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ABSTRACT

In this paper, two neural algorithms for image
restoration are proposed. The image is con-
sidered degraded by linear blur and additive
white Gaussian noise. Mazimum a posteriort es-
timation and regularization theory applied to
this problem lead to the same high dimension
optimization problem. The developed schemes,
one having a sequential updating schedule and
the other being fully parallel, implement itera-
tive minimization algorithms which are proved
to converge. The robustness of these algo-
rithms with respect to finite numerical preci-
sion is studied. Examples with real images are
presented.

1 INTRODUCTION

Restoration of blurred and noisy images is an #l-
conditioned or even ill-posed problem (1}, [2], {3].
Bayesian estimation and regularization theory are two
of the classical formulations where a prior: informa-
tion is incorporated in order to overcome this diffi-
culty. However, both lead to very large dimension
optimization problems [1], [2], 3], 4], [5].

Consider the observed image y modelled as a lin-
early blurred (LB) and noisy version of the original
image x,

y = Bx+n, (1)

where B is the M N x M N blur matrix, and n is a
white Gaussian noise (WGN) vector with M N x M N
covariance matrix ¢2I. In (1), M x N pixels images
are represented by M N-dimensional vectors

The original image x is considered as a sample of a
zero mean Gauss-Markov random field (ZMGMRF),
with covariance matrix A.

The mazimum a posteriori (MAP) estimation crite-
rion, corresponding to the above assumptions, yields
the following minimization problem:

. . 1
Xmap = argmin {§xTCx - bTx} . (2)

In (2), C isa MN x M N symmetric positive definite
matrix (SPDM) with positive diagonal elements (5],
and b is a M N-dimensional vector given by

1 o7 1 o
=—B"y.
2(}_,_,B B, and b 5528 ¥ 3)
Application of the Tikhonov-Miller regularization

approach would involve a minimization problem
equivalent to (2) 3], [5].

C=A"1'+

Neural-like structures have been proposed to solve
large scale optimization problems. The mapping of
the function to be minimized into the energy of a
given network is the commonly adopted strategy. In
the field of image restoration, some recent publications
have suggested Hopfield-like neural networks [6], [7].
The standard Hopfield network proposed in [6] vio-
lates the nonzero autoconnection assumption, which
prevents convergence from being guaranteed. In [7], a
modified Hopfield network with nonzero autoconnec-
tions and two new updating schemes (one sequential
and the other parallel) are introduced. However, the
convergence proof for the parallel scheme is based on
an almost never satisfied condition.

In this paper, a different approach is taken: instead
of mapping the function to be minimized into the en-
ergy of a predefined network, neural implementations
of previously developed iterative restoration schemes
are introduced. These algorithms are suitable for dis-
tributed implementation, the key feature being that
the updating of each element depends only on local
information [5].

In steepest descent methods, optimal step size de-
pends on, and has to be known by all sites. Although
presenting better convergence rate, they are not suit-
able for fully parallel implementation by neural-like
networks (8], [10].

Throughout this paper the following notation will
be used

Euclidean vector norm:

v llz

Maximum vector norm: || ¥ Jloo= max{|vi|}.
%
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We we will also use the following induced matrix norm
I A llz= p(A) = max{|A:(A)[} (4)

where p(A) is the spectral radius of A (assumed sym-
metric), and {A;(A)} is the set of its eigenvalues [9],
[10].
The following facts, for any M N-dimensional vector
v, and SPDM A, will also be invoked

vl £ VMN |Vl (5)
A = T Au}. 6
A2 ||IIR|§§1{" u} (6)
The condition number of a SPDM is defined as
p(A)
A)=————>1 7
K(a) = 320 > )

where Amin(A) stands for the minimum eigenvalue of
A. A matrix is said well conditioned if this number is
not too large [9], [10].

2 PROPOSED
ALGORITHMS

Under the assumptions of the previous Section, im-
age restoration involves the minimization of a huge
dimension quadratic form, which can be achieved by
solving Cx = b. The dimension of this system de-
mands iterative schemes [3], [5].

