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ABSTRACT

The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful

denoising methods. Most schemes use arbitrary thresholding nonlinearities with ad hoc parameters, or employ

computationally expensive adaptive procedures. We overcome these de�ciencies with a new wavelet-based denoising

technique derived from a simple empirical Bayes approach based on Je�reys' non-informative priors. Our approach

is a step towards objective Bayesian wavelet-based denoising. The result is a remarkably simple �xed non-linear

shrinkage/thresholding rule which performs better than other more computationally demanding methods.
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priors, invariance, hierarchical Bayes, empirical Bayes, shrinkage.

1. INTRODUCTION

1.1. Background

Wavelets and other multiscale analysis tools underlie many recent advances in key areas of signal and image process-

ing; namely, approximation (or representation), estimation, and compression (for example, see Mallat's1 recent book

and the many references therein). In these applications, two important properties of the discrete wavelet transform

(DWT) of real-world signals and images are exploited: (a) it is sparse, meaning that a few large coe�cients dominate

the representation, and (b) the coe�cients tend to be much less correlated than the original data. These properties,

together with the existence of fast implementations, make the DWT an excellent tool for many signal/image pro-

cessing tasks (see Mallat1) and also for statistical applications (see Ogden2 and the references therein). The basic

approach to DWT-based signal/image processing consists in manipulating the DWT coe�cients, rather than the

signal samples themselves. This is done by following a three step program:

1. compute the DWT of the signal,

2. perform some speci�ed processing on the DWT coe�cients, and

3. compute the inverse DWT to obtain the \processed" signal.
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Stimulated by the seminal work of Donoho and Johnstone,3 many denoising (or signal/image estimation) methods

adopting this standard three step approach have been proposed (see Mallat,1 Ogden,2 Vidakovic,4 Krim and

Schick,5 and other references cited by those authors). In particular for detail-preserving (or edge-preserving) image

estimation/denoising (the subject of this paper) these approaches provide a very e�cient alternative to Markov

random �eld (MRF) based techniques (see Figueiredo and Leit~ao7 and references therein).

In the denoising context, the decorrelation property suggests processing the coe�cients independently of each

other; the sparseness (or \heavy-tailedness") property paves the way to the use of threshold/shrinkage estimators

aimed at removing/attenuating those coe�cients that are \small" relative to the noise level. The classical choices

for performing thresholding/shrinkage of each DWT coe�cient (proposed by Donoho and Johnstone3,8) are the hard

and soft thresholding functions; letting ! denote an arbitrary DWT coe�cient of the observed signal/image, these

functions are de�ned, respectively, as

�
hard
� (!) =

�
0 ( j!j � �

! ( j!j > �
(1)

�
soft
� (!) =

�
0 ( j!j � �

sgn(!)(j!j � �) ( j!j > �;
(2)

where sgn(�) is the sign function (sgn(x) = 1, if x � 0, and sgn(x) = �1, if x < 0) and � a threshold level. In Donoho

and Johnstone's classical techniques, � depends on the known (or estimated) noise standard deviation. Their simplest

approach (VisuShrink ) uses a common value of � for all levels (scales) of the DWT decomposition, which is based on

the so-called \universal threshold". More sophisticated level-dependent adaptive schemes have also been proposed

(namely, Donoho and Johnstone's SureShrink 8); adaptive techniques tend to outperform �xed rules at the cost of a

higher computational burden.

Recently, wavelet-based denoising/estimation has been addressed using Bayesian methods. The basic idea is to

formally model the relevant properties of the DWT coe�cients with prior probability distributions (see Vidakovic4

and references therein). These priors, together with the likelihood function (noise model), produce posterior dis-

tributions. Estimation rules can then be derived via the standard Bayesian decision-theoretic approach, after the

speci�cation of a loss function (see Robert9). Bayesian techniques usually outperform other methods and are repre-

sentative of the state-of-the-art in wavelet-based denoising (see Vidakovic4 and Crouse, Nowak, and Baraniuk10).

