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Abstract. Lossless compression algorithms of the Lempel-Ziv (LZ) fam-
ily are widely used nowadays. Regarding time and memory requirements,
LZ encoding is much more demanding than decoding. In order to speed
up the encoding process, efficient data structures, like suffix trees, have
been used. In this paper, we explore the use of suffix arrays to hold the
dictionary of the LZ encoder, and propose an algorithm to search over
it. We show that the resulting encoder attains roughly the same com-
pression ratios as those based on suffix trees. However, the amount of
memory required by the suffix array is fixed, and much lower than the
variable amount of memory used by encoders based on suffix trees (which
depends on the text to encode). We conclude that suffix arrays, when
compared to suffix trees in terms of the trade-off among time, memory,
and compression ratio, may be preferable in scenarios (e.g., embedded
systems) where memory is at a premium and high speed is not critical.

1 Introduction

Lossless compression algorithms of the Lempel-Ziv (LZ) family [10, 12, 16] are
widely used in a variety of applications. These coding techniques exhibit a high
asymmetry in terms of time and memory requirements of the encoding and
decoding processes, with the former being much more demanding due to the
need to build, store, and search over a dictionary. Considerable research efforts
have been devoted to speeding up LZ encoding procedures. In particular, efficient
data structures have been suggested for this purpose; in this context, suffix trees
(ST) [3, 8, 13, 14] have been proposed in [5, 6].

Recently, attention has been drawn to suffix arrays (SA), due to their sim-
plicity and space efficiency. This class of data structures has been used in such
diverse areas as search, indexing, plagiarism detection, information retrieval, bi-
ological sequence analysis, and linguistic analysis [9]. In data compression, SA
have been used to encode data with anti-dictionaries [2] and optimized for large
alphabets [11]. Linear-time SA construction algorithms have been proposed [4,
15]. The space requirement problem of the ST has been addressed by replacing
an ST-based algorithm with another based on an enhanced SA [1].



In this work, we show how an SA [3, 7] can replace an ST to hold the dic-
tionary in the Lempel-Ziv 77 (LZ77) and Lempel-Ziv-Storer-Szymanski (LZSS)
encoding algorithms. We also compare the use of ST and SA, regarding time
and memory requirements of the data structures of the encoder.

The rest of the paper is organized as follows. Section 2 describes the LZ77 [16]
algorithm and its variant LZSS [12]. Sections 3 and 4 present the main features
of ST and SA, showing how to apply them to LZ77 compression. Some imple-
mentation details are discussed in Section 5. Experimental results are reported
in Section 6. Some concluding remarks and future work details are discussed in
Section 7.

2 LZ77 and LZSS Compression

The well-known LZ77 and LZSS encoding algorithms use a sliding window over
the sequence of symbols, which has two sub-windows: the dictionary (holding
the symbols already encoded) and the look-ahead-buffer (LAB), containing the
symbols still to be encoded [10, 16]. As a string of symbols in the LAB is en-
coded, the window slides to include it in the dictionary (this string slides in);
consequently, symbols at the far end of the dictionary slide out.

At each step of the LZ77/LZSS encoding algorithm, the longest prefix of
the LAB which can be found anywhere in the dictionary is determined and its
position stored. In the example of Fig. 1, the string of the first four LAB symbols
(“brow”) is found in position 17 of the dictionary. For these two algorithms,
encoding of a string consists in describing it by a token. The LZ77 token is a
triplet of fields (pos, len, symbol), with the following meanings:

1. pos - location of the longest prefix of the LAB found in the current dictionary;
this field uses log

2
(|dictionary|) bits, where |dictionary| is the length of the

dictionary;
2. len - length of the matched string; this requires log

2
(|LAB|) bits;

3. symbol - the first symbol in the LAB, that does not belong to the matched
string (i.e., that breaks the match); for ASCII symbols, this uses 8 bits.

In the absence of a match, the LZ77 token is (0,0,symbol). For LZSS, the token
has the format (bit,code), with code depending on value bit as follows:

{

bit = 0⇒ code = (symbol),
bit = 1⇒ code = (pos, len).

(1)

The idea is that, when a match exists, there is no need to explicitly encode
the next symbol. If there is no match, LZSS produces (0(symbol)). Besides this
modification, Storer and Szymanski [12] also proposed keeping the LAB in a
circular queue and the dictionary in a binary search tree, to optimize the search.
LZSS is widely used in practice (e.g., in GZIP and PKZIP), followed by entropy
encoding, since it typically achieves higher compression ratios than LZ77.

