
Bayesian Learning of Sparse Classifiers

Mário A. T. Figueiredo
Instituto de Telecomunicações,

Instituto Superior Técnico
1049-001 Lisboa, Portugal

mtf@lx.it.pt

Anil K. Jain
Dept. of Computer Science and Eng.

Michigan State University,
East Lansing, MI 48824, U.S.A.

jain@cse.msu.edu

Abstract

Bayesian approaches to supervised learning use priors
on the classifier parameters. However, few priors aim at
achieving “sparse” classifiers, where irrelevant/redundant
parameters are automatically set to zero. Two well-known
ways of obtaining sparse classifiers are: use a zero-mean
Laplacian prior on the parameters, and the “support vector
machine” (SVM). Whether one uses a Laplacian prior or an
SVM, one still needs to specify/estimate the parameters that
control the degree of sparseness of the resulting classifiers.
We propose a Bayesian approach to learning sparse classi-
fiers which does not involve any parameters controlling the
degree of sparseness. This is achieved by a hierarchical-
Bayes interpretation of the Laplacian prior, followed by the
adoption of a Jeffreys’ non-informative hyper-prior. Imple-
mentation is carried out by an EM algorithm. Experimental
evaluation of the proposed method shows that it performs
competitively with (often better than) the best classification
techniques available.

1. Introduction

1.1. Supervised Learning

Supervised learning aims at inferring a functional re-
lation � � ����, from a set of training examples
� � ������� ������ ���� ������ ������. Usually, each ���� �

��
���
� � ���� �

���
�
�� � ��� is called an input, or feature vec-

tor. This paper deals with classification problems, in which
each ���� is of categorical nature (e.g., � ��� � ��� ��, in
the two-class case) and is called the class label of ����.
If the ���� were continuous, we would be in the context

M. Figueiredo’s research was supported by the Foundation for Science
and Technology, Portugal, project POSI/33143/SRI/2000.

A. K. Jain’s research was supported by the Office of Naval Research,
U.S.A., grant number N00014-01-1-0266.

of regression. Usually, the structure of the functional re-
lation is assumed fixed and the objective is to estimate a
vector of parameters � defining it; accordingly we write
� � ������. For example, in a two-class linear discrimi-
nant, � � ���� �

�
�
�����, where ���� denotes the Heavy-

side function (��	� � �, if 	 � �, ��	� � �, if 	
 �).
It is often desirable, not simply to classify � into one of

the classes, but to know the degree of confidence of that
classification. In that case we are interested in learning
a function ������ taking values in ��� �� (rather than just
��� ��) which can be interpreted as the probability that �
belongs to, say, class �. In logistic (linear) regression [18],
� �� � ���� � ������ � ��� �

�
�
�����, where

��� � �� � �	
������� (1)

is called the logistic function (see Fig. 1). The function���
yielding the class probabilities is known as the link. An ad-
vantage of a function giving class probabilities, over a hard
classifier, is that it can be used to obtain optimal classifiers
under different cost functions. For example, if the cost func-
tion is simply the misclassification error, then a classifier is
obtained by thresholding ������ at ���.

1.2. Discriminative vs. generative learning

Supervised learning of classifiers can be formulated ei-
ther using a generative (informative) or a discriminative ap-
proach [9]. In the generative approach, each of the class-
conditional probability functions is learned separately from
the training data; then a Bayes classifier is obtained by
inserting (plugging in) these class-conditional probability
functions and the a priori class probabilities into the Bayes
decision rule [13]. In discriminative learning, the class-
conditional densities are not explicit modelled; the classi-
fier is directly learned from the data. Well known discrimi-
native techniques include linear and logistic discrimination,
�-nearest neighbor classifiers, tree classifiers [5], feedfor-
ward neural networks [3, 19, 21], support vector machines
(SVM) and other kernel-based methods [8, 25, 27, 28]. This
paper focuses on discriminative learning.

