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1 Least Squares Linear Regression

We are given a set of input-output pairs, T = {(x(1), y(1)), ..., (x(n), y(n))}, where each
x(i) ∈ Rp and y(i) ∈ R. The goal is to estimate a linear “regression function”of the form

g(x,β, β0) = β0 + βTx = β0 +
p∑
j=1

βj xj ,

where β = [β1, ..., βp]T is the vector of “regression coefficients”, β0 is the “intercept
coefficient”, and xj denotes the j-component of vector x. The components of the x(i)

are usually called the “explanatory variables” or “independent variables”. The classical
estimation criterion is the minimization of the mean squared error on T , that is,(

β̂, β̂0

)
= arg min

β,β0

n∑
i=1

(
y(i) − g(x(i),β, β0)

)2
= arg min

β,β0

n∑
i=1

y(i) − β0 −
p∑
j=1

βj xi,j

2

= arg min
β,β0

n∑
i=1

(
y(i) − β0 − βTx(i)

)2
,

where xi,j is the j-th component of x(i). We can start by getting rid of β0; without loss
of generality, we can assume that each regressor xj was “centered”by having its mean
removed from the training set, that is,

n∑
i=1

xi,j = 0, (1)
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for j = 1, ..., p, and that the “response” variables also have zero sample mean,

n∑
i=1

y(i) = 0.

Under these conditions, it’s trivial to show (and is left as an exercise to the reader) that
the minimization with respect to β0 does not depend of β and leads to β̂0 = 0. We are
thus left with

β̂ = arg min
β

n∑
i=1

y(i) −
p∑
j=1

βj xi,j

2

= arg min
β

n∑
i=1

(
y(i) − βTx(i)

)2
; (2)

this can be written in matrix notation as

β̂ = arg min
β
‖y −Xβ‖2 , (3)

where ‖·‖2 denotes the square of the standard Euclidean norm, y = [y(1), ..., y(n)]T ∈ Rn,
and X is a n× p matrix with xT(i) in the i-th column, that is,

X =


xT(1)

...
xT(n)

 =


x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p

...
... · · ·

...
xn,1 xn,2 · · · xn,p

 .

Solving (3) simply requires taking the gradient with respect to β and equating to
zero. Elementary calculus leads to

∇‖y −Xβ‖2 = ∇
(
yTy + βTXTXβ − 2βTXTy

)
= 2XTXβ − 2 XTy, (4)

where ∇ here denotes the gradient with respect to (w.r.t.) β. Setting to zero and solving
for β leads to

β̂ = solution w.r.t. β of
{
XTXβ = XTy

}
; (5)

the system in (5) is called the system of “normal equations”. If matrix XTX is non-
singular, that is, if X has p non-zero singular values (equivalently, X has p linearly
independent columns), then XTX has inverse and

β̂ = β̂OLS =
(
XTX

)−1
XTy, (6)

which is known as the ordinary least squares (OLS) estimate.
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The regressed values at the training points {x(1), ...,x(n)} are given by

ŷ(i) = β̂
T
x(i);

collecting all these estimates in a vector ŷ = [ŷ(i), ..., ŷ(n)]T allows writing

ŷ = Xβ̂ = X
(
XTX

)−1
XTy, (7)

where matrix H = X
(
XTX

)−1 XT is usually called the “hat matrix”. Matrix H is
the orthogonal projector onto the space generated by the columns of X; it’s action is
to project the observed y onto that space. Accordingly, as any orthogonal projection
matrix, H is idempotent, that is HH = H; in fact,

HH = X

identity︷ ︸︸ ︷(
XTX

)−1
XTX

(
XTX

)−1
XT

= X
(
XTX

)−1
XT

= H. (8)

In other words, ŷ is the closest (in Euclidean norm) vector to y, in the subspace spanned
by the columns of X.