There are several open issues in wavelet-based denoising. In threshold/shrinkage methods, the choice of the

particular nonlinearity (e.g., hard or soft) is often arbitrary. Moreover, the standard choices of nonlinearity have

certain drawbacks. The soft thresholding function yields systematically biased estimates because it shrinks coe�cients

regardless of how large they are. The hard thresholding function, on the other hand, produces less biased but higher

variance estimates; it can also be unstable due to its discontinuous nature. To avoid these drawbacks, several other

ad-hoc rules have been proposed. Let us mention Gao and Bruce's11 \�rm" rule which tries to retain the best of

the hard and soft functions (requiring two threshold values, thus computationally much more expensive in terms of

threshold selection) and, very recently, the \non-negative garrote" function (as suggested by Gao12), de�ned as

�
garrote
� (!) =

�
0 ( j!j � �

! � �2

!
( j!j > �

(3)

which we will return to in Section 5. Concerning threshold levels, in practice they often have to be \tweaked" to

produce best results on a case by case basis. Even signal-adaptive techniques can still be criticized since they involve

an arbitrary choice of nonlinearity and because they are computationally demanding.

Bayesian methods do not use a �xed arbitrary nonlinearity; however, the priors on the wavelet coe�cients are

chosen arbitrarily, often with the goal of matching empirical coe�cient distributions or obtaining Bayesian estimators

that mimic the conventional nonlinear rules. Moreover, Bayesian methods are usually computationally intensive and

require either careful hand-tuning of the prior parameters or signal-adaptive schemes.

1.2. Contributions

We tackle the fundamental issues raised above by adopting a Bayesian perspective supported on non-informative

Je�reys' priors (see Bernardo and Smith's13 and Robert's9 books).



Our approach can be seen as a step towards objective Bayesian wavelet-based denoising; the term \objective"

means the use of priors that do not require any subjective input. Accordingly, our approach mitigates the arbi-

trariness/subjectiveness associated with other (Bayesian and non-Bayesian) denoising schemes. The type of non-

informativeness we invoke expresses amplitude-scale
� invariance, meaning that the units in which an image/signal

is measured do not directly inuence any inference made from it (see Bernardo and Smith13 or Robert9). In other

words, the inference procedure tries to be invariant under changes of amplitude-scale. Maybe surprisingly, the result

of our approach is a �xed nonlinear shrinkage/threshold rule which, nevertheless, clearly outperforms both VisuShrink

and SureShrink; actually, it performs nearly as well as (sometimes even better than) much more computationally

expensive Bayesian denoising methods in standard benchmark problems. Remarkably, in view of its very good per-

formance, our rule is �xed (with no free parameters), thus it is as computationally inexpensive as possible (e.g., as

simple as VisuShrink).

Our results seem to carry an important message in terms of natural image modelling. The good results achieved

with our non-informative prior seem to suggest the presence of a type of invariance which has not been previously

exploited in image denoising: amplitude-scale invariance. Other types of invariance, namely spatial-scale invariance

(or self similarity), however, have received a great deal of attention (see Field14 and Ruderman15)

In Section 2, the denoising problem is described and notation introduced. In Section 3, a new non-informative

prior is proposed, based on which we derive, in Section 4, a novel empirical-Bayes denoising procedure that we call

amplitude-scale-invariant Bayes estimation (ABE). In Section 5 we discuss the relation of our method with other

approaches. The performance of the new rule is compared to that of other methods in Section 6. Conclusions are

given in Section 7.

2. PROBLEM FORMULATION

2.1. Wavelet-based Denoising and the Sparseness Property

Suppose y is a noisy observed signal or image, modeled as

y = x+ n; (4)

where x is the underlying original signal (or image) and n contains independent samples of a zero-mean Gaussian

variable of variancey �2; that is, n � N (0; �2I), with I denoting an identity matrix of appropriate size. The goal of

denoising (signal/image estimation) is to recover x from y.

In wavelet-based denoising, the orthogonal DWT, denoted by W (either 1-D or 2-D; see, e.g., Mallat's book1) is

applied to the noisy data yielding the noisy wavelet coe�cients !; these are described by an analogous observation

model

! � Wy =Wx+Wn = � + n0; (5)

where � =Wx, and n0 =Wn � N (0; �2I), since W is orthogonal (i.e., WWT = I).