1.3. Over-fitting and under-fitting

A main concern in supervised learning is to avoid over-
fitting the training data. In other words, to achieve good
generalization (i.e., to perform well on yet unseen data) it is
necessary to control the complexity of the learned function.
If it is too complex, it may follow irrelevant properties of
the particular data set on which it is trained (over-fitting),
thus performing poorly on future data. An overly simple
function, on the other hand, may not be able to capture the
main behavior of the underlying relationship (under-fitting).
This well-known trade-off has been addressed with a variety
of formal tools (see, e.g., [3, 7, 8, 19, 21, 25]).

1.4. Bayesian discriminative learning

The Bayesian approach to controlling the complexity in
discriminative supervised learning is to place a prior on the
function to be learned (i.e., on �) favoring simplicity, or
smoothness, in some sense. Let this prior be denoted as
������, where� is a vector of hyper-parameters. The most
common choice, namely for analytical and computational
tractability, is a zero-mean Gaussian; in the neural network
literature this is known as weight decay [3, 19, 21]. Gaus-
sian priors are also used in non-parametric contexts, like the
Gaussian processes (GP) approach [8, 19, 27, 28], which
has roots in earlier work on spline models [14, 26] and reg-
ularized radial basis function (RBF) approximations [20].

The main disadvantage of Gaussian priors is that they do
not explicitly control the structural complexity of the clas-
sifiers. That is, if one of the components of � (say, the
weight of a given feature in a linear classifier) happens to
be close to zero, under a Gaussian prior it will not be set ex-
actly to zero (thus eliminating, or pruning, that parameter)
but to some small value. Any structural simplification of the
functional form will have to be based on additional tests. In
the case of a linear discriminant, setting some parameters
to zero, corresponds to ignoring some of the input features,
i.e., to performing feature selection.

1.5. Learning sparse classifiers

Let us define a sparse estimate of � as one in which ir-
relevant or redundant components are exactly zero. Sparse-
ness is a desirable feature in classifier learning for several
reasons, namely:

� Sparseness leads to a structural simplification of the
estimated function.

� In kernel classifiers, the generalization performance
increases with the degree of sparseness of � [8, 25];
this is a key idea behind SVM. Moreover, in a sparse
kernel classifier, only a subset of the training data has
to be kept (unlike in a standard kernel classifier [21]).

One of the possible ways to achieve sparse estimates
consists in adopting a zero-mean Laplacian (rather than
Gaussian) prior on �, with parameter �,

������ 	 �	

�
��

�
�

����
�

� �	
 ���
�
�� �

where
 �
� denotes the �� norm. The sparseness-inducing
nature of the Laplacian prior (or equivalently, of the � �
penalty) is well known and has been exploited in several
research areas [6, 16, 23, 30].

When using a Laplacian prior on�, the question remains
of how to adjust or estimate the parameter � which ulti-
mately controls the degree of sparseness of the obtained
estimates. Concerning the SVM, in addition to its disad-
vantage of outputting “hard” classifications rather than class
probabilities, it also involves parameters which control the
degree of sparseness of the obtained classifier. Estimat-
ing/adjusting these parameters commonly involves cross-
validation methods which do not optimally utilize the avail-
able learning data, and are time consuming.

1.6. Proposed approach

We propose a Bayesian approach to learning sparse clas-
sifiers whose main advantage is that it does not involve
any parameter controlling the degree of sparseness. This
is achieved using the following building blocks:

1. A probit model, in which the link function is the Gaus-
sian cumulative distribution function (cdf) [18].

2. A hierarchical-Bayes interpretation of the Laplacian
prior as a normal/independent distribution (as has been
used in robust regression [15]). More specifically, a
Laplacian prior can be decomposed into a continuous
mixture of zero mean Gaussian priors with an expo-
nential hyper-prior for the variance.

3. Replacement of the exponential hyper-prior by the
Jeffreys’ prior which expresses scale-invariance and,
more importantly, is parameter-free [2].

4. An expectation-maximization (EM) algorithm which
yields a maximum a posteriori estimate of �.

Experimental evaluation of the proposed method shows
that it performs competitively with (often better than) the
best classification techniques available.