2 Some Properties of Least Squares Regression

To obtain some statistical properties of β̂OLS, a few assumptions about the generation of
the observations y = [y(1), ..., y(n)]T are needed. For now, let’s simply assume that each
y(i) is obtained by adding a zero-mean random perturbation w(i) to a “true”, or “noise-
less” value βx(i). It’s also assumed that all these random perturbations are statistically
independent. In vector notation, these assumptions can be written as

y = Xβ + w, (9)

where w = [w(1), ..., w(n)]T is a sample of a random vector of mean [0, ..., 0]T and covari-
ance matrix σ2I, where I denotes an identity matrix of appropriate dimensions. Another
fundamental assumption is that X and β are fixed, deterministic quantities, and all
statistical variability in y is due to the random perturbation/noise w.

Under the assumptions described in the previous paragraph, it is easy to conclude
that β̂OLS is an unbiased estimate. In fact,

E
[
β̂OLS

]
= E

[(
XTX

)−1
XTy

]
=

(
XTX

)−1
XTE [y]

=
(
XTX

)−1
XTX β

= β,
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where (9) was invoked to write E [y] = Xβ, since w has zero mean and Xβ is a deter-
ministic constant vector.

It is also simple to obtain the covariance matrix of β̂OLS which, since E
[
β̂OLS

]
= β,

is equal to

cov
[
β̂OLS

]
= E

[(
β̂OLS − β

)(
β̂OLS − β

)T]
= E

[
β̂OLS β̂

T

OLS

]
− ββT . (10)

To obtain the covariance cov
[
β̂OLS

]
, the following well known fact is used: if V ∈ Rd

is a d-dimensional random vector with (d× d) covariance matrix C, then the covariance
of U = AV is cov [U] = ACAT , where A is any matrix with d columns. The other key
fact, obvious from (9), is that

cov [y] = cov [w] = σ2I,

since Xβ is deterministic. Putting these two facts together,

cov
[
β̂OLS

]
= cov

[(
XTX

)−1
XTy

]
=

(
XTX

)−1
XT cov [y]

((
XTX

)−1
XT
)T

=
(
XTX

)−1
XT cov [y] X

(
XTX

)−1

= σ2
(
XTX

)−1
XTX

(
XTX

)−1

= σ2
(
XTX

)−1
, (11)

where we have used the fact that XTX is symmetric, so (XTX)−1 is also symmetric.
If it is further assumed that the perturbation vector w is Gaussian, then β̂OLS is

also Gaussian, because it is a linear function of a Gaussian variable (y is the sum of a
deterministic constant with a Gaussian variable, thus is a Gaussian variable); formally,

β̂OLS ∼ N
(
β, σ2

(
XTX

)−1
)
,

where N (t,C) denotes a multivariate Gaussian of mean t and covariance matrix C.

3 Gauss-Markov Theorem

One of the often invoked reasons to use least squares regression is the Gauss-Markov
theorem. This theorem states that, among all linear unbiased estimates of β, βOLS has
minimal variance: βOLS is BLUE (best linear unbiased estimate). Of course this does
not mean that there can’t exist nonlinear or biased estimates of β with smaller variance.
Next, the Gauss-Markov theorem is presented and proved. In this section, we use the
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formally more correct convention of denoting random variables and vectors with capital
letters.

Gauss-Markov Theorem: Let Y = Xβ + W, where β ∈ Rp is an (unknown) deter-

ministic vector, X is a (known) deterministic n×p matrix with rank p, and W ∈ Rn is a

random vector of zero mean and covariance matrix σ2I. Let β̂ : Rn → Rp be a function

defined by

β̂(z) =
(
XTX

)−1
XT z.

Then, β̂(Y) ∈ Rp is a random vector with the following properties:

(i) E
[
β̂(Y)

]
= β, that is β̂ is an unbiased estimator of β.

(ii) cov
[
β̂(Y)

]
= σ2

(
XTX

)−1
.

