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1 Least Squares Linear Regression

We are given a set of input-output pairs, 7 = {(x(1),¥(1)); - (X(n)> Y(n)) }, Where each

x(;) € RP and y;) € R. The goal is to estimate a linear “regression function”of the form

P
9(x,8,60) = Bo+ B x = Bo+ > _ B,
j=1
where B = [B1, ..., p]7 is the vector of “regression coefficients”, B is the “intercept
coefficient”, and x; denotes the j-component of vector x. The components of the x(;
are usually called the “explanatory variables” or “independent variables”. The classical

estimation criterion is the minimization of the mean squared error on 7, that is,
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where z; ; is the j-th component of x(;). We can start by getting rid of fp; without loss
of generality, we can assume that each regressor x; was “centered”by having its mean

removed from the training set, that is,

Zﬂci,j =0, (1)
i1



for j = 1,...,p, and that the “response” variables also have zero sample mean,

Under these conditions, it’s trivial to show (and is left as an exercise to the reader) that
the minimization with respect to By does not depend of 3 and leads to Bo = 0. We are
thus left with
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this can be written in matrix notation as
Bzargngnnyfxmﬁ, (3)

where H||2 denotes the square of the standard Euclidean norm, y = [y, ..., y(n)]T € R",

and X is a n X p matrix with x%;) in the ¢-th column, that is,
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Solving (3) simply requires taking the gradient with respect to 3 and equating to
zero. Elementary calculus leads to
Viy-Xg|* = V(y'y+B8"X"XB-28"X"y)
= 2XT'xg - 2xTy, (4)
where V here denotes the gradient with respect to (w.r.t.) 3. Setting to zero and solving

for 3 leads to
,[Ai = solution w.r.t. 8 of{XTXﬁ = XTy} ; (5)

the system in (5) is called the system of “normal equations”. If matrix X”X is non-
singular, that is, if X has p non-zero singular values (equivalently, X has p linearly

independent columns), then XX has inverse and
~ -1
B=Pos = (X'X) Xy, (6)

which is known as the ordinary least squares (OLS) estimate.



The regressed values at the training points {x(l), e x(n)} are given by
~T

Yy =B X();

collecting all these estimates in a vector y = [y;), --- ﬁ(n)]T allows writing

y=XB=X(X"X)"'XTy, (7)

where matrix H = X (XTX)_IXT is usually called the “hat matrix”. Matrix H is
the orthogonal projector onto the space generated by the columns of X; it’s action is
to project the observed y onto that space. Accordingly, as any orthogonal projection
matrix, H is idempotent, that is HH = H; in fact,
identity
——~
HH = X (X7X) ' X"x (X7Xx)"'x7T
- x(X"x)"'xT
= H. (8)

In other words, ¥y is the closest (in Euclidean norm) vector to y, in the subspace spanned

by the columns of X.

2 Some Properties of Least Squares Regression

To obtain some statistical properties of BOLS, a few assumptions about the generation of
the observations y = [y(l), . y(n)]T are needed. For now, let’s simply assume that each
Y(i) is obtained by adding a zero-mean random perturbation w; to a “true”, or “noise-
less” value Bx;). It’s also assumed that all these random perturbations are statistically

independent. In vector notation, these assumptions can be written as
y=XB+w, (9)

where w = [w(y), ..., w(n)]T is a sample of a random vector of mean [0, ...,0]” and covari-
ance matrix o2I, where I denotes an identity matrix of appropriate dimensions. Another
fundamental assumption is that X and B are fixed, deterministic quantities, and all
statistical variability in y is due to the random perturbation/noise w.

Under the assumptions described in the previous paragraph, it is easy to conclude

that BOLS is an unbiased estimate. In fact,
E|Bos| = E[(X"X)'XTy|
— (X™X)"'X"Ely]
- (X"X)'X"X 3

= B



where (9) was invoked to write E [y] = X3, since w has zero mean and Xg3 is a deter-
ministic constant vector.
It is also simple to obtain the covariance matrix of ,@OLS which, since E [,[ABOLS} =0,

is equal to
cov [BOLS} = E |:(BOLS - B) (BOLS - IB)T:|
= E |:1/6\OLS BZL5:| - B'BT (10)