Fig. 1 illustrates LZ77 and LZSS encoding. In LZ77, the string “brows” is
encoded by (17,4,s); the window then slides 5 positions forward, thus the string



“after” slides out, while the string “brows” slides in. In LZSS, “brow” is encoded
as (1(17,4)) and “brow” slides in. Each LZ77 token uses log

2
(|dictionary|) +

log
2
(|LAB|) + 8 bits; usually, |dictionary| � |LAB|. In LZSS, the token uses

either 9 bits, when it has the form (0,(symbol)), or 1 + log
2
(|dictionary|) +

log
2
(|LAB|) bits, when it has the form (1,(position,length)).

Fig. 1. a) LZ77 encoding of string “brows”, with token (17,4,‘s’) b) LZSS encoding of
string “brow”, with token (1(17,4)).

The key component of the LZ77/LZSS encoding algorithms is the search for
the longest match between LAB prefixes and the dictionary. Recently, ST have
been used as efficient data structures to efficiently support this search [6].

2.1 Decoding

Assuming the decoder and encoder are initialized with equal dictionaries, the
decoding of each LZ77 token (pos,len,symbol) proceeds as follows: (1) len symbols
are copied from the dictionary to the output, starting at position pos of the
dictionary; (2) the symbol symbol is appended to the output; (3) the string just
produced at the output is slid into the dictionary.

For LZSS, we have: if the bit field is 1, len symbols, starting at position pos
of the dictionary, are copied to the output; if it is 0, symbol is copied to the
output; finally, the string just produced at the output is slid into the dictionary.

Both LZ77/LZSS decoding are low complexity procedures. This work focuses
only on encoder data structures and algorithms, with no effect in the decoder.

3 Suffix Trees for LZ77 Compression

A suffix tree (ST) is a data structure, built from a string, that contains the entire
set of suffixes of that string [3, 8, 13, 14]. Given a string D of length m, an ST
consists of a direct tree with m leaves, numbered from 1 to m. Each internal
node, except from the root node, has two or more descendants, and each branch
corresponds to a non-empty sub-string of D. The branches stemming from the
same node start with different symbols. For each leaf node, i, the concatenation
of the strings over the branches, starting from the root to the leaf node i, yields
the suffix of D that starts at position i, that is, D[i . . . m]. Fig. 2 shows the ST for



string D = xabxa$, with suffixes xabxa$, abxa$, bxa$, xa$, a$ and $. Each leaf
node contains the corresponding suffix number. In order to be possible to build

Fig. 2. Suffix Tree for string D = xabxa$. Each leaf node contains the corresponding
suffix number. Each suffix is obtained by walking down the tree, from the root node.

an ST from a given string, it is necessary that no suffix of smaller length prefixes
another suffix of greater length. This condition is assured by the insertion of
a terminator symbol ($) at the end of the string. The terminator is a special
symbol that does not occur previously on the string [3].

3.1 Encoding Using Suffix Trees

An ST can be applied to obtain the LZ77/LZSS encoding of a file, as we show
in Algorithm 1 [3].

Algorithm 1 - ST-Based LZ77 Encoding

Inputs: In, input stream to encode; m and n, length of dictionary and LAB.
Output: Out, output stream with LZ77 description of In.

1. Read dictionary D and look-ahead-buffer LAB from In.
2. While there are symbols of In to encode:

a) Build, in O(m) time, an ST for string D.
b) Number each internal node v with cv, the smallest number of all the

suffixes in v’s subtree; this way, cv is the left-most position in D of any
copy of the sub-string on the path from the root to node v.

c) To obtain the description (pos, len) for the sub-string LAB[i . . . n], with
0 ≤ i < n:
c1) If no suffix starts with LAB[i], output (0, 0, LAB[i]) to Out and do

i← i + 1, and goto 2c6).
c2) Follow the only path from the root that matches the prefix LAB[i . . . n].
c3) The traversal stops at point p (not necessarily a node), when a sym-

bol breaks the match; let depth(p) be the length of the string from
the root to p and v the first node at or below p.

c4) Do pos← cv and len← depth(p).
c5) Output token (pos, len, LAB[j]) to Out, with j = i+len, do i← j+1.
c6) if i = n goto 2d); else goto 2c).



d) Slide in the full encoded LAB into D;
e) Read next LAB from In; goto 2).