Our method is related to the automatic relevance deter-
mination (ARD) idea [19, 17], which underlies the recently
proposed relevance vector machine (RVM) [4, 24]. The
RVM exhibits state-of-the-art performance, beating SVM
both in terms of accuracy and sparseness [4, 24]. However,
rather than using a type-II maximum likelihood approxima-
tion [2] (as in ARD and RVM), our modelling assumptions

2

lead to a marginal a posteriori probability function on �
whose mode can be located by a very simple EM algorithm.

2. Probit Regression

In the generalized linear regression [18] approach to
two-class problems, the most commonly used link is the lo-
gistic function (Eq. (1)). In this paper, we adopt the probit
link, defined as the standard Gaussian cdf,

��� � ������ �� �
�

�

��

� ����� �� ��� (2)

where � ������� denotes a Gaussian density with mean
� and (co)variance�. The re-scaled probit�� � ������ ��
is plotted in Fig. 1, together with the logistic function,
showing that (apart from a scale factor) they are almost in-
distinguishable [11]. Of course, both the logistic and probit
functions can be re-scaled (horizontally), but this scale is
implicitly absorbed by �.

- 5 0 5

0

0.2

0.4

0.6

0.8

1

z

logistic(z)

probit 3 z
π2

()

Figure 1. The logistic and (re-scaled) probit
link functions.

To extend the probit (or the logistic) model to include
non-linear transformations of the input features, the link can
be applied to a non-linear function of �: � �� � ���� �
��������. Here, we will only consider classifiers where
this non-linear function is of the form ������ � ������,
i.e., linear with respect to �. This includes:

� Linear classifiers; ���� � ��� ��� ���� ���, in which case
� is a ��� ��-dimensional vector.

� Non-linear classifiers; ���� � ��� ������ ���� ������
� ,

where the ����� are nonlinear functions. Here, the di-
mensionality of � is � � �.

� Kernel classifiers; ���� � ������������� ����
����������� , where ���� �� is some (symmetric) ker-
nel function [8]. Here, � is ��� ��-dimensional. This
is used in SVM and RVM approaches.

The important characteristic of the probit link that we
exploit is that it has a simple interpretation in terms of hid-
den (or latent) variables [1]. Let ������ � ������ � �,
where � is a zero-mean unit-variance Gaussian variable. If
the classifier is defined as � � �, if ������ � �, and � � �,
if ������
 �, then we recover the probit model, because

� �� � ���� � � ������� � � � �� � ����������� ���
Given training data � � ������� ������ ���� ������ ������,

consider the corresponding vector of hidden/missing vari-
ables � � ������ ���� ������ . If we had �, we would simply
have a linear regression problem,

� ��� ��� (3)

where� is the design matrix

� �
�
�� ������� ������ ������

��
� (4)

and � a vector of i.i.d. zero-mean unit-variance Gaussian
samples. This suggests using the EM algorithm [10] to find
a maximum a posteriori (MAP) estimate of �.

The EM algorithm produces a sequence of estimates�����, for � � �� �� �� ���, by alternating between two steps:

E-step: Compute the expected value of the complete log-

posterior, given the current estimate ����� and the ob-
servations, usually denoted as the �-function,

���������� � �
������ �����

� ��� �������� ���

M-step: Update the estimate according to

������� � �����	
�

�����������
Let � be assigned a zero-mean Gaussian prior with co-

variance	, ���� � � �����	�. Its complete log-posterior
������ ��, is given by

��� ������ �� 	 ��� ������ � ��� ����

	 �
�� � �
� � ��	��� (5)

	 ����� ��� � � ��� ��	����

which is linear with respect to the missing �. Accordingly,

in the E-step of EM, all that is needed is ������������. This
expectation can be expressed in closed form as

	� � ������������� ��				
				�
��������� �

� ������������� ��
����������������� �� if ���� � �

���������� � ������������� ��
��������������� �� if ���� � ��

(6)

3

since �� is Gaussian distributed with mean ���������, but
left-truncated at zero if ���� � �, and right-truncated at zero
if ���� � � (see [1]). Denoting � � �	�� ���� 	��

� , the M-
step that results from maximizing, with respect to �, the
complete log-posterior in (5) with � replacing the missing
�, is simply a ridge-regression-type equation

������� � �	�� ����������� (7)

with � playing the role of observed data.