(iii) Let β̃ : Rn → Rp be some other linear function (i.e., which can be written as

β̃(z) = Pz), which is also an unbiased estimator of β, i.e., such that E
[
β̃(Y)

]
= β;

then,

cov
[
β̃(Y)

]
≥ cov

[
β̂(Y)

]
.

Before the presentation of the proof, let us briefly examine part (iii) of the theorem.
First of all, recall that an inequality of the form A ≥ B, involving two square matrices,
denotes that A−B is a positive semi-definite matrix, that is, vT (A−B) v ≥ 0 (equiv-
alently, vTAv ≥ vTBv), for any vector v. Part (iii) of the theorem thus implies that
any linear combination vT β̃(Y) of elements of β̃(Y) can’t have smaller variance than
the same linear combination vT β̂(Y) of elements of β̂(Y). In particular, taking v = ei
(a vector with a 1 in position i and zeros everywhere else) leads to

var
[
β̃i(Y)

]
= cov

[
vT β̃(Y)

]
= vT cov

[
β̃(Y)

]
v

≥ vT cov
[
β̂(Y)

]
v

= cov
[
vT β̂(Y)

]
= var

[
β̂i(Y)

]
, (12)

showing that the variance of each individual component of β̃(Y) is no smaller than the
corresponding component of β̂(Y).

Proof: Parts (i) and (ii) of the theorem were proved in the previous section. To prove
part (iii), we begin by recalling that if U and V are two random vectors of the same
dimension, then,

cov[U + V] = cov[U] + cov[V] + cov[U,V] + cov[V,U] (13)

5



where

cov[U,V] = E
[
(U− E[U]) (V − E[V])T

]
= E[UVT ]− E[U]E[V]T

is the so-called cross-covariance1. Application of equality (13) to β̃(Y)− β̂(Y) yields

cov[β̃(Y)− β̂(Y)] = cov[β̃(Y)] + cov[β̂(Y)]− cov[β̃(Y), β̂(Y)]− cov[β̂(Y), β̃(Y)].
(14)

Recalling that β̃ is a linear estimator, β̃(Y) = PY, the condition of unbiasedness
can be stated as follows: for any β ∈ Rp, if Y = Xβ + W, where W is as defined above,

E [PY] = PE[Y] = PXβ = β,

because Y = Xβ + W and W has zero expected value. For β = PXβ to be true for
any β it is necessary that PX = I.

We need one last fact concerning covariances: let V be a random vector, and A and
B two matrices of the same dimension, then

cov[AU,BU] = E[AUUTBT ]− E[AU]E[BU]T

= A
(
E[UUT ]− E[U]E[U]T

)
BT

= A cov[U] BT .

Applying this fact to compute cov[β̃(Y), β̂(Y)], using that fact that (XTX)−1 is sym-
metric, leads to

cov[PY, (XTX)−1XTY] = P

σ2I︷ ︸︸ ︷
cov[Y] X(XTX)−1

= σ2PX(XTX)−1

= σ2(XTX)−1

= cov[β̂(Y)]. (15)

Repeating for cov[β̂(Y), β̃(Y)] yields

cov[(XTX)−1XTY,PY, ] = (XTX)−1XT cov[Y] PT

= σ2(XTX)−1

= cov[β̂(Y)], (16)

1The proof of this equality is elementary:

cov[U + V] = E[(U + V)(U + V)T ]− E[U + V]E[U + V]T

= E[UUT ] + E[VVT ] + E[UVT ] + E[VUT ]− (E[U] + E[V])(E[U] + E[V])T ;

regrouping and interpreting the terms leads to (13).
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because PX = I implies that XTPT = I.
Finally, inserting (15) and (16) into (14) leads to

cov[β̃(Y)− β̂(Y)] = cov[β̃(Y)]− cov[β̂(Y)]; (17)

finally, since any covariance matrix is positive semi-definite, cov[β̃(Y)− β̂(Y)] ≥ 0, we
obtain (12) concluding the proof.