The search in step 2c) of Algorithm 1 obtains the longest prefix of LAB[i . . . n]
that also occurs in D. Fig. 3 shows the use of this algorithm for dictionary
D = abbacbba$; every leaf node has the number of the corresponding suffix,
while each internal node holds the corresponding cv value. In a similar manner,

Fig. 3. Use of a Suffix Tree for LZ77 encoding, with dictionary D = abbacbba$. Each
leaf node contains the corresponding suffix number, while the internal nodes keep the
smallest suffix number on their subtree (cv). Point p shows the end of the path that
we follow, to encode the string LAB = bbad.

the algorithm can be applied for LZSS compression, by modifying steps 2c1) and
2c5) in order to define the token, according to (1). Regarding Fig. 3, suppose
that we want to encode the string LAB = bbad; we traverse the tree from the
root to point p (with depth 3) and the closest node at or below p has cv = 2,
so the token has position=2 and length=3; this way, the token for LAB on D is
(2,3,‘d’).

4 Suffix Arrays for LZ77 Compression

A suffix array (SA) is the lexicographically sorted array of the suffixes of a
string [3, 7]. For a string D of length m (with m suffixes), an SA P is a list of
integers from 1 to m, according to the lexicographic order of the suffixes of D.
For instance, if we consider D = mississippi (with m = 11), we get the suffixes
in Fig. 4 part a); after sorting, we get the suffixes in part b). Thus, the SA for D

is P = {11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3}. Each of these integers is the suffix number,
therefore corresponding to its position in D. Finding a sub-string of D can be
done by searching vector P ; for instance, the set of sub-strings of D that start
with symbol ‘s’, can be found at positions 7, 4, 6, and 3. As a result of this, an
SA can be used to obtain every occurrence of a sub-string within a given string.



Fig. 4. String D = mississippi: a) Set of suffixes b) Sorted suffixes and SA P .

For LZ77/LZSS encoding, we can find the set of sub-strings of D, starting with
a given symbol (the first in the LAB).

SA are an alternative to ST, as an SA implicitly holds the same information
as an ST. Typically, it requires 3 ∼ 5 times less memory and can be used to
solve the sub-string problem almost as efficiently as an ST [3]; moreover, its use
is more appropriate when the alphabet is large. An SA can be built using a
sorting algorithm, such as “quicksort”; it is possible to convert an ST into an
SA in linear time [3]. An SA does not has the limitation of an ST: no suffix of
smaller length prefixes another suffix of greater length.

The lexicographic order of the suffixes implies that suffixes that start with
the same symbol are consecutive on SA P . This means that a binary search on P

can be used to find all these suffixes. This search takes O(n log(m)) time, with n

being the length of the sub-string to find, while m is the length of the dictionary.
To avoid some redundant comparisons on this binary search, the use of longest
common prefix (LCP) of the suffixes, lowers the search time to O(n + log(m))
[3]. For a SA with m-length, the computation of its LCP takes O(m) time.

4.1 Encoding Using Suffix Arrays

Algorithm 2 shows how we can perform LZ77/LZSS encoding with an SA.

Algorithm 2 - SA-Based LZ77 Encoding

Inputs: In, input stream to encode; m and n, length of dictionary and LAB.
Output: Out, output stream with LZ77 description of In.

1. Read dictionary D and look-ahead-buffer LAB from In.
2. While there are symbols of In to encode:

a) Build SA for string D and name it P .
b) To obtain the description (pos,len) for every sub-string LAB[i . . . n], 0 ≤

i < n, proceed as follows:

b1) If no suffix starts with LAB[i], output (0, 0, LAB[i]) to Out, set
i← i + 1 and goto 2b5).



b2) Do a binary search on vector P until we find: the first position left,
in which the first symbol of the corresponding suffix matches LAB[i],
that is, D[P [left]] = LAB[i]; the last position right, in which the
first symbol of the corresponding suffix matches LAB[i], that is,
D[P [right]] = LAB[i].

b3) From the set of suffixes between P [left] and P [right], choose the kth

suffix, left ≤ k ≤ right, with a given criteria (see below) giving a
p-length match.

b4) Do pos ← k, len ← p and i← i+len and output token (pos, len, LAB[i])
into Out.

b5) If i = n goto 2c); else goto 2b).

c) Slide in the full encoded LAB into D;

d) Read next LAB from In; goto 2).