As mentioned above, the wavelet transforms of most real-world signals and images tend to be dominated by a

few large coe�cients (see Donoho and Johnstone3). This is the so-called sparseness property which, in probabilistic

terms, corresponds to a wavelet coe�cient density function with a marked peak at zero and heavy tails; that is, a

strongly non-Gaussian density (also called super-Gaussian). Interestingly, it has recently been found that the human

visual system exploits this sparseness property by using wavelet-like representations (see, for example, Olshausen

and Field,16 Hyv�arinen, Hoyer and Oja,17 and references therein). On the other hand, the DWT of Gaussian white

noise produces i.i.d. Gaussian distributed coe�cients; with high probability, these are bounded in magnitude by a

suitable threshold proportional to their standard deviation. Therefore, a natural denoising criterion results from this

statistical di�erence between the coe�cients of the signal and the noise: if the magnitude of an observed wavelet

coe�cient is large, its signal component is probably much larger than the noise and it should be kept; conversely, if

a coe�cient has small absolute value, it is probably due to noise and it should be attenuated or even removed. This

(together with the decorrelation property that suggests processing the coe�cients independently of each other) is

�Throughout this paper, we use the term amplitude-scale, in place of simply scale, to clearly distinguish it from the common

usage of the term scale (meaning spatial-scale) in wavelet theory.
yIn this paper, we assume known noise variance; this is not a shortcoming because excellent estimates can be easily obtained

directly from the noisy data using, e.g., the MAD scheme.8



the rationale underlying the now classical thresholding methods introduced by Donoho and Johnstone3 and all their

descendants.

Finally we mention that there is also a conceptual link between wavelet-based denoising and independent compo-

nent analysis (ICA); see Cardoso,18 Comon,19 Bell and Sejnowski,20 and the recent book by Lee.21 The goal of

ICA is to recover independent sources (signals) given only unknown (memoryless) linear combinations of them; ICA

is possible only if no more than one of the mixed signals is Gaussian, and all the others are non-Gaussian. From

an ICA perspective, wavelet-based denoising may be seen as a way of separating two sources (signal and noise) by

representing them on a basis where one becomes strongly non-Gaussian (the signal) and the other remains Gaussian

(the noise). However, while wavelet-based denoising usually adopts �xed bases, ICA adaptively looks for bases that

best reveal the non-Gaussian nature of the source(s).

2.2. Bayesian Formulation

The likelihood functions resulting from the observation models in the signal and wavelet domains, respectively (4)

and (5), are both Gaussian with covariance �2I:

yjx � N (x; �2I); (6)

!j� � N (�; �2I); (7)

that is, the noise is white and Gaussian both in the signal and wavelet domains. To build a Bayesian framework

that exploits the sparseness and decorrelation properties of the DWT, a prior p�(�) is formulated with respect to

the wavelet coe�cients. Of course, this prior p�(�) induces a signal prior given by pX(x) = p�(Wx), because W is

an orthogonal transformation, thus possessing a unit Jacobian (i.e., jd�j = jdxj).
The standard Bayesian version of the three step wavelet-based denoising program is:

1. compute the DWT of the data ! =Wy;

2. obtain an optimal Bayes estimate b�, given !;
3. reconstruct the signal estimate bx =W�1b

�.

To interpret this procedure from a Bayesian decision theory perspective, let us explicitly write down b
� as the

minimizer of the a posteriori expected loss (see Bernardo and Smith13 or Robert9); then

bx =W�1 argmine
�

Z
L(�; e�)p(�j!) d�: (8)

In (8), L(�; e�) is the adopted loss function that penalizes the \discrepancy" between � and any candidate estimatee
�, while p(�j!) is the a posteriori probability density function obtained via Bayes law p(�j!) = p(!j�)p(�)=p(!).
Now, recalling that jd�j = jdxj, and since

p(xjy) / p(yjx) pX (x) = p(!j�) pX(W�1
�) = p(!j�) p�(�) / p(�j!); (9)

equation (8) is equivalent to

bx = argminex
Z

L(Wx;Wex)p(xjy) dx: (10)

In other words, the estimate bx = W�1b
� does corresponds to a Bayesian criterion in the signal domain, under the

loss L(Wx;Wex), which is induced by the loss L(�; e�) that is adopted in the wavelet domain.

In some cases, this loss is invariant under orthogonal transformations (maybe up to a constant), that is

L(Wx;Wex) / L(x; ex); (11)

as a consequence, (10) can be further simpli�ed to

bx = argminex
Z

L(x; ex)p(xjy) dx; (12)

meaning that bx =W�1b
� is a Bayes estimate under the same loss function as b�.

