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Abstract—Much of the progress made in image processing in
the past decades can be attributed to better modeling of image
content, and a wise deployment of these models in relevant
applications. This path of models spans from the simple `2-norm
smoothness, through robust, thus edge preserving, measures of
smoothness (e.g. total variation), and till the very recent models
that employ sparse and redundant representations.

In this paper, we review the role of this recent model in image
processing, its rationale, and models related to it. As it turns
out, the field of image processing is one of the main beneficiaries
from the recent progress made in the theory and practice of
sparse and redundant representations. We discuss ways to employ
these tools for various image processing tasks, and present several
applications in which state-of-the-art results are obtained.

I. INTRODUCTION

AClose inspection of the progress made in the field of
image processing in the past several decades reveals that

much of it is a direct consequence of the better image modeling
employed. Armed with a stronger and more reliable model,
one can better handle applications ranging from sampling,
denoising, restoration, and reconstruction in inverse problems,
all the way to compression, detection, separation, and beyond.
Indeed, the evolution of models for visual data is at the heart
of the image processing literature.

What is a model and why do we need one? We provide an
initial answer to these questions through a simple example
of noise removal from an image. Given a noisy image, a
denoising algorithm is essentially required to separate the
noise form the (unknown) clean image. Such a separation
clearly requires a close familiarity with the characteristics of
both the noise and the original image. Knowing that the noise
is additive, white, and Gaussian (AWG) is a good start, but
far from being sufficient, since the underlying image may also
behave like such noise, thereby making the separation of the
two impossible. The additional information on the clean image
content, that will allow separating it from the AWG noise,
constitutes what we refer to in this paper as an image model.
A classic example of such a model is the intuitive assumption
that near-by pixels in “well-behaved” images exhibit strong
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Lisboa, Portugal; email: mario.figueiredo@lx.it.pt.

Yi Ma is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, USA; email: yima@uiuc.edu.

correlation; i.e., natural images tend to be spatially (piece-
wise) smooth.

There is a long path of models and their usage in image
processing. This path spans from the simple `2-norm of local
differences (expressing smoothness), through robust and thus
edge preserving measures of smoothness, such as the total
variation [11], [48]. On a different track, it was observed
that sparsity of the wavelet coefficients could be used as a
reasonable image model [41], [43], [49], and this concept
has been used frequently in the past decade. More recently,
improved versions of this idea bring us to sparse and redun-
dant representation modeling. Recent work on various image
processing applications indicate that models based on sparse
and redundant representations lead to state-of-the-art results,
and encompass a persuasive potential to this field.

In this paper we explore the role in image processing
of models based on sparse and redundant representations
and their rationale. We also relate them to other models
that are used successfully in image processing, such as the
local-PCA (principal component analysis), and example-based
techniques. We discuss ways to employ sparse and redundant
representations in image processing tasks in general, and then
concentrate on several key applications where this model is
shown to lead to state-of-the-art results. More specifically, we
discuss image denoising, image inpainting, image deblurring,
and super-resolution reconstruction. We conclude this paper
with a wish-list for this field, describing the research frontiers
of this important and challenging arena of work.

II. HISTORICAL PERSPECTIVE ON IMAGE MODELING

We start our discussion by motivating the quest for a model
for images, then gradually build a case for a model that is
based on sparse and redundant representations.

Consider a family of signals – a set of vectors X =
{xj , j = 0, 1, 2...}, such that xj ∈ IRn. To make our dis-
cussion more concrete, we shall assume hereafter that each
such signal is a

√
n ×√n pixels image, representing natural

and typical image content, with the corresponding vectors
being obtained by lexicographically stacking the image pixels.
While such images are very diverse vectors in IRn, we have
no reason to assume that they occupy the entire space. Said
more accurately, assuming that the pixels in x ∈ X have
values in the range [0, 1), these images do not populate or
sample the hyper-cube [0, 1)n ⊂ IRn uniformly. For example,
as mentioned above, spatially smooth images occur much more
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often than highly non-smooth and disorganized images. This
line of reasoning naturally leads to the Bayesian framework of
imposing a probability density function (PDF) on the images –
a ‘prior’ distribution P (x) [44]. Priors are extensively used in
image processing, serving in inverse problems, compression,
anomaly detection, and more, namely because they provide a
systematic way of measuring the probability of an image.

Returning to the image denoising example, consider a given
image y, known to be a noisy version of a clean image x,
contaminated by an additive perturbation v, i.e. y = x + v.
Assuming that v has finite energy ‖v‖2 ≤ ε, the unknown
image x must be in the sphere ‖x−y‖2 ≤ ε. The optimization
problem

x̂ = arg max
x

P (x) subject to ‖x− y‖2 ≤ ε (1)

leads to the most probable image x̂ in this sphere, which is
an effective estimate of x. This way the prior is exploited for
solving the denoising problem.

Much effort has been allocated in the image processing
community to forming adequate priors. One very common way
to construct P (x) is to guess its structure based on intuitive
expectations on the data content. For example, the Gibbs
distribution P (x) ∝ exp{−λ‖Lx‖22} uses a Laplacian matrix
(defined as the linear space-invariant operation that applies the
Laplacian filter to the image x) to give an evaluation of the
probability of the image x. In such a prior, deviation from
spatial smoothness, as measured by the Laplacian operator,
is used for judging the probability of the signal. This prior
is well-known and extensively used in image processing, and
is known to be related to both Tikhonov regularization and
Wiener filtering [2]. It is also worth mentioning that this is a
particular instance of the more general class of image models
known as Markov random fields [31].