In step 2.b2), it is possible to choose among several suffixes, according to a
greedy/non-greedy parsing criterion. If we seek a fast search, we can choose one
of the immediate suffixes, given by left or right. If we want better compression
ratio, at the expense of a not so fast search, we should choose the suffix with
the longest match with sub-string LAB[i . . . n]. LZSS encoding can be done in a
similar way, by changing the token format according to (1).

Fig. 5 illustrates LZ77 encoding with SA using dictionary D = mississippi.
We present two encoding situations: part a), in which we consider LAB = issia

encoded by (5, 4, a) or (2, 4, a), depending on how we perform the binary search
and the choice of the match; part b), with LAB = psi being encoded by (10, 1, s)
or (9, 1, s) followed by (0, 0, i).

Fig. 5. LZ77/LZSS encoding with SA, with dictionary D = mississippi, showing left

and right indexes. In part a) we encode LAB = issia, while in part b) we have LAB =
psi.



5 Implementation Details

We have considered a memory-efficient ST representation 5, that when compared
to others, has the smallest memory requirement for the ST data structures. This
implementation (written in C++) builds a tree from a string using Ukkonen’s
algorithm [3, 13] and has the following main features: it holds a single version
of the string; the tree is composed of branches and nodes; uses an hash table
to store the branches and an array for the nodes; the Hash is computed as a
function of the number of the node and the first symbol of the string on that
branch, as depicted in Fig. 6. Two main changes in this source code were made:

Fig. 6. Illustration of ST data structures. The branch between nodes 2 and 3, with
string “xay” that starts and ends at positions 4 and 6, respectively. The node only
contains its suffix link ; we have added the number of its parent and the counter cv to
each node as described in Algorithm 1, subsection 3.1.

the Node was equipped with the number of its parent and with the counter cv;
using the number of its parent, the code for the propagation of the cv values from
a node was written. After these changes we wrote Algorithm 1, as described in
subsection 3.1.

For SA computation, we have used the package, written in ’C’ programming
language, available at http://www.cs.dartmouth.edu/~doug/sarray/, which
includes functions to compute SA and LCP.

int sarray(int *a, int m);

int *lcp(const int *a, const char *s, int m);

The SA computation takes O(m log(m)) time, while for LCP we have O(m)
time. Using these functions, we wrote Algorithm 2, described in subsection 4.1.
For both encoders (with ST and SA), we copy the contents of the LAB to the end
of the dictionary, only when the entire contents of the LAB is encoded. Another
important issue is the fact that for ST (but not for the SA), we add a terminator
symbol to end of the dictionary, to assure that we have a valid ST (no suffix of
smaller length prefixes another suffix of greater length). This justifies the small
differences in the compression ratios attained by the ST and SA encoders.

5 http://marknelson.us/1996/08/01/suffix-trees/



6 Experimental Results

This section presents the experimental results of LZSS encoders, with dictionar-
ies and LAB of different lengths. The evaluation was carried out using standard
test files from the well-known Calgary Corpus6 and Canterbury Corpus7. We
have considered a set of 18 files, with a total size of 2680580 bytes: bib (111261
bytes); book1 (768771 bytes); book2 (610856 bytes); news (377109 bytes); pa-
per1 (53161 bytes); paper2 (82199 bytes); paper3 (46526 bytes); paper4 (13286
bytes); paper5 (11954 bytes); paper6 (38105 bytes); progc (39611 bytes); progl
(71646 bytes); progp (49379 bytes); trans (93695 bytes); alice29 (152089 bytes);
asyoulik (125179 bytes); cp (24603 bytes); fields (11150 bytes).

The compression tests were executed on a machine with 2GB RAM and an
Intel processor Core2 Duo CPU T7300 @ 2GHz. We measured the following
parameters: encoding time (in seconds), memory occupied by the encoder data
structures (in bytes) and compression ratio in bits per byte

bpb = 8
Encoded Size

Original Size
, (2)

for the LZSS encoder. The memory indicator refers to the average amount of
memory needed for every ST and SA, built in the encoding process, given by

MST = |Edges|+ |Nodes|+ |dictionary|+ |LAB|,

MSA = |Suffix Array|+ |dictionary|+ |LAB|, (3)

for the ST encoder and SA encoder, respectively (the operator |.| gives the
length in bytes). Each ST edge is made up of 4 integers (see Fig. 6) and each
node has 3 integers (suffix link, cv counter and parent identification, as described
in Section 5); each integer occupies 4 bytes. On the SA encoder tests, we have
considered the choice of k as the mid-point between left and right, as stated in
Algorithm 2 in subsection 4.1.