Splitting matrix C as C = G—H leads to the equiv-
alent system Gx = Hx + b which suggests the itera-
tion

x(t +1) Gl (Hx(t) +b)

x(t) - G-{(Cx(t) =b)  (8)
with some initial condition x(0) [9], [10]. Matrix G
has to be easily invertible (e.g. diagonal or trian%u—
lar). Defining the error vector e(t) = x(¢) — C~!b,
it follows that e(t) = (G~1H)" e(0); therefore, itera-
tion (8) converges if and only if matrix M = G™'H is
convergent [9], i.e.

lm(GTH)Y' =0 « [|GTH|<1,  (9)

for some matrix norm || - ||. Matrix M is convergent
if and only if p(M) < 1. The rate of convergence of
such algorithms is defined as

R = —logp(G™'H) (10)
and verifies log || e(t) [|< log || e(0) || - ¢ R.

2.1 Sequential Update

Taking matrix G as the lower triangular part of C
yields the Gauss-Seidel algorithm [9], [10]. To imple-
ment it, the following neural structure and updating
scheme are proposed.
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Neural Algorithm 1 Define a network of MN con-
tinuous valued elements {z;, i = 1,2,...MN} as-
signed to each image pizel. Let W;; = —Cj;/Cyi be
the interconnection sirength between elements i and j,
and I; = b;/C;; be a bias input to each element. Let
a cyclic sequential visiting schedule to the elements be
given, and the nelwork be initialized with any finite
state. At time t an element x;, chosen according to
the visiting schedule, updates ils state as

MN
zi(t + 1) = z;(t) + Z Wijz;(t) + L.

j=1

It can be shown that this algorithm (Gauss-Seidel)
converges if the system matrix is positive definite and
has positive diagonal elements [9], [10], as is the case.

Note: We proved in [5] that the iterated conditional
modes (ICM) algorithm [4], under the ZMGMRF-LB-
WGN assumptions, is equivalent to the Gauss-Seidel
scheme. A relation between ICM and the iterative
solution of a system of equations was already recog-
nized in [4], although no use was made of it to prove
convergence.

2.2 Simultaneous Update

The distributed structure of neural networks will be

fully explored if, instead of updating just one element

at each step, all of them change state simultaneously.
Let

G:diag{El,Ez,...,é‘MN}. (11)

Convergence conditions on the parameters ¢; are given
by the following theorem:

Theorem 1 Let Cx = b be the system 1o be solved.
Iteration (8), with G given by (11) converges if

LMY
&> z [Cijl, Viz12. MN- (12)

j=1

See proof in Appendix. If conditions (12) were satis-
fied for the diagonal elements Cj;,

lMN
Ci; > 3 E IC; 1, (13)
ji=1
or
MN
Cii > Z |C.'j|, (14)
J=1j#i

then, the corresponding Jacobi algorithm (G =
diag(C), see [9] or [10]) would converge. But (14) is a
diagonal dominance condition on C which can not be
guaranteed a priori.

Iterative scheme (8), with G given by (11), is neu-
rally implemented as follows.



Neural Algorithm 2 Define a network of MN con-
tinuous valued elements {z;, i = 1,2,...MN} as-
signed to each image pizel. Let Hij = —C;j[ei be the
interconnection strength belween elementsi and j, and
Ji = bi/e; be a bias input to each element i. Let all
the €; satisfy condition (12). At each iterationt all the
elements update their states simullaneously, according

to
MN

zi(t + 1) = z;(t) + Z H;j:rj(t) + J;.
i=1

To study the effect of parameters ¢; on the conver-
gence rate, let us consider the simpler case €; = ¢,z =
1,2,..., M N, for which convergence condition (12) re-
duces to € > p(C)/2. It can be shown (see [9]) that
the best convergence rate is obtained with

_ _ pC)+ Mmin(C) _ p(C) (k(C)+1
£ o = 2 -2 ( #(C) )

Conclusion: if C is well conditioned, i.e. Amin(C) =
p(C), it is advantageous to increase € up to €opr =
p(C). If not, ie. Amin(C) < p(C), then eopy =
p(C)/2 and the convergence rate can not be much in-
creased.

