic bound. It
is easy to check thatθp is indeed upper bounded as follows:

|θ|p ≤ θ2
(

p

2
((θ′)2)(p−2)/2

)
+

2− p

2
|θ′|p, (12)
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with equality for|θ| = |θ′|. By adding this bound to the bound of
the log-likelihood (and dropping additive constants) we obtain

Q(θi|θ′i) = (θi − φi)
2 + θ2

i λi (13)

where

λi =
σ2 τ p

2

(
(θ′i)

2
) p−2

2 .

Minimizing thisQ(θi|θ′i) w.r.t. θi is trivial and leads to

θ̂
(t+1)
i = (1 + λi)

−1 φi. (14)

Since we expect several coefficient estimatesθ̂
(t)
i to approach zero,

this form is not convenient, as some of theλi can become arbitrar-
ily large. After observing that(1+λi)

−1 = λ−1
i (1+λ−1

i )−1, we
define a new set of variablesγi = λ−1

i and rewrite (14) as

θ̂
(t+1)
i = φ

(t)
i γi (1 + γi)

−1. (15)

We thus store variables that may approach zero (rather than infin-
ity), and avoid any numerical problems.

For 0 < p < 1, the update equation (8) also doesn’t have a
closed-form solution [19]. Since‖θ‖p

p is not convex, we can use a
bound tighter than a quadratic one. It’s a simple exercise to check
that|θ|p, for 0 < p < 1, is upper bounded as follows:

|θ|p ≤ |θ| p |θ′|p−1 + (1− p) |θ′|p. (16)

The complete bound is then

Q(θi|θ′i) = (θi − φi)
2 + |θi| ξi,

whereξi = σ2 τ p |θ′i|p−1, and the corresponding minimizer is

θ̂
(t+1)
i = soft(φi, ξi/2). (17)

That is, in this case, we have to apply a soft-threshold function
with varying threshold values at each iteration.

3.2. Other Priors

Of course we are not limited to independent GGD priors. For ex-
ample, we can use the denoising rule from [10],

θ̂
(t+1)
i = φ−1

i max
{
0, φ2

i − 3 α2
}

. (18)

Although originally derived in an empirical-Bayes approach, it
was shown to be the MAP estimate under a certain prior [10].

Other independent priors can be handled using the approach
described in subsection 3.1, as long as we can derive quadratic or
l1 upper bounds on their logarithms. Non independent priors (such
as the one in [6]) can also be used in (8), although the solution can
no longer be obtained separately for each coefficient. It is also
very simple to modify the algorithm to include the estimation of
the noise variance (as in [11]).

4. EXPERIMENTS

In this section, we present a set of experimental results illustrat-
ing the performance of the proposed approach, in comparison with
some recent state-of-the-art methods [11, 13, 16, 20]. In all the
experiments, we use the TI wavelet transform from theWavelab3

3Available from http://www-stat.stanford.edu/∼wavelab/

MATLAB toolbox. We employ Daubechies-2 (Haar) wavelets;
other wavelets lead to very similar results. The algorithm is ini-
tialized with a Wiener filter estimate, as described in [11]. The
GGD parameters used werep = 0.7 andτ = 0.25, which were
found to lead to the best performance. However, the rule (18) out-
performs the GGD, and has no free parameters to be adjusted. Of
course, for GGD priors withp < 1, and for the prior correspond-
ing to rule (18),L(θ) is not convex, and the final results depend
on the initialization.

In the first experiment, we replicate the experimental condition
of [13]. The blur point spread function ishij = (1 + i2 + j2)−1,
for i, j = −7, ..., 7, and the noise variance is set toσ2 = 2 and
σ2 = 8. The SNR improvements obtained are shown in Table 1.
Our BOA outperforms [13], although [13] uses a much more so-
phisticated wavelet transform and prior model, as well as our pre-
vious method [11]. The degraded and restored images are shown
in Fig. 1, while Fig. 2 plots the the objective function and the SNR
improvement along the iterations, forσ2 = 8 and rule (18).

(a) (b)

(c) (d)

Fig. 1. Blurred and noisy images with (a)σ2 = 2 and (b)σ2 = 8,
and corresponding restored images ((c) and (d), respectively).

Table 1. SNR improvements for the first set of experiments.
Method σ2 = 2 σ2 = 8

BOA, with rule (18) 7.46dB 5.24dB
BOA with GG prior (p = 0.7, τ = 0.35) 7.39dB 5.24dB

Best result in [11] 6.93dB 4.88dB
Results by Jalobeanuet al [13] 6.75dB 4.85dB

Next, we consider the setup of [20] and [2]: uniform blur of
size9 × 9, and the noise variance such that the SNR of the noisy
image, with respect to the blurred image without noise (BSNR), is
40dB (this corresponds toσ2 ' 0.308). The SNR improvements
obtained are summarized in Table 2, showing that our method out-
performs those in [20] and [2].

In the final set of tests we have used the blur filter and noise
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Fig. 2. SNR improvement and minus the log-posterior (objective
function) along the iterations.

Table 2. SNR improvements for the second set of experiments.
Method SNRI

BOA with rule (18) 8.16dB
BOA with GG prior (p = 0.7, τ = 0.35) 7.98dB

Best result from [11] 7.59dB
Result by Neelamaniet al [20] 7.3dB

Result by Banham and Katsaggelos [2] 6.7dB

variance considered in [16]. Specifically, the original image was
blurred by a5×5 separable filter with weights[1, 4, 6, 4, 1]/16 (in
both the horizontal and vertical directions) and then contaminated
with white Gaussian noise of standard deviationσ = 7. The SNR
improvements obtained are shown in Table 3.

5. CONCLUSIONS

We have introduced a bound optimization algorithm for wavelet-
based image restoration. The proposed algorithm finds themax-
imum a posteriori(or maximum penalized likelihood) estimate
in an iterative fashion. This new algorithm extends our recently
proposed EM algorithm, in the sense that it can be used (and is
guaranteed to be monotonic) with non-orthogonal representations,
such as shift invariant wavelet transforms. Experimental results
show that the algorithm yields state-of-the-art performance.
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