To obtain the covariance cov [/@OLS}, the following well known fact is used: if V € R?
is a d-dimensional random vector with (d x d) covariance matrix C, then the covariance
of U = AV is cov [U] = ACA”, where A is any matrix with d columns. The other key

fact, obvious from (9), is that
cov [y] = cov [w] = o1,
since X3 is deterministic. Putting these two facts together,
cov {Bom] = cov {(XTX)_1 XTy}

~ (X"X) ' XTeovly] (X"X) " XT)T
= (XTX) "' X"cov[y] X (XTX) "

— o2 (XTX) T XTX (XTX) 7

= o2(XTX)", (11)

where we have used the fact that X7 X is symmetric, so (X7X)~! is also symmetric.
If it is further assumed that the perturbation vector w is Gaussian, then BOLS is
also Gaussian, because it is a linear function of a Gaussian variable (y is the sum of a

deterministic constant with a Gaussian variable, thus is a Gaussian variable); formally,
-~ -1
Bows ~ N (8,02 (XTX) ),

where N (t, C) denotes a multivariate Gaussian of mean t and covariance matrix C.

3 Gauss-Markov Theorem

One of the often invoked reasons to use least squares regression is the Gauss-Markov
theorem. This theorem states that, among all linear unbiased estimates of 3, 3, s has
minimal variance: B, ¢ is BLUE (best linear unbiased estimate). Of course this does
not mean that there can’t exist nonlinear or biased estimates of 3 with smaller variance.

Next, the Gauss-Markov theorem is presented and proved. In this section, we use the



formally more correct convention of denoting random variables and vectors with capital

letters.

Gauss-Markov Theorem: Let Y = X3 + W, where 3 € R? is an (unknown) deter-
ministic vector, X is a (known) deterministic n X p matrix with rank p, and W € R" is a
random vector of zero mean and covariance matrix oI. Let B : R™ — RP be a function
defined by

B(z) = (X™X) ' X7z
Then, B(Y) € RP is a random vector with the following properties:

(i) E [E(Y)} = 3, that is ,B is an unbiased estimator of 3.
(i) cov [B(Y)} — o2 (XTX) .

(iii) Let B : R" — RP be some other linear function (i.e., which can be written as
B(z) = Pz), which is also an unbiased estimator of 3, i.e., such that E [E}(Y)} = 3;
then,

cov [B(Y)} > cov [E(Y)} .

Before the presentation of the proof, let us briefly examine part (iii) of the theorem.
First of all, recall that an inequality of the form A > B, involving two square matrices,
denotes that A — B is a positive semi-definite matrix, that is, vT(A —B)v >0 (equiv-
alently, v'Av > vI'Bv), for any vector v. Part (iii) of the theorem thus implies that
any linear combination vZ3(Y) of elements of B(Y) can’t have smaller variance than
the same linear combination VT,B(Y) of elements of B(Y) In particular, taking v = e;

(a vector with a 1 in position ¢ and zeros everywhere else) leads to

var [@(Y)} = cov [VTB(Y
= vlcov [ﬁ

)
(Y)

> vlcov [B(Y) %

= cov [VTB(Y):
— var |B(Y)], (12)

showing that the variance of each individual component of B(Y) is no smaller than the

corresponding component of E(Y)

Proof: Parts (i) and (ii) of the theorem were proved in the previous section. To prove
part (iii), we begin by recalling that if U and V are two random vectors of the same

dimension, then,

cov[U + V] = cov[U] + cov|V] + cov[U, V| + cov[V, U] (13)



where
cov[U, V] =E |(U —E[U)) (V —E[V])"| = E[lUVT] — E[U]E[V]"

is the so-called cross-covariance!. Application of equality (13) to B(Y) — ,@(Y) yields

cov[B(Y) — B(Y)] = cov[B(Y)] + cov[B(Y)] — cov[B(Y), B(Y)] — cov[B(Y), B(Y)].
(14)
Recalling that B is a linear estimator, B(Y) = PY, the condition of unbiasedness
can be stated as follows: for any 8 € RP, if Y = X3+ W, where W is as defined above,

E[PY] = PE[Y] = PX3 = 3,

because Y = X3 + W and W has zero expected value. For 3 = PX3 to be true for
any (3 it is necessary that PX = 1.
We need one last fact concerning covariances: let V be a random vector, and A and

B two matrices of the same dimension, then

cov[AU,BU] = FE[AUU’B?] - E[AUJEBU]"
= A (E[UUT| - E[U|E[U]") BT
= A cov[U] BT.