3. Laplacian Prior

To favor sparseness, we adopt an independent Laplacian
prior for �,

������ �
��
���

�

�
�	
�������� �

�
�

��
�	
���
�
��

(8)
where � is the dimensionality of �. The main feature of
this criterion is that due to the presence of the �� penalty,
some of the components of �� may be exactly zero [23]; in
other words, the Laplacian prior promotes sparseness. In
general, the presence of the (non-differentiable) � � norm re-
quires special purpose computational methods.

3.1. A hierachical-Bayes interpretation

Let us consider an alternative model, where each � � is
given a zero-mean Gaussian prior with its own variance � �,

�������� � � ������ ���� (9)

As a hyper-prior for the variances � �, we adopt an exponen-
tial distribution

����� � �

�
�	
�� ��

�
�� for �� � �� (10)

Integrating with respect to ��, we obtain

����� � �
�
�

�

������������� � ��� �

�
�	
�� ������

showing that the Laplacian prior on � is equivalent to a 2-
level hierachical-Bayes model: zero-mean Gaussian priors
with independent variances and exponential hyper-priors
for these variances. This decomposition has been exploited
in robust least absolute deviation (LAD) regression, where
the noise model, rather than the prior, is Laplacian [15].

The hierarchical decomposition of the Laplacian prior
allows using the EM algorithm to estimate �, by seeing
� � ���� ���� ���� (in addition to �) as missing data. The
complete log-posterior (i.e., including � and �) is

��� ������ � � �� 	 ��� ������ � ��� ����� �
	 �
�� � �
� � ��
�� (11)

where
 � diag����� � ���� ���
�

�. In addition to the expected
values of the ��’s, now the E-step also requires computing

�����
�
��������� �. This can be computed, by observing that

������������� � 	 ���������
� ��� ����������� ����� �

	 ����������� ����� ��
because ���������

� ��� � ����������. Finally,

!� � �����
�
��������� � �

�
�

�
�
��
����� ������������ ����

�

�
����� ������������ ���

� ������
�
���� (12)

where both integrations can be performed analytically, and

����������� � � ��������� ���.
We can now replace
 by its conditional expectation

� � diag�!�� ���� !��, and � by � (as seen in Section 2) in
the complete log-posterior (Eq. (11)). Maximization with
respect to � leads to the M-step

������� � ������������� (13)

3.2. A non-informative hyper-prior

One question remains: how to adjust , which is the
main parameter controlling the degree of sparseness of the
estimates? We could consider cross-validation methods,
but these are computationally demanding and inefficient
in terms of data usage, and fall outside of the Bayesian
paradigm. We consider a radically different alternative: re-
move from the model. To do so, we replace the exponen-
tial hyper-prior in Eq. (10) by a non-informative Jeffreys
hyper-prior: ����� � ����. The Jeffreys prior expresses
the notion of ignorance/invariance, in this case with respect
to changes in measurement scale (see [2, 12]). Of course,
we no longer have the Laplacian prior on �, but some other
prior resulting from the adoption of the Jeffreys hyper-prior.

It turns out that this new hyper-prior leads to a minor
modification of the EM algorithm described above, where
only the computation of � is affected. The integrations in
Eq. (12) can still be performed analytically leading to

� � diag

������� ���� ���� ������� ���

�
� (14)

3.3. The complete algorithm

Since we expect several components of � to become
zero, it may be tricky to deal with� as defined in Eq. (14).
To avoid this problem, we define a new (diagonal) matrix

� � diag

������� �� ���� ������� �

�
� (15)

4

based on which Eq. (13) can be re-written as������� � ���������������� (16)

thus avoiding the inversion of the elements of �.
Summarizing, the complete learning algorithm is:

Step 1: Given the training data set, compute matrix � ac-
cording to the type of classifier adopted.

Step 2: Compute an initial estimate �����. In all the ex-
periments reported ahead, we compute a weakly pe-
nalized ridge-type estimate using the labels as data������ �"��������� (with, e.g., " � ����).

Step 3: (E-step) Given the current estimate �����, compute
the diagonal matrix� according to Eq. (15), and vec-
tor � (with elements given by Eq. (6)).

