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Abstract

This paper introduces a formulation which allows using
wavelet-based priors for image segmentation. This formu-
lation can be used in supervised, unsupervised, or semi-
supervised modes, and with any probabilistic observation
model (intensity, multispectral, texture). Our main goal is
to exploit the well-known ability of wavelet-based priors to
model piece-wise smoothness (which underlies state-of-the-
art methods for denoising, coding, and restoration) and the
availability of fast algorithms for wavelet-based processing.

The main obstacle to using wavelet-based priors for seg-
mentation is that they’re aimed at representing real val-
ues, rather than discrete labels, as needed for segmentation.
This difficulty is sidestepped by the introduction of real-
valued hidden fields, to which the labels are probabilisti-
cally related. These hidden fields, being unconstrained and
real-valued, can be given any type of spatial prior, such as
one based on wavelets. Under this model, Bayesian MAP
segmentation is carried out by a (generalized) EM algo-
rithm. Experiments on synthetic and real data testify for
the adequacy of the approach.

1. Introduction

Image segmentation has been one of the core problems
in computer vision. Although remarkable success has been
obtained in specific domains with clear goals (e.g., medi-
cal imaging), a general purpose segmentation criterion is
an elusive concept and many different approaches, formu-
lations, and tools have been proposed. Most methods work
by combining evidence from the observed image (via image
features/cues) with some form of prior (or regularization)
that embodies the concept of “a priori probable” segmenta-
tion. All the research on segmentation has concentrated on
one (or both) of the following fronts:
(a) Development of image features, and feature models, as
relevant and informative as possible for segmentation. Clas-

sical examples for texture segmentation include Gabor fea-
tures [10], wavelets-based features [4], [21], Markov ran-
dom field models [5], [6]. See [19], for a survey of the
vast literature on texture features. Some recent work com-
bines intensity, texture, and contour features, with the goal
of mimicking human image segmentation [16]. There are
many other features developed for specific domains, such
as color images, medical images, or remote sensing images.
(b) Development of methods that enforce some form of spa-
tial coherence,i.e., that integrate local cues into a glob-
ally coherent segmentation. The recent graph-based meth-
ods [20], [22], [24], achieve this by formulating image seg-
mentation as a graph partitioning problem. In Bayesian ap-
proaches, spatial coherence is usually imposed by a Markov
random field (MRF) prior (see [13] and references therein).

This paper falls in the second work front: it describes a
new way of including (spatial) priors in image segmenta-
tion, and illustrates it by showing how wavelet-based mod-
els (so successful in image denoising, coding, and restora-
tion [14]) can be used in this context. The proposed formu-
lation, which is based on seeing segmentation as spatially
regularized logistic regression, is general and can be used
in supervised, unsupervised, or semi-supervised modes, as
well as with generative or discriminative features.

The key difficulty in using wavelet-based priors (or
other priors for real-valued fields/images) for segmentation,
is that these priors (unlike MRFs) are not suited for the
categorical-type variables (the region labels) involved in im-
age segmentation. This issue is sidestepped by using an ap-
proach which is common in machine learning: introduction
of real-valued hidden fields, to which the labels are proba-
bilistically related. This approach is used,e.g., in the very
successful methods for regression and classification known
as “Gaussian processes” [23]. These hidden fields, being
real-valued, can be given any type of spatial prior. In this
paper, wavelet-based priors are adopted, aiming at exploit-
ing their well-known ability to encode preference for piece-
wise smoothness and the availability of fast algorithms for
wavelet-based image processing. We show how the ap-
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proach can be used in supervised, unsupervised, and semi-
supervised modes, by presenting expectation-maximization
(EM) algorithms for the three cases. In the supervised case,
the resulting segmentation criterion consists in minimizing
a convex function, thus initialization problems do not arise,
unlike in MRF-based methods.

2. Formulation

2.1 Images and Segmentations

Let L = {(n,m), n = 1, ..., N, m = 1, ..., M} be
a 2D lattice of sites/pixels on which observed images, and
their segmentations, are defined. An observed imagex is a
set of (maybe vector valued) observations, indexed by the
latticeL, that isx = {xi ∈ IRd, i ∈ L}. A segmentation
R = {Rk ⊆ L, k = 0, ...,K − 1} is a partition ofL into
K regions, in an exhaustive and mutually exclusive way:

K−1⋃

k=0

Rk = L and
(
Rj

⋂
Rk = ∅

)
⇐ (j 6= k).