6.1 Encoding Time, Memory and Compression Ratio

We consider a small dictionary with length 128 and |LAB|=16 or |LAB|=32,
as shown in Table 1 with the results for the 18 chosen files. We see that SA
are slightly faster than ST, but achieve a lower compression ratio. The amount
of memory for the SA encoder is fixed at 660 (=129*4 + 128 +16) and 676
(=129*4 + 128 + 32). The amount of memory for the ST encoder is larger and
variable, because the number of edges and nodes depends on the suffixes of the
string in the dictionary. With small dictionaries, we have a low encoding time
(fast compression) with a reasonable compression ratio. We conclude that the
increase of the LAB gives rise to a lower encoding time, for both ST and SA
encoders. For |LAB|=32, the SA encoder is faster than the ST encoder, but this
last one attains a better compression ratio.

6 http://links.uwaterloo.ca/calgary.corpus.html
7 http://corpus.canterbury.ac.nz/



Table 1. LZSS encoding time (in seconds), memory and compression results for the
set of 18 files, with |dictionary|=128, |LAB|=16 and |dictionary|=128, |LAB|=32. MST

and MSA are as defined in (3), and bpb is as defined in (2).

|dictionary|=128,|LAB|=16 |dictionary|=128,|LAB|=32

ST SA ST SA

File Time MST bpb Time MSA bpb Time MST bpb Time MSA bpb

bib 2.8 4888 5.01 2.9 660 6.27 1.3 4904 5.19 1.5 676 6.23

book1 23.3 4888 4.73 20.4 660 5.76 11.5 4932 4.94 10.0 676 5.80

book2 18.7 5980 4.56 16.2 660 5.50 9.0 5996 4.74 7.9 676 5.53

news 10.6 6372 4.94 10.0 660 5.98 5.1 6388 5.11 4.9 676 6.04

paper1 1.6 4748 4.62 1.4 660 5.56 0.8 4876 4.81 0.7 676 5.62

paper2 2.6 5000 4.60 2.2 660 4.76 1.2 5044 4.78 1.1 676 5.58

paper3 1.4 4916 4.70 1.2 660 5.69 0.7 5072 4.88 0.6 676 5.72

paper4 0.4 4944 4.64 0.4 660 5.60 0.2 5044 4.79 0.2 676 5.60

paper5 0.3 5252 4.60 0.3 660 5.52 0.2 5408 4.79 0.2 676 5.56

paper6 1.1 5336 4.51 1.1 660 5.38 0.6 5352 4.70 0.5 676 5.44

progc 1.1 5924 4.37 1.1 660 5.09 0.5 6220 4.48 0.5 676 5.07

progl 2.2 5336 4.08 2.0 660 4.39 1.1 5296 4.07 1.0 676 4.36

progp 1.4 5364 4.00 1.3 660 4.38 0.7 5380 3.99 0.7 676 4.40

trans 2.7 7212 4.45 2.5 660 5.34 1.3 7228 4.57 1.3 676 5.34

alice29 4.5 5392 4.60 4.1 660 5.45 2.3 5408 4.75 2.0 676 5.48

asyoulik 3.7 5028 4.64 3.3 660 5.57 1.8 5044 4.82 1.6 676 5.60

cp 0.7 5308 4.64 0.7 660 5.86 0.3 5184 4.70 0.3 676 5.69

fields 0.3 6036 3.90 0.3 660 4.30 0.2 6080 3.96 0.2 676 4.24

Average 4.4 5440 4.47 4.0 660 5.35 2.2 5492 4.67 1.9 676 5.40

Total 79.4 97924 71.3 11880 38.8 98856 35.0 12168

We repeat the tests of Table 1, but with larger dictionary and LAB lengths.
First, we consider |dictionary|=512 and |LAB|=128, giving 2692 = 513*4 + 512
+ 128 bytes for the encoder data structures; we also used |dictionary|=1024 and
|LAB|=256. Comparing the results in Table 2 with those in Table 1, we see that
the encoding time decreases when the dictionary and LAB increase their length.
The dictionary and LAB lengths in Table 2 achieve better compression ratio.