It happens that the two most commonly used loss functions do verify (11):



� With the squared error loss, for which the optimal Bayes rule is the posterior mean9 (PM), we can write

L2(�; e�) = k� � e
�k22 = kWx �Wexk22 = kW(x � ex)k22 = kx � exk22 = L2(x; ex) (where k � k22 denotes squared

Euclidean norm) as a trivial consequence of the orthogonality ofW ; the DWT is an Euclidean norm preserving

transformation (Parseval's relation). It can then be stated that the inverse DWT of the PM estimate of the

coe�cients coincides with the PM estimate of x.

� For the 0/1 loss, which leads to the maximum a posteriori (MAP) criterion,9 L0=1(�; e�) = L0=1(Wx;Wex) =
L0=1(x; ex), simply because W�1 exists (i.e., W is bijective). In conclusion, the inverse DWT of the MAP

estimate of the coe�cients is the MAP estimate in the signal domain.

Notice that this is not true in general. It is easy to come up with loss functions that do not satisfy this condition;

for example, L1(�; e�) = kWx�Wexk1 6= L1(x; ex) (where kvk1 stands for the in�nity norm, kvk1 = maxfjvijg).
Of course, as seen above, the resulting rule is still a valid Bayes rule, but no simple and clear relation exists between

the estimates in the signal and wavelet domains.

3. A NEW PRIOR FOR WAVELET COEFFICIENTS

The decorrelation property supports that we model the coe�cients as mutually independent

p(�) =
Y
i

p(�i); (13)

of course, decorrelation does not imply independence, but this is a good a �rst approximation, often followed, and

we adopt it here. Furthermore, recall that the likelihood function describes the observed coe�cients as conditionally

independent. As a consequence, the unknown coe�cients are a posteriori conditionally independent,

p(�j!) / p(!j�)p(�) =
Y
i

p(!ij�i)
Y
j

p(�j) /
Y
i

p(�ij!i) (14)

where p(�ij!i) / p(!ij�i)p(!i), with !ij�i � N (�i; �
2). Finally, if either the MAP or the PM criterion is adopted

(see above), the Bayes rule can be computed separately with respect to each coe�cient:

b
�PM = E[�j!] = [E[�1j!1]; :::; E[�N j!N ]]T (15)

b
�MAP = argmax

�

p(�j!) =
�
argmax

!1
p(�1j!1); :::; argmax

!N
p(�N j!N )

�T
(16)

where N is the dimension of � and !. In conclusion, under white noise, with an independent prior as (13), the MAP

or PM estimates can be obtained separately for each coe�cient.

Let us then focus on choosing a prior for each single wavelet coe�cient, which we will now simply denote as �.

The usual approach is to try to explicitly capture the sparseness property with heavy-tailed priors. For example,

Chipman, Kolaczyk, and McCulloch22 and Crouse, Nowak, and Baraniuk10 consider p(�) as a mixture of two zero

mean Gaussians: one with small variance and the other with large variance. Abramovich, Sapatinas and Silverman23

take this approach to an extreme by considering the small variance component as a point mass at zero. Student-t

distributions were adopted by Vidakovic.24 Other variants of these approaches are reviewed by Vidakovic.4 Finally,

it is well known that a Laplacian prior p(�) / expf��j�jg, which is also heavy-tailed, coupled with 0/1 loss, leads to

the soft thresholding function (see equation (2)) as the optimal Bayes rule.

Here, we follow a di�erent route based on the notion of \non-informativeness" or \invariance". The type of

non-informativeness we are seeking must express amplitude-scale invariance; this means that the units in which a

quantity is measured do not inuence any conclusions drawn from it (see Bernardo and Smith13 or Robert9). In other

words, the inference procedure must be invariant under changes of amplitude-scale. For a positive parameter, say

�, this kind of invariance is expressed by the well-known (non-informative) amplitude-scale-invariant Je�reys' prior

p(�) / 1=� (again, see Bernardo and Smith13 or Robert9). Now, our � can be positive or negative; the corresponding

amplitude-scale-invariant prior is then

p(�) / 1

j�j : (17)



This happens to be an extremely heavy-tailed density, thus in accordance with the expected behavior of wavelet

coe�cients. In fact, it is so heavy-tailed that it is improperz. Notice that the simple invocation of amplitude-scale

invariance leads to a heavy-tailed prior.