In the sequel, it will be convenient to represent partitions by
a set of binary labelsy = {yi = [y(0)

i , ..., y
(K−1)
i ], i ∈ L},

wherey
(k)
i ∈ {0, 1}, such that(y(k)

i = 1) ⇔ i ∈ Rk.

2.2. Observation Model

Given a segmentationR, we assume that the observa-
tions are independently distributed, that is,

p(x|R) = p(x|y) =
K−1∏

k=0

∏

i∈Rk

p(xi|φk), (1)

where thep(·|φk) are region-specific distributions, andφk

the corresponding parameters. This type of model may
be used for intensity-based segmentation, for texture-based
segmentation (eachxi would then be ad-dimensional vec-
tor with d local texture features), or for segmentation of
multi-spectral images (such as color or remote sensing im-
ages, with eachxi ∈ IRd, whered is the number of spectral
bands). The densitiesp(·|φk) can simply be Gaussians, or
any other arbitrarily complex models, such as finite mix-
tures or kernel-based density estimates. Initially, we will
focus on supervised segmentation with generative models,
i.e., we assume full knowledge of allp(·|φk). We will later
show how to relax this assumption.

The goal of segmentation is, of course, to estimatey,
having observedx. Clearly, the maximum likelihood (ML)
estimate,̂yML = arg maxy p(x|y), can be obtained pixel-
by-pixel, due to the independence assumption. However,
pixel-wise segmentations are well known to lack spatial co-
herence [25]. To overcome this, a standard approach is to

adopt an MRF priorp(y), expressing thea priori preference
for segmentations in which neighboring sites belong to the
same region (see [13] for details and references). Under this
prior, it is then common to adopt themaximum a posteri-
ori (MAP) criterion,ŷ = arg maxy[log p(y) + log p(x|y)]
(although there are other criteria). Due to the discrete na-
ture of y, the MAP criterion leads to a hard combinato-
rial optimization problem, to which much research has been
devoted [13]. A recent breakthrough in MRF-based ap-
proaches is the adoption of fast algorithms based on graph
cuts to solve this type of combinatorial problems [25].

2.3. Logistic Model

To keep the notation simple, consider first the binary case
(K = 2, thusyi = [y(0)

i , y
(1)
i ]). Instead of writing directly a

prior for y (the discrete labels), consider a “hidden image”
z = {zi ∈ IR, i ∈ L} to whichy is related via

p(y(1)
i = 1|zi) =

(
1 + e−zi

)−1 ≡ σ(zi), (2)

whereσ(·) is thelogistic function [9], andp(y(0)
i = 1|zi) =

1− σ(zi). This formulation is close, in spirit, to the hidden
Markov measure fields proposed in [15]; however, our hid-
den fieldz is real-valued, and totally unconstrained, thus
much easier to model and manipulate than measure fields.

For K regions,K hidden images{z(0), ..., z(K−1)} are
needed, wherez(k) = {z(k)

i , i ∈ L}. The region probabili-
ties are given by amultinomial logisticmodel [1],

p(y(k)
i = 1|zi) = ez

(k)
i




K−1∑

j=0

ez
(j)
i



−1

, k = 0, ..., K − 1,

(3)
wherezi = {z(0)

i , ..., z
(K−1)
i }. Since these probabilities

are normalized,
∑K−1

k=0 p(y(k)
i = 1|zi) = 1, we can set

z(0) to be identically zero, without loss of generality [1].
Notice thatz = {z(1), ..., z(K−1)} is not under any type
of constraint; any assignment of real values to its elements
leads to valid probabilities for each site ofy.

2.4. Prior

It is now formally simple to write a prior forz, due to
its unconstrained real-valued nature. Although there are
other possibilities, we will consider here wavelet-based pri-
ors, aiming at exploiting their ability to represent piece-wise
smooth images. More precisely, it is known that piece-
wise smooth images have sparse representations on wavelet
bases [14], a fact which underlies their excellent perfor-
mance in denoising and compression. Piece-wise smooth
hidden images will translate into segmentations in which
pixels in each class tend to form connected regions.
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In a wavelet-based model, each imagez(k) is represented
in terms of a wavelet expansion

z(k) = Wθ(k), k = 1, ..., K − 1, (4)

whereW is a matrix where each column is a wavelet basis
function andθ = {θ(1), ..., θ(K−1)} is a set of coefficients.
For an orthogonal wavelet basis,W is a |L| × |L| orthog-
onal matrix,i.e., WT W = WWT = I; in over-complete
representations (e.g., shift-invariant),W has more columns
than lines (thus is no longer orthogonal) [14].