Step 4: (M-step) Obtain a new estimate ������� (Eq. (16)).

If
�������� �����
�
�����

 Æ, stop; else, go back to
Step 3. In the examples reported below, Æ � ����.

4. Experiments

4.1. Linear and quadratic classifiers

When used with linear and quadratic (or higher order)
classifiers, our method may be seen as a feature selection
criterion embedded into the learning algorithm. To illustrate
this, consider two Gaussian classes with means

�� � � ��

�� ��

��

�� � zeros� �� �
�� �� ���� �� �� �

� dimensions

��

and�� � ���, and both the covariances are identity matri-
ces. The optimal Bayes error rate, regardless of �, is equal
to ������ �� � ������. Of course, the optimal classifier for
this data is linear and only uses the first two dimensions of
the data. We first trained our classifier, using both linear and
quadratic functions; i.e., the functions � ���� (see Section 2)
include all the � components, their squares, and all the pair-
wise products, giving a total number of � � ��� � ����
features. We also trained a standard Bayesian plug-in clas-
sifier obtained by estimating the mean and covariance of
each class. Both classifiers were trained on 100 samples
per class, and then tested on independent test sets of size
1000 (500+500). Fig. 2 shows the resulting (averaged
over 30 repetitions) test set error rate as a function of �.
Fig. 3 reports a similar experiment, now involving linear
classifiers learned from training sets with 50 samples per
class. These results show that the proposed method exhibits
a much smaller performance degradation as more irrelevant
features are included, compared with the common plug-in
classifier.

2 4 6 8 10 12 14 16 18 20

0.16

0.18

0.2

0.22

0.24

0.26

0.28

dimensions d

E
rr

or
 r

at
es

Proposed quadratic classifier
Plugin quadratic classifier
Optimal Bayes error rate

Figure 2. Average (30 repetitions) test error
rates of quadratic classifiers vs. dimension-
ality.

5 10 15 20 25 30 35 40
0.15

0.16

0.17

0.18

0.19

0.2

dimension d

E
rr

or
 r

at
e

Proposed linear classifier
Plugin linear classifer
Optimal Bayes error rate

Figure 3. Average (30 repetitions) test error
rates of linear classifiers vs. dimensionality.

4.2. Kernel classifiers

We will now consider experiments involving kernel clas-
sifiers, where ���� � ������������� ��������������

� , and
matrix � is as shown in Eq. (4). All the results were ob-
tained with Gaussian kernels, i.e.,

��������� � �	

�
�
�� �

���
�
���

�
�

where � is a parameter that controls the kernel width.
Our first experiment uses Ripley’s synthetic data set1, in

which each class is a bi-modal mixture of two Gaussians;
the optimal error rate for this problems is �� [21]. Fig.
4 shows 100 points from the training set and the result-
ing classification boundary learned by our algorithm. The 5
training samples needed to support the selected kernels (like
support vectors in SVM) are marked by small squares. Ta-
ble 1 shows the average test set error (and the final number

1Available at http://www.stats.ox.ac.uk/pub/PRNN/

5

of kernels) of 20 classifiers learned from 20 random sub-
sets of size 100 from the original 250 training samples. For
comparison, the table also includes results reported in [4]
for RVM, VRVM (variational RVM), and SVM classifiers.
Our method is comparable to RVM and VRVM and clearly
better than SVM (specially in terms of sparseness) on this
data set. To allow the comparisons, we chose � � ���,
which is the value used in [4].

Figure 4. Classification boundary for Ripley’s
data. The data points corresponding to the
selected kernels are marked by squares.

Table 1. Mean test error and number of kernels
on Ripley’s synthetic data set.