4 Ridge Regression

When matrix XTX is singular, the ordinary least squares estimate, as given by (6), does
not exist. One of the standard alternative criteria is the so-called ridge regression, which
is defined as

β̂ridge = arg min
β

{
‖y −Xβ‖2 + λ‖β‖2

}
, (18)

where λ ≥ 0 is a parameter. The unconstrained minimization problem in (18) can also
be seen as the Lagragian of the constrained problem

minβ ‖y −Xβ‖2

subject to ‖β‖2 ≤ τ,

where λ is the Lagrange multiplier.
To solve (18), we begin by taking the gradient with respect to β, which leads to

∇
(
‖y −Xβ‖2 + λ‖β‖2

)
= 2(XTX + λI)β − 2 XTy. (19)

Equating to zero and solving for β leads to

β̂ridge =
(
XTX + λI

)−1
XTy. (20)

Notice that since XTX is a symmetric matrix, it is positive semi-definite, i.e., all its
eigenvalues are non-negative. As a consequence, the condition λ > 0 is sufficient to
guarantee that

(
XTX + λI

)
is positive definite, thus non-singular, and the ridge estimate

exists regardless of matrix X.

5 The Spectral View of OLS and Ridge Regression

To gain further insight into the OLS and ridge estimates, let’s consider the singular value
decomposition (SVD) of matrix X, given by

X = UDVT ,
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where D is a p × p diagonal matrix whose entries are the singular values of X, U is
an n × p matrix, whose columns are an ortho-normal basis for the p-dimensional sub-
space of Rn spanned by the p columns of X (thus UTU = I), and V is a p × p matrix,
whose columns are a ortho-normal basis for the space spanned by the rows of X (thus
VTV = VVT = I, i.e., V−1 = VT ).

Consider first the OLS projection given by (7); using the SVD of X, we can re-write
(7) as

ŷOLS = UDVT
(
VDUTUDVT

)−1
VDUTy

= UDVT
(
VDDVT

)−1
VDUTy

= UDVTVD−2VTVDUTy

= UDD−2DUTy

= UUTy, (21)

where the following fact was invoked: given two non-singular matrices A and B, of
compatible dimensions, (AB)−1 = B−1A−1. This expression for ŷOLS shows that it
is indeed an orthogonal projection of y onto the space spanned by the columns of X;
according to (21), this projection may be obtained by computing the inner product of
y with every column of U and then combining these columns with weights equal to the
corresponding projection. This is even more clearly seen by writing (21) more explicitly
as

ŷOLS =
p∑
j=1

uj
(
yTuj

)
, (22)

where uj ∈ Rn denotes the j-th column of U.
Let us now consider the projection corresponding to the ridge estimate, which is given

by
ŷridge = X

(
XTX + λI

)−1
XTy. (23)

Inserting the SVD of X, we have

ŷridge = UDVT
(
VDDVT + λI

)−1
VDUTy

= UDVT
(
VDDVT + λVVT

)−1
VDUTy

= UDVT
[
V
(
D2 + λI

)
VT
]−1

VDUTy

= UD (D + λI)−2 DUTy. (24)

Noticing that matrices D and (D + λI) are both diagonal, matrix D (D + λI)−2 D is
also diagonal, given by

D (D + λI)−2 D = diag

{
d2

1

d2
1 + λ

, · · · ,
d2
p

d2
p + λ

}
,
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where d1, . . . , dp are the diagonal elements of D, i.e., the singular values of X. Finally,
we can explicitly write (24) as

ŷridge =
p∑
j=1

uj

(
d2
j

d2
j + λ

)(
yTuj

)
. (25)

This expression shows that (unlike in the OLS projection) each inner product yTuj
is linearly shrunk by a factor d2

j/(d
2
j + λ) < 1, before being used as a weight in the

combination of the ortho-normal vectors u1, . . . ,up. As a consequence, the inner products
with basis vectors that corresponds to large singular values are almost left unaffected,
while inner products with basis vectors associated with small singular values are more
severely shrunk.