Sincez(k) is a deterministic function ofθ(k), we write

p(y|θ) =
∏

i∈L

K−1∏

k=0

[p(y(k)
i = 1|zi(θ))]y

(k)
i , (5)

wherezi(θ) = {(Wθ(1))i, ..., (Wθ(K−1))i}.
A prior p(θ) on the coefficients induces a priorp(z) on

the hidden images, via the (deterministic) relationship (4),
and consequently on the segmentations. The role ofp(θ)
is to favor sparseness of the representation, which corre-
sponds to favoring piece-wise smoothness inz. Classical
choices forp(θ) are independent (heavy-tailed) generalized
Gaussians [18], of which the Laplacians,

p(θ) =
K−1∏

k=1

∏

j

(λ/2) exp{−λ |θ(k)
j |}, (6)

are a particular case (Laplacians are the heaviest-tailed den-
sities which are still log-concave). Thisp(θ) corresponds
to a strongly non-Gaussian and non-Markovian priorp(z).
However, unlike with MRF priors, simple exact determinis-
tic algorithms can be used, supported on the available fast
algorithms for forward and inverse wavelet transforms [14].

Summarizing, our complete model includes:(a) the prior
p(θ), given by (6);(b) the probabilistic modelp(y|θ), given
by (5); (c) the probabilistic modelp(x|y), given by (1).

3. Estimation Criterion and Algorithm

3.1. Marginal MAP and the EM Algorithm

In our formulation,x is observed but, of course,y andθ
are not. Thea posterioriprobability is thus

p(θ,y|x) ∝ p(x|y) p(y|θ) p(θ). (7)

Among several possible criteria, we consider themarginal
maximum a posteriori(MMAP), given by

θ̂ = arg max
θ

{
p(θ)

∑
y

p(x|y) p(y|θ)
}

(8)

where
∑

y p(x|y)p(y|θ) = p(x|θ) is the marginal likeli-

hood (over all possible segmentations). Fromθ̂, the poste-
rior probability that each site belongs to each region is given
byp(y|θ̂); hard segmentations can be obtained by assigning
each site to the region of highest posterior probability.

Although the maximization in (8) can not be done di-
rectly, due to the combinatorial nature ofp(x|θ), the fol-
lowing observations suggest using the EM algorithm [17],
by treatingy as missing data:

• If y was observed, estimatingθ would reduce to stan-
dard logistic regression under priorp(θ), that is, one
could solvêθ = arg maxθ[log p(y|θ) + log p(θ)].

• The complete log-likelihoodlog p(y|θ) is the standard
logistic log-likelihood (see [1]), which is linear with
respect to they(k)

i variables:

log p(y|θ) =
∑

i∈L

K∑

k=0

y
(k)
i log

e(Wθ(k)
)i

∑K−1
j=0 e(Wθ(j)

)i

=
∑

i∈L

K−1∑

k=0

y
(k)
i (Wθ(k))i −

∑

i∈L
log

K−1∑

j=0

e(Wθ(j)
)i . (9)

3.2. The E-step

The fact that the complete log-likelihood is linear w.r.t.
the missing variables is crucial: the E-step reduces to com-
puting the conditional expectation of the missing variables,
which are then plugged into the complete log-likelihood
[17]. As in finite mixtures [17], each missing variabley

(k)
i

is binary, thus its expectation, herein denoted asŷ
(k)
i , equals

its probability of being equal to one:

ŷ
(k)
i = p

[
y
(k)
i =1|θ̂,x

]
=

p(xi|φk) p
[
y
(k)
i = 1|zi(θ̂)

]

K−1∑

j=0

p(xi|φj) p
[
y
(j)
i = 1|zi(θ̂)

] .

(10)
Notice that this is essentially the same as the E-step for fi-
nite mixtures [17], withp(y(k)

i = 1|zi(θ̂)) playing the role
of mixing probabilities, and with fixed component densities
p(x|φk) (recall we’re temporarily assuming knownφk).
The computational cost of this E-step isO(K|L|).