Table 3 presents the average values for the set of 18 files, using different
combinations of dictionary and LAB lengths. As the length of the dictionary
increases, the ST-encoder takes more time and uses much more memory than
the SA-encoder. The encoding time of the SA-encoder does not grow as fast as for
the ST-encoder, along with the length of the dictionary. For both encoders, we see
that the worst scenarios are those in which we have a large dictionary and a small
LAB, like in the |dictionary|=1024 and |LAB|=8 test. On the other hand, for
|dictionary|=1024 and |LAB|=256 we get a very reasonable encoding time, being
faster than the ST-encoder. It is important to notice that our ST implementation
is not fully optimized in terms of speed, but it is memory-efficient. There are
other implementations which are more time-efficient, at the expense of memory



Table 2. LZSS encoding time (in seconds), memory and compression results for the
set of 18 files, with |dictionary|=512, |LAB|=128 and |dictionary|=1024, |LAB|=256.

|dictionary|=512,|LAB|=128 |dictionary|=1024,|LAB|=256

ST SA ST SA

File Time MST bpb Time MSA bpb Time MST bpb Time MSA bpb

bib 1.42 22100 4.73 0.55 2692 4.55 1.26 44468 4.82 0.55 5380 4.39

book1 11.19 20364 5.02 4.06 2692 5.03 11.23 42284 5.04 4.97 5380 4.93

book2 8.70 21092 4.67 4.06 2692 5.03 9.09 43600 4.70 3.48 5380 4.47

news 4.56 22660 5.30 1.89 2692 5.32 4.75 43908 5.22 2.09 5380 5.03

paper1 0.73 21204 4.75 0.25 2692 4.69 0.77 45868 4.79 0.30 5380 4.54

paper2 1.22 20504 4.73 0.42 2692 4.67 1.30 42368 4.77 0.48 5380 4.58

paper3 0.66 20336 4.94 0.25 2692 4.90 0.72 42480 5.00 0.27 5380 4.82

paper4 0.19 21176 4.90 0.06 2692 4.84 0.20 44188 5.34 0.08 5380 5.12

paper5 0.16 23080 5.14 0.06 2692 5.03 0.16 47240 5.53 0.08 5380 5.27

paper6 0.52 22716 4.71 0.19 2692 4.62 0.55 44524 4.81 0.22 5380 4.56

progc 0.48 20476 4.70 0.19 2692 4.52 0.52 42088 4.91 0.20 5380 4.54

progl 0.97 22884 4.01 0.34 2692 3.68 0.97 45616 4.05 0.36 5380 3.56

progp 0.63 21232 4.03 0.23 2692 3.73 0.64 44272 4.01 0.25 5380 3.54

trans 1.28 23220 4.75 0.45 2692 4.73 1.31 45476 4.79 0.39 5380 4.53

alice29 2.02 21344 4.72 0.81 2692 4.61 2.05 42788 4.77 0.92 5380 4.51

asyoulik 1.55 22016 4.86 0.66 2692 4.82 1.64 43768 4.93 0.77 5380 4.77

cp 0.30 21092 4.52 0.11 2692 4.29 0.31 43292 4.81 0.13 5380 4.26

fields 0.16 22212 4.36 0.05 2692 3.92 0.16 45336 4.71 0.06 5380 4.07

Average 2.04 21650 4.71 0.76 2692 4.59 2.09 44086 4.83 0.87 5380 4.53

Total 36.72 389708 13.70 48456 37.63 793564 15.59 96840

usage; for instance, Larsson’s ST-encoder8, uses 3 integers and a symbol for each
node, placed in an hash table; for |dictionary|=256 and |dictionary|=1024, this
implementation occupies for the encoder data structures, 7440 and 29172 bytes,
respectively .