Method Mean error rate No. kernels

Proposed method ����� ���
SVM ����� �
RVM ���� �

VRVM ����� �

For additional tests we used three well-known bench-
mark real-data problems: the Pima indians diabetes 1, where
the goal is to decide wether a subject has diabetes or not,
based on 8 measured variables; the Leptograpsus crabs1

where the problem consists in determining the sex of crabs,
based on 5 geometric measurements; and the Wisconsin
breast cancer,2 (WBC) where the task is to produce a be-
nign/malignant diagnosis from a set of 30 numerical fea-
tures. In the “Pima” case, we have 200 predefined training
samples and 332 test samples. For the “crabs” problem,
there are 80 (also predefined) training samples and 120 test
samples. For the WBC problem, there is a total of 569 sam-
ples; the results reported were obtained by averaging over

2Available at the Machine Learning Repository:
http://www.ics.uci.edu/�mlearn/MLSummary.html

30 random partitions with 300 training samples and 269 test
samples (as in [22]). Prior to applying our algorithm, all the
inputs are normalized to zero mean and unit variance, as
is customary in kernel-based methods. The kernel width
was set to � � �, for the Pima and crabs problems, and to
� � �� for the WBC. Table 2 reports the numbers of er-
rors achieved by the proposed method and by several other
state-of-the-art techniques. On the Pima and crabs data sets,
our algorithm outperforms all the other techniques. On the
WBC data set, our method performs nearly as well as the
best available alternative. The running time of our learning
algorithm (implemented in MATLAB) is less than 1 second
for the crabs data set, and about 2 seconds for the Pima and
WBC problems. Finally, we note that the kernel classifiers
obtained with our algorithm use only 6, 5, and 5 kernels
(they are very sparse), for the Pima, crabs, and WBC data
sets, respectively. Compare this with the 110 kernels se-
lected by the SVM (reported in [4]) on the “Pima” data set.

Table 2. Numbers of test errors on three data
sets studied.

Method Pima Crabs WBC

Proposed method 61 0 8.5
SVM [22] 64 4 9
RVM [4] 65 N/A N/A

VRVM [4] 65 N/A N/A
Neural network [28] 75 3 N/A

Logistic regression [28] 66 4 N/A
Linear discriminant [22] 67 3 19

Gaussian process [22, 28] 67, 68 3 8

Like the SVM, our learning algorithm can be extended to
�-class problems (with � # �) by learning � binary classi-
fiers (each class versus the others). There are other ways of
extending the probit model to multi-class problems (see [1])
but we will not address them here. To test the performance
of our method on a multiclass problem, we used the forensic
glass data set1, which is a 6-class problem with 9 features.
As above, we set � � �. Following [28], the classification
error rate was estimated using 10-fold cross-validation. The
results in Table 3 show that our method outperforms the best
method referred in [28], which was a Gaussian process (GP)
classifier implemented by MCMC. The GP-MCMC classi-
fier requires about 24 hours of computer time, while ours is
learned in a few seconds.

5. Concluding Remarks

We have introduced a Bayesian approach to super-
vised learning of sparse classifiers which (unlike other ap-

6

Table 3. Test error on the “forensinc glass"
data estimated by 10-fold cross-validadtion.

Method � error
Proposed method 21.5

Neural network [28] 23.8
Gaussian mixture [28] 30.8
Gaussian process [28] 23.3

proaches) does not involve any parameter explicitly control-
ling the degree of sparseness. Experimental evaluation of
the proposed method on several publicly available standard
benchmark data sets has shown that it is comparable to the
state-of-the-art classification techniques.

Future research includes experiments on larger prob-
lems, like handwritten digit classification. One of the prob-
lems of our approach (for kernel-based classification) is the
matrix inversion in the M-step, Eq. (16), meaning that
the computational requirements scale as $����, making the
method impractical for very large data sets. This issue is of
current interest to researchers in kernel-based methods (see,
e.g., [29]), and we also intend to focus on it.

References

[1] J. Albert and S. Chib. Bayesian analysis of binary and poly-
chotomous response data. Jou. of the Amer. Stat. Assoc.,
88:669–679, 1993.

[2] J. Berger. Statistical Decision Theory and Bayesian Analy-
sis. Springer-Verlag, New York, 1980.

[3] C. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, New York, 1995.

[4] C. Bishop and M. Tipping. Variational relevance vector ma-
chines. In Proc. of the 16th Conf. in Uncert. in Artif. Intell.,
pp. 46–53. Morgan Kaufmann Publishers, 2000.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-
cation and Regression Trees. CRC Press, 1983.