Let us clearly show how this non-informative prior exhibits amplitude-scale invariance. Say we change the

measurement units (amplitude-scale) in which � and all other quantities are expressed. This de�nes a new unknown

� = K�, where K is the constant expressing the change of units/amplitude-scale. Then, by applying the rule for

the change of variable in a pdf to p(�) = j�j�1, we retain the same prior p(�) / j�j�1. It is in this sense that the

prior (17) is said to be amplitude-scale-invariant. Other priors for Bayesian denoising (based on Laplacian, Gaussian

mixture, or other heavy-tailed densities) do not share this desirable invariance property, and hence they must be

tuned/adapted to the amplitude-scale of each particular signal/image at hand.

4. A HIERARCHICAL/EMPIRICAL BAYES APPROACH

Unfortunately, the prior p(�) = j�j�1, together with the simple Gaussian observation model !j� � N (�; �2), leads

to an improper (non-integrable) a posteriori pdf p(�j!), from which no simple inference rule can be derived. Con-

sequently, we have to look for an alternative to a fully Bayesian approach. This alternative is provided by the

identi�cation of a hierarchical Bayesian model that is equivalent to our prior p(�) = j�j�1; the goal is to facilitate

the use of an empirical-Bayes-type approach. The equivalent hierarchical Bayesian model is:

� Each (unknown) coe�cient is conditionally zero-mean Gaussian, with variance �2, �j�2 � N (0; �2), for �2 � 0.

� Again, amplitude-scale invariance with respect to �2 is expressed by the non-informative improper Je�reys' (hyper)

prior p(�2) / 1=�2.

The marginal a posteriori density p(�j!) resulting from this hierarchical model,

p(�j!) =
Z

p(�; �2j!)d�2 = p(!j�)
p(!)

Z
p(�j�2)p(�2)d�2| {z }

p(�)=j�j�1

; (18)

does reveal the presence of the prior p(�) = j�j�1. This shows that this prior can be decomposed into a continuous

mixture of zero-mean Gaussians, weighted according to the Je�reys' non-informative hyper-prior p(�2) / 1=�2 (see

Robert9). Since this hyper-prior is the limiting case of the conjugate inverse-Gamma family, the prior p(�) = j�j�1 is
itself a limiting case of a family of Student-t densities. Student-t densities are common robust substitutes for Gaussian

priors (see Bernardo and Smith13 or Robert9), and have been used in wavelet-based denoising with specially selected

parameter settings (see Vidakovic4). Our (non-informative) prior leaves us with no free parameters to adjust.

This hierarchical Bayesian model opens the door to the use of an empirical-Bayes-type technique (see Robert25);

i.e., we break the fully Bayesian analysis chain as follows:

� First, a variance estimate c�2 is obtained according to the MAP criterion based on the marginal likelihood

p(!j�2) and the corresponding (amplitude-scale-invariant) Je�reys' prior.

� Given c�2, both the MAP and the posterior mean criteria lead to the well known shrinkage estimator, resulting

from a Gaussian likelihood (of variance �2) and a N (0;c�2) prior,
b� = c�2c�2 + �2

!: (19)

Notice that this is a non-linear estimator because, although not clearly expressed by the notation, c�2 depends
on !.

zA prior is said improper if it is not normalizable (its integral is not �nite). Improper priors are common in Bayesian

inference since only the relative weighting expressed by their shape impacts the a posteriori density; see Bernardo and Smith13

or Robert.9



The MAP estimate of the variance, c�2, is derived as follows. Since ! = � + n
0, the marginal likelihood is

very simply !j� � N (0; �2 + �
2), and the corresponding Je�reys' prior is now p(�2) / 1=(�2 + �

2). Notice that

this Je�reys' prior respects our amplitude-scale-invariance desideratum. To see this, consider again the change the

measurement units expressed by de�ning a new variable �2 = K�
2. Applying the rule for a change of variable to

the prior p(�2), we obtain p(�2) / 1=(�2 + K �
2), which is the same prior, with the noise variance automatically

re-scaled in accordance with the new units. The resulting MAP estimate of �2 is

c�2 = argmax
�2�0

�
(�2 + �

2)�3=2 e
� !2

2(�2+�2)

�
(20)

=

�
!
2

3
� �

2

�
+

; (21)

where (�)+ stands for \the positive part of", i.e., (x)+ = x, if x > 0, and (x)+ = 0, if x � 0.