3.3. The M-step

Given the expected values of the missing variables,ŷ =
{ŷ(0), ..., ŷ(K−1)}, whereŷ(k) = {ŷ(k)

i , i ∈ L}, the EM
algorithm proceeds by plugginĝy into the complete log-
likelihood and maximizing it w.r.t theθ, that is,

θ̂ new = arg max
θ

{
log p(θ) + l(θ|θ̂)

}
, (11)
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where l(θ|θ̂) is obtained by insertinĝy in the place of
y in (9). Solving (11) is thus equivalent to performing
multinomial logistic regression, with the usual hard (bi-
nary) training labelsy(k)

i ∈ {0, 1} replaced by “soft” labels

ŷ
(k)
i ∈ [0, 1], and under a priorp(θ).

The usual approach to ML logistic regression (i.e., for
maximizing justl(θ|θ̂) w.r.t. θ) is the Newton-Raphson al-
gorithm [9], known in this context asiteratively reweighted
least squares(IRLS). However, IRLS can’t be used for solv-
ing (11) with heavy-tailed priors (e.g., (6)), which are not
differentiable (at the origin). Alternatively, we adopt the
bound optimization approach [12], introduced for logistic
regression in [1] and [2] (see also [11]).

Let us temporarily ignore the priorp(θ) and consider
l(θ|θ̂) as the objective function, simply denoted asl(θ) for
notational economy. In the bound optimization approach,
this maximization is achieved by iteratively maximizing a
so-called “surrogate” function (witht denoting an iteration
counter)

θ̂(t+1) = arg max
θ

Q(θ|θ̂(t)). (12)

The condition thatl(θ) − Q(θ|θ̂(t)) attains its minimum

for θ = θ̂(t) is sufficient to guarantee monotonicity,i.e.,

l(θ̂(t+1)) ≥ l(θ̂(t)) [12].
In [1], the following surrogate function for multinomial

logistic regression was introduced:

Q(θ|θ̂(t)) = l(θ̂(t)) + (θ − θ̂(t))Tg(θ̂(t))

− (θ − θ̂(t))T B(θ − θ̂(t))
2

,

whereB is a positive definite matrix, which provides a
lower bounds for the (negative definite) HessianH(θ) of
l(θ), i.e., −H(θ) ¹ B (whereP ¹ Q means thatQ − P
is positive semi-definite), andg(θ′) denotes the gradient of
l(θ) computed atθ′. Matrix B is given by (see [1])

B =
1
2

[
IK−1 − (1K−1 1T

K−1)/K
]⊗ (

WT W
)
, (13)

whereIa is ana×a identity matrix,1a = [1, ..., 1]T is ana-
dimensional vector of ones, and⊗ the Kroenecker product.

The following Lemma (proved in [8]) provides a simpler
(though looser) bound, applicable when using orthogonal or
redundant wavelet representations,i.e., when the columns
of W are aC-tight frame(see Appendix for definition).

Lemma 1 Let the columns ofW be aC-tight frame. Then,
matrixB, defined in (13) (and consequently also−H(θ)) is
upper bounded as follows:

B ¹ I ξK , where ξK =
{

C/2 ⇐ K > 2
C/4 ⇐ K = 2.

(14)

It is thus possible to replaceB by I ξK and still have a
valid surrogate bound. Simple manipulation, using the fact
that one is free to add to the surrogate any terms indepen-
dent ofθ (thus irrelevant for the maximization) leads to

Q(θ|θ̂(t)) = −ξK

2
‖θ − v(t)‖22, (15)

where

v(t) = θ̂(t) +
g(θ̂(t))

ξK
. (16)

The gradient of the logistic log-likelihood function is

g(θ̂(t)) =




WT d(1)
(t)

...

WT d(K−1)
(t)


 , (17)

with d(k)
(t) = [ŷ(k)

1 − p̂
(k)
1 , ..., ŷ

(k)
|L| − p̂

(k)
|L| ]

T , where

p̂
(k)
i = p

[
y
(k)
i = 1|zi(θ̂(t))

]
(18)

are the current class probability estimates at each site. Let
us define the imageŝp(k) = {p̂(k)

i , i ∈ L}.
Since a bound onl(θ|θ̂) is, of course, also a bound on

l(θ|θ̂) + log p(θ), the following update equation results:

θ̂(t+1) = arg max
θ

{−ξK‖θ − v(t)‖22 + 2 log p(θ)
}

. (19)

This is simply the MAP estimate ofθ, under priorp(θ),
for a Gaussian white noise observation model with variance
1/ξK . For example, under independent Laplacian priors, as
given in (6), the update equation (19) is

θ̂(t+1) = soft
[
v(t), (λ ξK)−1

]
(20)

where soft(u, t) = sign(u)max{0, |u| − t} denotes the
component-wisesoft-thresholdfunction (see [14], [18]).