[6] S. Chen, D. Donoho, and M. Saunders. Atomic decom-
position by basis pursuit. SIAM Jour. of Scient. Comput.,
20(1):33–61, 1998.

[7] V. Cherkassky and F. Mulier. Learning from Data: Con-
cepts, Theory, and Methods. Wiley, New York, 1998.

[8] N. Cristianini and J. Shawe-Taylor. Support Vector Ma-
chines and Other Kernel-Based Learning Methods. Cam-
bridge University Press, Cambridge, U.K., 2000.

[9] Y. Dan Rubinstein and T. Hastie. Discriminative versus in-
formative learning. In Proc. of the The Third Int. Conf. on
Knowledge Discovery and Data Mining, pp. 49-53. AAAI
Press, 1997.

[10] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
estimation from incomplete data via the EM algorithm. Jour.
of the Royal Stat. Soc. B, 39:1–38, 1977.

[11] L. Fahrmeir and G. Tutz. Multivariate Statistical Modelling
Based on Generalized Linear Models. Springer Verlag, New
York, 1994.

[12] M. Figueiredo and R. Nowak. Wavelet-based image esti-
mation: an empirical Bayes approach using Jeffreys’ nonin-
formative prior. IEEE Trans. Image Proc., 10:1322–1331,
2001.

[13] A. K. Jain, R. Duin, and J. Mao. Statistical pattern recogni-
tion: A review. IEEE Trans. on Patt. Anal. and Mach. Intell.,
22(1):4–38, 2000.

[14] G. Kimeldorf and G. Wahba. A correspondence between
Bayesian estimation of stochastic processes and smoothing
by splines. Annals of Math. Stat., 41:495–502, 1990.

[15] K. Lange and J. Sinsheimer. Normal/independent distribu-
tions and their applications in robust regression. Jour. of
Comp. and Graph. Stat., 2:175–198, 1993.

[16] M. Lewicki and T. Sejnowski. Learning overcomplete rep-
resentations. Neural Computation, 12:337–365, 2000.

[17] D. MacKay. Bayesian non-linear modelling for the 1993
energy prediction competition. In G. Heidbreder, editor,
Max. Entropy and Bayesian Meth., pp. 221–234. Kluwer,
Dordrecht, 1996.

[18] P. McCullagh and J. Nelder. Generalized Linear Models.
Chapman and Hall, London, 1989.

[19] R. Neal. Bayesian Learning for Neural Networks. Springer
Verlag, New York, 1996.

[20] T. Poggio and F. Girosi. Networks for approximation and
learning. Proc. of the IEEE, 78:1481–1497, 1990.

[21] B. Ripley. Pattern Recognition and Neural Networks. Cam-
bridge University Press, Cambridge, U.K., 1996.

[22] M. Seeger. Bayesian model selection for support vector ma-
chines, Gaussian processes and other kernel classifiers. In
S. Solla, T. Leen, and K.-R. Müller, editors, Adv. in Neural
Info. Proc. Systems 12, pp. 603–609. MIT Press, 2000.

[23] R. Tibshirani. Regression shrinkage and selection via the
lasso. Jour. of the Royal Stat. Soc. (B), 58, 1996.

[24] M. Tipping. The relevance vector machine. In S. Solla,
T. Leen, and K.-R. Müller, editors, Adv. in Neural Info. Proc.
Systems 12, pp. 652–658. MIT Press, 2000.

[25] V. Vapnik. Statistical Learning Theory. John Wiley, New
York, 1998.

[26] G. Wahba. Spline Models for Observational Data. SIAM,
Philadelphia, 1990.

[27] C. Williams. Prediction with Gaussian processes: from lin-
ear regression to linear prediction and beyond. In Learning
and Inference in Graphical Models. Kluwer, 1998.

[28] C. Williams and D. Barber. Bayesian classification with
Gaussian priors. IEEE Trans. on Patt. Anal. and Mach. In-
tell., 20(12):1342–1351, 1998.

[29] C. Williams and M. Seeger. Using the Nystrom method to
speedup kernel machines. In NIPS 13. MIT Press, 2001.

[30] P. Williams. Bayesian regularization and pruning using a
Laplace prior. Neural Computation, 7:117–143, 1995.

7