Let us also point out another interpretation of the Bayesian (variance) estimator in (21). Ignoring the (�)+ function

(which is necessary simply because we are estimating �2 from an estimate of �2 +�
2, and the valid parameter space

is IR+
0 ), this is an instance of the following problem: given n i.i.d. N (0; 2) observations, x1; :::; xn, what is the best

variance estimate of the form c2 = c(x21 + � � �+ x
2
n), in a mean squared error (MSE) E[(2 �c2)2] sense? It is well

known that the value c = 1=(n+ 2) (in our case, n = 1, thus c = 1=3) yields the minimum MSE (although biased)

estimate of 2 (see Lehmann26). This coincides with the MAP rule with a Je�reys' prior on 
2.

Now, by plugging the estimate (21) into (19), we have our new non-linear rule, which we call the amplitude-scale-

invariant Bayes estimator (ABE),

b� = �
ABE(!) =

�
!
2 � 3�2

�
+

!
; (22)

which is plotted in Figure 1. Also in Figure 1, the ABE rule is shown together with the classical soft and hard

thresholding functions (for the same threshold value). Notice how the proposed rule places itself between those two

functions: it is close to the soft rule for small !, thus e�ectively behaving like a shrinkage rule; it approaches the

hard rule (and consequently the identity line) for large !, avoiding the undesirable bias incurred with the soft rule.
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Figure 1. Left: ABE rule, with its �xed (with respect to the noise variance) threshold. Right: the ABE nonlinearity versus

the hard and soft thresholding rules (here with the same threshold).

Computationally, our denoising method is as simple as any other one that uses some �xed thresholding/shrinkage

nonlinearity depending on a �xed threshold proportional to the noise standard deviation � (e.g., VisuShrink); that is,

the only needed input is �. Remarkably, however, it achieves the performance of (more computationally demanding)

Bayesian methods (see the experimental results in Section 6) without requiring any tuning or adaptive estimation of

parameters of the prior.



5. RELATION WITH OTHER APPROACHES

As we mentioned in the Introduction, Gao12 has very recently proposed the use of the so-called \non-negative

garrote" function, de�ned in (3), for wavelet-based denoising. Notice that the ABE rule (equation (22)) happens to

be a \non-negative garrote" with a �xed threshold � =
p
3�2:

�
ABE(!) = �

garrotep
3�2

(!): (23)

In his paper,12 Gao credits the non-negative garrote to Breiman27 who introduced it in the context of subset

selection for regression problems. In that same paper, this function is shown to outperform both the hard and soft

nonlinearities when the threshold is optimally selected with the help of the underlying true function.

We also recently found that Brillinger28 has briey mentioned a similar function (in fact �garrote� (!)) as a possible

alternative to the hard and soft rules. Brillinger states that this nonlinear function had been proposed by Tukey (in

unpublished work of 1979), also in a regression context.

The non-negative garrote (speci�cally, �garrote� (!)) also happens to arise naturally in certain cross-validation

methods, as used by Nowak29 and Nowak and Baraniuk30 to derive denoising rules.

6. EXPERIMENTAL RESULTS

6.1. Signal Denoising

We have evaluated our denoising rule versus the standard SureShrink and VisuShrink methods (based on soft thresh-

olding nonlinearity), using Donoho and Johnstone's3 well known test signals: \Blocks", \Doppler", \HeaviSine",

and \Bumps". We have also included in our comparison a recent Bayesian approach based on mixture priors (as

in Crouse, Nowak, and Baraniuk10) which, to the authors' knowledge, is representative of the very best Bayesian

methods. Figure 2 reports the signal-to-noise ratios (SNR) obtained by each of the denoising methods, based on

100 runs for each original SNR value. As is clear from these results, the ABE rule performs consistently (i.e., for all

four test signals and at all SNR levels) better than the SureShrink; this is a remarkable fact because SureShrink is

an adaptive method (more computationally demanding) while the ABE rule is �xed. With respect the VisuShrink,

which has a similar computational load, our rule achieves far superior results. Finally, as is also clear in Figure

2, the proposed technique performs comparably (except for the HeaviSine signal at low SNR) with the much more

computationally demanding mixture based method.

Our experimental results allow adding the following conclusions to those of Gao12: at least for the signals and

SNR values considered, a non-negative garrote with a �xed threshold � =
p
3�2 still beats SureShrink (and also,

of course, VisuShrink). This conclusion implies an important practical guideline: the ABE method should be used

instead of SureShrink. Our method performs better than SureShrink, and it is much more computationally e�cient.