Note: In [7], a parallel algorithm and its conver-
gence proof are presented. The main condition is
Ci; > p(C), for all diagonal elements Cj; of matrix
C. But Ci; < p(C),fori=1,2,...,MN, is a simple
corollary of (6). Note that, if C is a SPDM, then

p(C) = max {xTCx}> el Ce; = Cui (15)
[IXjl2=1

foranyi=1,2,..., MN, where e; is a vector with a 1
in position ¢ and zero elsewhere, which clearly satisfies
Il ei [l2= 1.

2.3 The effect of finite numerical
precision

Hardware implementations or computer simulations of
neural networks for image processing purposes use a
small number of bits per pixel (typically 8 or 10 bits
integers). We now examine the effect of finite numer-
ical precision on the proposed algorithms. Consider
that intermediate computations can be made with in-
finite precision but that each neuron (pixel) can only
store integer values. Both schemes can be written as

x(t+1) = x(t) =R (G™(Cx(t) = b)) (16)

where R(-) is an operator that rounds each coordinate
of its vector argument to the nearest integer. Note
that any u = R(v) always has a strictly positive pro-
jection on v, unless u = 0, that is if || v ||< 3. This

fact implies that the updated vector x(t + 1) moves
closer to the solution x* = C~'b, unless

16 (Cx() ~B) o< 3. ()

This condition defines the fixed points of iteration
(16). The important issue is to find the distance be-
tween these fixed points and the solution x*. From
(17) and (5) one can conclude that

vVMN
2 )

I GICx—x*) <

or
vMN
2

I —x* [l2< lGC 2.  (18)

e In Neural Algorithm 1 (Gauss-Seidel), matrix
GC~!is completely determined by matrix C, and
so are the convergence rate and the error bound
(18). For this scheme, the error bound can be
rewritten as

VMN p(C) _ VMN
2 Amin(C) 2

[| x —x* [|2< k(C)
since matrix G, being the lower triangular part
of C, satisfies p(G) = max{Ci;} < p(C). Also
note that || C~! ||2= 1/Amin(C). In conclusion:
the error bound is proportional to the condition
number of matrix C.

o In Neural Algorithm 2 the parameters ¢; can be
adjusted. Let us again consider the simpler case
e, =¢€,i=12,..., MN. The error bound (18),
depends on £, and can be written as

eVMN _ e VMN
2 Amn(C) _ 2p(C) x(C).

I x —x |l2<

Again, as with the sequential algorithm, the error
bound depends on the condition number of ma-
trix C; the better it is conditioned, the smaller
the error. Also, when ¢ in increased to gopt the
error bound increases, i.e. there is a tradeoff be-
tween convergence rate and error bound.

3 EXAMPLES

In the examples of Figures 1 and 2 a first order
ZMGMRF was adopted. Since the sequential update
algorithm is equivalent to ICM (of which there are
many examples in the literature) only results of Neural
Algorithm 2 are presented. It was simulated on a con-
ventional computer using 512 x 512 pixels, 8 bits/pixel,
images. The intermediate values are stored as 8 bits
integers. Both figures show restored windows of arti-
ficially degraded images.
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Figure 1: Blur: 9 x 9 uniform low pass. Although no
noise was added, o2 = 1 was assumed.

Figure 2: Blur: 3 x 3 uniform low pass. Noise variance
o? = 40%.

APPENDIX

The proof of Theorem 1 is based on the following the-
orem (see [9]):

Theorem 2 Let G be a non-singular and symmetric
matriz, and C = G — H be positive definite. Then,
M = G~ H is convergent if and only if Q = G+H =
2G — C s positive definite.

According to Theorem 2, M is convergent if and
only if Q is positive definite. A sufficient condition is
diagonal dominance. Since the elements of Q are

Q"_ 26, —Cy; <« i:j
P\ —Cy o« i#],
the diagonal dominance condition on matrix Q is

MN
2e; — Cii > Z |Cs;l

J=1,j#i

or
lMN
g > § z |C,'j|,
i=1

since C;; > 0. This concludes the proof of Theorem 1.
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