Applying this fact to compute cov[3(Y), B(Y)], using that fact that (X7X)~! is sym-

metric, leads to

021
—_—N—
covPY,(XTX)"'XTY] = P cov[Y] X(XTX)™!
= ?PX(XTX)™!
— 0_2 (XTX)—I
= cov[B(Y)]. (15)
Repeating for cov[3(Y), B(Y)] yields
cov[(XTX)"'XTY,PY,] = (XTX)"'XT cov[Y]PT
— UZ(XTX)—I
= cov[B(Y)], (16)
!The proof of this equality is elementary:
cov[U+V] = E[(U+V)(U+V)"|-E[U+VI]E[U+V]"

= E[UU"|+ E[VV"] + E[UV"] + E[VU"] — (E[U] + E[V]))(E[U] + E[V])";

regrouping and interpreting the terms leads to (13).



because PX = I implies that X" PT =1.
Finally, inserting (15) and (16) into (14) leads to

~ o~ ~ —~

cov[B(Y) — B(Y)] = cov[B(Y)] - cov[B(Y)]; (17)

finally, since any covariance matrix is positive semi-definite, cov[8(Y) — /@(Y)} >0, we

obtain (12) concluding the proof.

4 Ridge Regression

When matrix X7 X is singular, the ordinary least squares estimate, as given by (6), does
not exist. One of the standard alternative criteria is the so-called ridge regression, which

is defined as
2 . 2 2
Bue = axgn {[ly ~ X8+ AIBI (18)

where A > 0 is a parameter. The unconstrained minimization problem in (18) can also

be seen as the Lagragian of the constrained problem

ming  [ly - X4/’
subject to  ||3]|* < T,

where A is the Lagrange multiplier.

To solve (18), we begin by taking the gradient with respect to 3, which leads to
V (Ily = XBI” + X8]?) = 2X"X + A8 - 2X"y. (19)
Equating to zero and solving for 8 leads to
B = (XTX 4 A1) XTy. (20)

Notice that since X7X is a symmetric matrix, it is positive semi-definite, i.e., all its
eigenvalues are non-negative. As a consequence, the condition A > 0 is sufficient to
guarantee that (XTX + )\I) is positive definite, thus non-singular, and the ridge estimate

exists regardless of matrix X.

5 The Spectral View of OLS and Ridge Regression

To gain further insight into the OLS and ridge estimates, let’s consider the singular value

decomposition (SVD) of matrix X, given by

X =UDVT,



where D is a p X p diagonal matrix whose entries are the singular values of X, U is
an n X p matrix, whose columns are an ortho-normal basis for the p-dimensional sub-
space of R” spanned by the p columns of X (thus UTU =1I), and V is a p x p matrix,
whose columns are a ortho-normal basis for the space spanned by the rows of X (thus
VIV=VvVT =1 e, V1=VT).

Consider first the OLS projection given by (7); using the SVD of X, we can re-write
(7) as

Yous = UDV? (VvDUTUDVT) ' vDU y
— upv” (vDDVT) " vDUTy
= UDVIVD2vTvDU"y
= UDD 2DU%y
= UU'y, (21)

where the following fact was invoked: given two non-singular matrices A and B, of
compatible dimensions, (AB)™' = B7'A~!. This expression for Yo shows that it
is indeed an orthogonal projection of y onto the space spanned by the columns of X;
according to (21), this projection may be obtained by computing the inner product of
y with every column of U and then combining these columns with weights equal to the
corresponding projection. This is even more clearly seen by writing (21) more explicitly

as

p
Yous = Y _w; (y'uy), (22)
j=1

where u; € R" denotes the j-th column of U.
Let us now consider the projection corresponding to the ridge estimate, which is given
by
Fuaee = X (XTX 4+ A1) "' X7y, (23)

Inserting the SVD of X, we have

Vi = UDVT (VDDV” 4+1)" VDU"y
— UDV” (VDDV” + AVvV7) ' vDUTy
— UDVT [V (D?+ A1) V7] vDUTy
= UD (D + AI) DUy, (24)