6.2. Image Denoising

For image denoising, we have compared the ABE rule, with its �xed threshold, versus the hard, the soft, and the

garrote nonlinearities for a range of threshold values. Figure 3 shows the well-known \Cameraman" image after

being contaminated by noise of standard deviation � = 20. Figure 4 (left plot) then shows the mean squared error

achieved by the hard, soft, and garrote rules, as a function of the respective threshold values; the horizontal dotted

line represents the mean squared error of the proposed (�xed threshold) ABE. Notice how the ABE rule achieves

lower MSE than both the hard and soft functions, even when these are allowed to choose an ideal threshold using

the underlying true image (of course, something that in practical situations can not be done). Concerning the

garrote, it is remarkable that the optimal threshold is found to be � = 34:9 which is very close to our �xed thresholdp
3�2 ' 34:6. The resulting denoised images are shown in Figure 3.

The same test was performed for two other values of � (10 and 40), and the results are also reported in Figure 4.

Again, our �ABE(!) outperforms both the hard and soft rules, even with their ideal thresholds. The garrote rule (of

which, recall, �ABE(!) is a particular case) is able to �nd ideal thresholds with which it very slightly beats the ABE

rule (however, recall that this ideal thresholds can not be found in practical situations because they would require

access to the unknown underlying images). Again, the optimal garrote rule thresholds are very near our �xed level

of
p
3�.
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Figure 2. Input and output SNR for various wavelet denoising schemes applied to standard test signals (wavelets:

Daubechies-2 for Blocks, Daubechies-8 for Doppler and HeaviSine, and Daubechies-6 for Bumps).

Finally, we repeated the same set of tests using a larger image composed of four di�erent smaller sub-images; its

noisy version (again for � = 20) and the three denoised images can be seen in Figure 5. The MSE results reported

in Figure 6 con�rm the general behavior found in the previous tests: the ABE �xed-threshold nonlinearity (very

approximately) coincides with the garrote with the ideal threshold and outperforms both the hard and the soft rules

with their ideally chosen thresholds (except for � = 40 where the soft rule with its ideal threshold yields a similar

MSE; however, we stress again that this ideal threshold could not be found in a practical situation where we do not

have access to the original image).

7. CONCLUSIONS AND FUTURE WORK

We have proposed an empirical-Bayes approach to wavelet-based image and signal estimation, where a non-informative

(amplitude-scale invariant) prior plays a central role. A hierarchical/empirical Bayes path lead us to a simple �xed

non-linear shrinkage/thresholding rule; unlike other schemes, it has no free parameters requiring tuning or estimation.

Tests based on Donoho and Johnstone's standard test signals showed that our rule outperforms both VisuShrink

and SureShrink. Moreover, it performs comparably with a recent Bayesian approach based on independent mixture

priors (as in Crouse, Nowak, and Baraniuk10) which, to the authors' knowledge, is representative of the very best

Bayesian methods.

Concerning image estimation, we showed that the ABE rule achieves lower MSE than both the hard and the soft

nonlinearities, even when these are allowed to �nd their ideal thresholds using the true original image. The excellent

estimation performance of the non-informative approach here described seems to support the presence a relevant

characteristic for natural image modeling: amplitude-scale invariance. This feature of natural images means that

they contain information at all amplitude-scales; any model that fails to take this into account will have to pay the
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Figure 3. Cameraman noisy image (� = 20) and denoised images produced by the ABE rule and the hard and soft rules

with ideal thresholds (wavelet: Daubechies-2).

price of adapting to the dominant amplitude-scale features of the particular image in hand, at the expense of features

at other amplitude scales.

We are currently investigating the use of our rule in conjunction with translation-invariant (TI) denoising

schemes31; actually, TI denoising can also be formalized through the use of non-informative priors.32 TI schemes

mitigate undesirable (pseudo-Gibbs or blocking) artifacts and improve the performance of all methods considered

above, with the ranking of their relative performances being approximately unchanged.
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Figure 5. Noisy image (� = 20) and denoised images produced by the ABE rule and the hard and soft rules with ideal

thresholds (wavelet: Daubechies-2).
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Figure 6. Mean squared errors (MSE) achieved by the hard, soft, and garrote nonlinearities, as function of the threshold

values, for three noise standard deviations: � = 20, � = 10, and � = 40 (image of Figure 5). The horizontal dotted line shows

the MSE obtained by the ABE rule (with its �xed threshold).