6.2 Encoding Time and Memory Analysis

Fig. 7 shows how encoding time varies with the length of the dictionary and LAB,
for the set of 18 files. We have considered the 16 length combinations given
by |dictionary| ∈ {256, 512, 1024, 2048} and |LAB| ∈ {8, 16, 32, 128}. The
ST encoder denotes higher increase in the encoding time for larger dictionaries
and smaller LAB; for the SA encoder, this time increase is smaller. In order to
obtain a reasonable encoding time, the length of the LAB should not be too
small, as compared to the length of the dictionary. Fig. 8 displays the amount
of memory as a function of the length of the dictionary and the LAB. The
amount of memory does not change significantly with the length of the LAB. It
increases with the length of the dictionary; this increase is clearly higher for the
ST encoder. The compression ratio as a function of the length of the dictionary

8 http://www.larsson.dogma.net/research.html



Table 3. LZSS average encoding time, average memory and compression results for dif-
ferent lengths of dictionary and LAB, over the set of 18 files, for each pair |dictionary|,
|LAB|. The best results, regarding encoding time and compression ratio are underlined.

ST SA

|dictionary| |LAB| Time MST bpb Time MSA bpb

128 8 3.6 5424 4.60 8.1 652 5.57

128 16 1.7 5440 4.53 3.9 660 5.40

256 8 15.3 11015 4.50 8.6 1292 4.88

256 16 7.1 11011 4.32 4.0 1300 4.67

512 8 34.4 21776 4.55 9.4 2572 4.51

512 16 15.8 21785 4.27 4.5 2580 4.26

512 128 2.1 21650 4.71 0.8 2692 4.59

1024 8 70.3 44136 4.64 11.1 5132 4.32

1024 16 32.8 44134 4.27 5.5 5140 4.03

1024 32 16.6 44132 4.21 3.0 5156 3.99

1024 256 2.1 44086 4.83 0.9 5380 4.53

2048 32 32.7 88856 4.28 4.5 10276 3.93

2048 1024 1.1 90235 4.28 1.7 11268 5.00

4096 1024 2.2 181984 5.58 4.8 21508 5.09

and the LAB is displayed in Fig. 9. The difference between compression ratio is
almost meaningless, when compared to the differences in time and memory.

Fig. 7. Average encoding time (in seconds) as a function of the length of the dictionary
and LAB, for ST and SA encoder, on the tests of Table 3.

7 Conclusions and Future Work

In this work, we have explored the use of suffix trees (ST) and suffix arrays (SA)
for the Lempel-Ziv 77 family of data compression algorithms, namely LZ77 and
LZSS. The use of ST and SA for the encoder was evaluated in different scenarios,
using standard test files of different types and sizes, commonly used in embedded



Fig. 8. Average memory (in kB) as a function of the length of the dictionary and LAB,
for ST and SA encoder, on the tests of Table 3.

Fig. 9. Compression ratio (in bpb) as a function of the length of the dictionary and
LAB, for ST and SA encoder, on the tests of Table 3.

systems. Naturally, we focused on the encoder side, in order to see how we could
perform an efficient search without spending too much memory. A comparison
between a memory efficient implementation of ST and our SA encoders was
carried out, using the following metrics: encoding time, memory requirement,
and compression ratio. Our main conclusions are:

1. ST-based encoders require more memory than the SA counterparts;
2. the memory requirement of ST- and SA-based encoders is linear with the

dictionary size; for the SA-based encoders, it does not depend on the contents
of the file to be encoded;

3. for small dictionaries, there is no significant difference in terms of encoding
time and compression ratio, between ST and SA;

4. for larger dictionaries, ST-based encoders are slower that SA-based ones;
however, in this case, the compression ratio with ST is slightly better than
the one with SA.

These results support the claim that the use of SA is a very competitive
choice when compared to ST, for Lempel-Ziv compression. We know exactly the
memory requirement of the SA, which depends on the dictionary length and does



not depend on the text to encode. In application scenarios where the length of
the dictionary is medium or large and the available memory is scarce and speed
is not so important, it is preferable to use SA instead of ST. This way, SA
are suited for this purpose, regarding the trade-off between time, memory, and
compression ratio, being preferable for mobile devices and embedded systems.

As ongoing and future work, we are developing two new faster SA-based
algorithms. The first algorithm updates the indexes of the unique SA, built at
the beginning of the encoding process, after each full look-ahead-buffer encoding.
The idea is that after each look-ahead-buffer encoding, the dictionary is closely
related to the previous one; this way, regarding the dictionary data structures
we need only to update an array of integers. The second algorithm uses longest
common prefix to get the length field of the token; this version will be more costly
in terms of memory, but it should run faster than all the other SA-encoders.
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