In summary, the iterative procedure defined by (20) and
(16) is used to solve the maximization (11) required by the
M-step. Running this a finite number of times is not guaran-
teed to solve (11), but to obtain a new estimate that improves
log p(θ) + l(θ|θ̂). The resulting scheme is thus a general-
ized EM (GEM) algorithm [17], with the same monotonic-
ity properties as standard EM.

3.4. Summary of the Algorithm

Inputs: Observed imagex, number of classesK, observa-
tion modelsp(·|φk), wavelet basisW, parameterλ,
stopping thresholdε, number of inner iterationsr.

Output: Parameter estimateŝθ
(k)

, for k = 1, ...,K − 1.
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Initialization: Fork = 1, ...,K − 1, setθ̂
(k)

= 0.

Step 1: Fork = 1, ..., K − 1, computez(k) = Wθ̂
(k)

.

Step 2: Fork = 1, ..., K − 1, computêy(k) using (10).

Step 3: Store the current estimate:θ̂old = θ̂.

Step 4: Repeatr times:

Step 4.a: Fork = 1, ..., K−1, letd(k) = ŷ(k)−p̂(k).

Step 4.b: Fork = 1, ..., K − 1, compute the “wavelet
transforms”g(k) = WT d(k) (see (17)).

Step 4.c: For k = 1, ...,K − 1, let v(k) = θ̂
(k)

+
g(k)/ξK (see (16)).

Step 4.d: Fork = 1, ..., K−1, update estimates using

(20), which yields a neŵθ
(k)

.

Step 4.e: Go back toStep 4.a.

Step 5: If maxk ‖θ̂
(k)

old − θ̂
(k)‖∞ < ε, then stop; otherwise,

go back toStep 1.

It is important to notice that, in this supervised mode, with a
Laplacian prior, the objective function being maximized in
concave (since the logistic log-likelihood is also concave)
and so there are no initialization problems. This is the rea-
son behind the choice of this simple initialization procedure.

4. Extensions

4.1. Unsupervised/Semi-supervised Segmentation

The model and algorithm above described can be ex-
tended to the unsupervised case,i.e., with the parameters
φk considered unknown. In this case, the full posterior is

p(θ, φ,y|x) ∝ p(x|y, φ) p(y|θ) p(θ) p(φ) (21)

whereφ = {φ0, ..., φK−1}. In this paper, we will assume a
flat prior onφ, although other alternatives could be consid-
ered at little additional cost. Let us adopt again the MMAP
criterion, now jointly w.r.t.θ andφ. The following obser-
vations can now be added to those made in Section 3.1:

• If y was observed, estimatingφ could simply be
achieved by the ML criterion, by maximizing the com-
plete log-likelihoodlog p(x|y,φ) w.r.t. φ.

• The complete log-likelihood is linear w.r.t. ally
(k)
i :

log p(x|y, φ) =
∑

i∈L

K−1∑

k=0

y
(k)
i log p(xi|φk).

The algorithm presented in Section 3.4 can thus be modified
by inserting an extra step, between steps 3 and 4:

Step 3.5: Update the observation model parameters ac-
cording to the following weighted ML criterion:

φ̂k = arg max
φk

∑

i∈L
ŷ
(k)
i log p(xi|φk).

For example, if thep(·|φk) are Gaussians, this update equa-
tions coincide with those of EM for Gaussian mixtures.

In the semi-supervised case, one is given a subset of pix-
els for which the true label is known. In this case, the EM
algorithm for the unsupervised case is applied, but holding
the labels of the pre-classified pixels at their known values.

Of course, in the unsupervised or semi-supervised
modes, the log-marginal-posterior is no longer convex, and
the results will depend critically on the initialization.

4.2. Discriminative Features

The formulation above presented (in fact, most of the
work on probabilistic segmentation) adopts a generative
perspective: eachp(·|φk) is assumed to model the proba-
bilistic data generation mechanism in each class. However,
discriminative methods (e.g., logistic regression, Gaussian
processes, trees, support vector machines, boosting) are
seen as the current state-of-the-art in classification [9].