To understand what the ridge projection is doing, we need to understand the meaning
of the singular values of X, i.e., the eigenvalues of XTX. Assuming that we are working
with centered data (i.e., satisfying (1)), the sample covariance of the set of observation
points {x(1), . . . ,x(n)} is S = XTX/n. Thus, the eigendecomposition of S can be written
as

S =
1
n

VDUTUDVT = VD2VT .

In statistical terms, this is called the principal component analysis (PCA). Let us con-
sider, without loss of generality, that the diagonal elements of D2 are sorted in non-
increasing order, d2

1 ≥ d2
2 ≥ · · · ≥ d2

p. The so-called first normalized principal component,
u1 is the answer to the following question: in what direction of Rp does the set of points
{x(1), . . . ,x(n)} exhibit the largest variance? Moreover, d2

1/n is the value of the variance
of the data on this first principal direction. The remaining principal directions are the
answer to similar questions, under the restriction of orthogonality with respect to the
previously found directions. We can conclude that d2

p is a measure of the variance of the
set of points {x(1), . . . ,x(n)} along the p-th principal direction. In summary, what the
ridge projection does is to apply a shrinkage to the coefficients of the projection in the
directions where the variance is small, thus potentially yielding high variance estimates.

6 Dual Variables in Regression

6.1 Ordinary Least Squares

Recall that the OLS estimate of β is given by (6). Multiplying (on the left) the right
hand side of (6) by the identity matrix I = XTX(XTX)−1, we have

β̂OLS = XTX
(
XTX

)−1 (
XTX

)−1
XTy = XTX

(
XTX

)−2
XTy, (26)

which can be written as
β̂OLS = XTα, (27)
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where
α = X

(
XTX

)−2
XTy. (28)

The elements of α are called the dual variables. Expression (27) reveals that β̂OLS can
be written as a linear combination of the columns of XT , that is, the rows of X, that is,
the set of points {x(1), . . . ,x(n)}. Formally,

β̂OLS =
n∑
i=1

αi x(i). (29)

For some new point x(∗), the predicted output is given by

ŷ(∗) = xT(∗)β̂OLS =
n∑
i=1

αi xT(∗)x(i), (30)

which is a linear combination of the inner products of the new point x(∗) with all the
points in the set {x(1), . . . ,x(n)}. This observation is of crucial importance to the devel-
opment of the so-called kernel regression methods.

6.2 Ridge Regression

Let’s consider now the case of ridge regression, as given by (20). This expression is the
solution with respect to β of the linear system of equations(

XTX + λI
)
β = XTy, (31)

which is equivalent to

β =
1
λ

XT (y −Xβ) = XTα, (32)

where now
α =

1
λ

(y −Xβ) . (33)

At this point, the conclusion is similar to the one obtained in the OLS case: the coefficient
vector estimate β̂ can be written as a linear combination of points (as in (29)) and the
predicted output at some new point x(∗) is also given by (30). What differs now from the
OLS case is the computation of α, which is no longer given by (28). Inserting β = XTα

into (33), we have

α =
1
λ

(
y −XXTα

)
(34)

which is equivalent to
α =

(
λI + XXT

)−1
y. (35)

Of course, β̂ridge can be computed from this α, i.e.,

β̂ridge = XT
(
λI + XXT

)−1
y, (36)
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which thus is equivalent to (20). The key difference between (20) and (36) is that the
latter involves inverting an n × n matrix, while the former requires the inversion of a
p × p matrix. Which of the two is more convenient depends, of course, on the relative
magnitude of p and n. For regression problems in high dimensional spaces, with few
points, the dual form may be more efficient. Finally, it is worth pointing out again that
this formulation will open the door to the introduction of kernel regression methods.
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