Noticing that matrices D and (D + AI) are both diagonal, matrix D (D + AI) 2D is

also diagonal, given by

-2 d% %
( ) 148 d%+)\’ ,d%—F)\ ’
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where di, ..., d, are the diagonal elements of D, i.e., the singular values of X. Finally,

we can explicitly write (24) as

P 2
Vo = D <dzdi)\> (")) - (25)
j=1 J
This expression shows that (unlike in the OLS projection) each inner product ylu;
is linearly shrunk by a factor d? / (d? + A) < 1, before being used as a weight in the
combination of the ortho-normal vectors uy, ..., u,. As a consequence, the inner products
with basis vectors that corresponds to large singular values are almost left unaffected,
while inner products with basis vectors associated with small singular values are more
severely shrunk.

To understand what the ridge projection is doing, we need to understand the meaning
of the singular values of X, i.e., the eigenvalues of X7 X. Assuming that we are working
with centered data (i.e., satisfying (1)), the sample covariance of the set of observation
points {X(1y, ..., X} is S = XTX /n. Thus, the eigendecomposition of S can be written
as

S = % vDU'UDV” = vD?V7T.

In statistical terms, this is called the principal component analysis (PCA). Let us con-
sider, without loss of generality, that the diagonal elements of D? are sorted in non-
increasing order, d% > d% > > dz. The so-called first normalized principal component,
u; is the answer to the following question: in what direction of RP does the set of points
{x@),--+»X(n)} exhibit the largest variance? Moreover, d?/n is the value of the variance
of the data on this first principal direction. The remaining principal directions are the
answer to similar questions, under the restriction of orthogonality with respect to the
previously found directions. We can conclude that d]% is a measure of the variance of the
set of points {X(1),...,X(,)} along the p-th principal direction. In summary, what the
ridge projection does is to apply a shrinkage to the coefficients of the projection in the

directions where the variance is small, thus potentially yielding high variance estimates.

6 Dual Variables in Regression

6.1 Ordinary Least Squares

Recall that the OLS estimate of 3 is given by (6). Multiplying (on the left) the right
hand side of (6) by the identity matrix I = XTX(X7X)~!, we have

1

Bows = X7X (XTX)7H(XTX) T Xy = XTX (X7X) 2 X7y, (26)

which can be written as
Bows = X' a, (27)



where
a =X (XTX) 7 xTy. (28)

The elements of o are called the dual variables. Expression (27) reveals that BOLS can
be written as a linear combination of the columns of X7, that is, the rows of X, that is,

the set of points {x(1),...,X(y)}. Formally,

BOLS = Z Qg X(j)- (29)
i=1

For some new point x(,), the predicted output is given by

?/J\(*) = Xg;)BOLS = Z Q; Xa)x(i)’ (30)
=1

which is a linear combination of the inner products of the new point x(,) with all the
points in the set {x(l), . ,X(n)}. This observation is of crucial importance to the devel-

opment of the so-called kernel regression methods.

6.2 Ridge Regression

Let’s consider now the case of ridge regression, as given by (20). This expression is the

solution with respect to 3 of the linear system of equations

(XTX + A1) B = X"y, (31)
which is equivalent to
1
B=1X"(y—Xp)=X"a, (32)
where now 1
=1 (vy-XB). (33

At this point, the conclusion is similar to the one obtained in the OLS case: the coefficient
vector estimate B can be written as a linear combination of points (as in (29)) and the
predicted output at some new point x(,) is also given by (30). What differs now from the
OLS case is the computation of c, which is no longer given by (28). Inserting 3 = X T«
into (33), we have

a=— (y-XX"a) (34)

> =

which is equivalent to
a=(T+XX") 7y, (35)

Of course, ﬁ can be computed from this a, i.e.,

ridge

B = XT (A1 +XXT) 'y, (36)

10



which thus is equivalent to (20). The key difference between (20) and (36) is that the
latter involves inverting an n X n matrix, while the former requires the inversion of a
p X p matrix. Which of the two is more convenient depends, of course, on the relative
magnitude of p and n. For regression problems in high dimensional spaces, with few
points, the dual form may be more efficient. Finally, it is worth pointing out again that

this formulation will open the door to the introduction of kernel regression methods.
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