Observe that all our EM algorithm requires, in the E-step
defined in (10), is the posterior class probabilities, given

the pixel values and the current parameter estimatesθ̂
(k)

.
These parameter estimates work by forcing some prior class
probabilities in (10). Consider a probabilistic discrimina-
tive classifier,i.e., one that, for each pixelxi, provides es-
timates of the posterior class probabilitiesp(y(k)

i = 1|xi),
k = 0, ...,K − 1. Let us assume that this classifier was
trained on balanced data,i.e., using the same amount of data
from each class. It can thus be assumed that these posterior
class probabilities verifyp(y(k)

i = 1|xi) ∝ p(xi|y(k)
i = 1),

as can be easily verified by plugging uniform class pri-
ors p(y(k)

i = 1) = 1/K in Bayes rule. It is then possi-
ble to “bias” these classes, with given prior probabilities
q(y(k)

i = 1), for k = 0, ...,K − 1, by computing

p biased(y
(k)
i = 1|xi) =

p(y(k)
i = 1|xi) q(y(k)

i = 1)
∑K−1

j=0 p(y(j)
i = 1|xi) q(y(j)

i = 1)
.

This procedure allows using a pre-trained probabilistic dis-
criminative classifier in our EM algorithm, by using the “bi-
ased” probabilities in the E-step. We have not yet performed
experiments with this discriminative approach.
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5. Experiments

This section reports experimental results illustrating the
behavior of the proposed algorithm, namely the adequacy
of wavelet-based priors for segmentation.

The first experiment (reported in Fig. 1) is based on a
simple synthetic segmentation problem, with known class
models. Each of the four regions follows a Gaussian distri-
bution with standard deviation 0.5 and means 1, 2, 3, and
4. This is very similar to what would be obtained by an
MRF-based method; however, it must be stressed that the
algorithm herein proposed is optimal, deterministic, and has
computational complexity which grows linearly with the
image size. In this example, undecimated Haar wavelets
were used,r = 4, andε = 0.001. Instead of fixing some
value for lambda, the Bayes-shrink method [3] (which es-
timates a different threshold for each level of the wavelet
decomposition) was used; this avoids having to specify or
estimate parameters of the wavelet prior and, in all experi-
ments, lead to very good results. This result illustrates the
ability of the proposed wavelet-based prior to regularize im-
age segmentation, producing well defined boundaries.

Figure 1. Top row: true regions and observed image. Bottom row:
ML segmentation and that obtained by our algorithm.

The previous experiment was repeated in unsupervised
mode, using a threshold-based segmentation to initialize the
algorithm. The result obtained is visually very similar to the
one in Fig. 1, and it’s not show it here for the sake of space.
The parameter estimates are within 1% of the true values.

For real images, the results depend strongly on the fea-
tures and feature models used, which are not the focus of
this paper. Only two examples of color image segmentation,
using Gaussian color models, will be shown. In Fig. 2, the
goal is to segment the image into three regions: clothe, skin,

Figure 2. Top: observed image; ML segmentation. Bottom: seg-
mentation obtained by our algorithm; corresponding boundaries.

and background. Fig. 3 shows a figure-ground segmen-
tation problem. These results were obtained by using the
proposed algorithm in unsupervised mode, initialized with
ML segmentations resulting from fitting Gaussian mixtures
to the observed (RGB) pixels.

6. Summary and Future Work

A new formulation of image segmentation as spatially-
regularized logistic regression was introduced. This ap-
proach allows using priors for continuous-valued fields in
image segmentation; here, it was used with wavelet-based
priors. An EM algorithm was derived for supervised seg-
mentation; it was shown how this algorithm is extended to
handle unsupervised and semi-supervised problems, as well
as discriminative features. Preliminary experiments show
that the proposed approach has promising performance.

Future research will include a thorough experimen-
tal evaluation of the method, namely in comparison with
graph-based and MRF-based methods. We are currently de-
veloping criteria for selecting the number of classes/regions,
following the approach in [7].

Appendix: Frames and Tight Frames

Recall (see,e.g., [14]) that a set{w1, ...,wp} of p vec-
tors inIRq is aframeif there exist two real constantsA and
B, with 0 < A ≤ B, such that for any vectorv ∈ IRq,

A‖v‖2 ≤
p∑

i=1

|wT
i v|2 ≤ B‖v‖2.

In a C-tight frame,A = B = C (the inequalities become
equalities). Examples of tight frames are orthonormal bases
(1-thight) and unions ofR orthonormal bases (R-tight).
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Figure 3. Top: observed image; ML segmentation. Bottom: seg-
mentation obtained by our algorithm; corresponding boundaries.
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