The above smoothness prior is known to cause image over-
smoothing, when used in various image enhancement and
restoration tasks. The culprit is the squared `2-norm in the
exponent of that prior, which strongly penalizes (i.e., makes
highly unlikely) any large local differences such as edges,
which are key features for visual perception [5]. One remedy
for this problem was found to be the replacement of the
squared `2-norm by a more robust measure, such as the
`1-norm; by penalizing less any large values, the resulting
probability density on Lx is allowed to have heavy tails. Thus,
a prior of the form P (x) ∝ exp{−λ‖Lx‖1} was found to be
more adequate, thus became popular in recent years. Similar in
spirit is the total-variation prior that also promotes smoothness,
but differently, by replacing the Laplacian with gradient norms,
thereby using first derivatives rather than second ones. Inter-
estingly, the adoption of the `1-norm measure is known to lead
to an enforcement of sparsity of the signal/image derivatives.

Another property that can be used for constructing an image
prior is sparsity of the wavelet transform, as was experimen-
tally observed in natural images [43], [49]. The orthogonal
wavelet transform of an image x is given by Tx, where T is
a specially designed orthogonal matrix (T T T = TT T = I)
containing in its rows spatial derivatives of varying scale,
thereby providing what is known as “multi-scale” analysis
of the signal [41]. Therefore, the prior in this case becomes

P (x) ∝ exp{−λ‖Tx‖p
p} with p ≤ 1 to promote sparsity,

and known to adequately model natural images. Here, the
resemblance to the total variation and the Laplacian priors
is evident, as in all these cases derivatives of some sort and a
robust measure are combined in forming the prior P (x).

One may adopt a common point of view towards these
priors, regarding them as mere attempts to describe a random
generator machine M that supposedly generates the signals of
interest. This brings us to sparse and redundant representation
modeling, which is a way of synthesizing signals according to
a prior defined on the coefficients of the representation.

III. SPARSE AND REDUNDANT REPRESENTATION
MODELING

A. The Model
Consider the linear system Dα = x, where D ∈ IRn×m

and α ∈ IRm, and interpret it as a way of constructing an
image x. Each of the m columns of D is a possible image in
IRn – we refer to these columns as atomic images and to the
matrix D as a dictionary of atoms. One can interpret D as
the periodic table of the fundamental elements in the chemistry
that describes our images.

The multiplication of D by a sparse vector α with k0 ¿ m
non-zeros produces a linear combination of k0 atoms with
varying weights, generating an image x. The sparsity of α
can be measured by the `00 “norm” ‖α‖00, which is the limit
of `p

p as p → 0. In fact, limp→0 ‖α‖p
p = |{i, αi 6= 0}|,

the number of non-zeros components of α. We shall refer
to the vector α that generates x as its representation, since
it describes which atoms and what “portions” thereof were
used for its construction. This process of linearly combining
atoms to form an image (think of it as a molecule in the signal
chemistry) may be referred to as atom composition.

Consider the set of all the possible placements of k0 ¿ m
non-zeros, which has cardinality

(
m
k0

)
= m!/(k0!(m − k0)!).

Assume that samples from this set are drawn with uniform
probability. Assume further that, given their positions, each
non-zero entry in α is drawn independently from the zero-
mean, τ -variance, Gaussian distribution N (0, τ). This gives
us a complete definition of the PDF of α, as well as a
probabilistic generative model for images x – this constitutes
the random signal generator M(D, k0, τ). Note that the image
x is the outcome of a mixture of Gaussians, each of dimension
k0, and with equal probabilities.

An important addition to the definition of the model M
could be postulating a random perturbation (noise) vector
e ∈ IRn with bounded power ‖e‖2 ≤ ε, such that x = Dα+e.
Such an additive perturbation may be useful because the
model M(D, k0, τ) imposes a too strong restriction on the
images, and using it in practical applications will necessarily
lead to a mismatch between actual observed images and their
imposed model. With the introduction of this perturbation,
which enables such a mismatch, we refer hereafter to the
model proposed as M(D, k0, τ, ε).

B. The Basics on Using This Model
How do we practice image processing with sparse and

redundant representation modeling? Suppose we have an
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image x, assumed to have been generated by the model
M(D, k0, τ, ε), and that the parameters of the model are
known. There are numerous image processing tasks that could
be of interest to us. As shown next, common to these is the
need to solve a problem we refer to hereafter as P0(D, x, δ),
which has the form

P0(D,x, δ) : min
α

‖α‖00 subject to ‖x−Dα‖2 ≤ δ. (2)

Solving this problem corresponds to finding the sparsest vector
α that explains x as a linear combination of columns from
D, with weight vector α, with an error no larger than δ. This
process is known as atomic decomposition [12].

How would one go about solving P0(D, x, δ)? A direct
solution is prohibitive, as it requires a combinatorial search of
exponential size for considering all possible supports. Various
practical alternative techniques for approximating the solution
of this problem have been proposed in recent years. Some
rely on a relaxation that replaces ‖α‖00 by ‖α‖1, yielding the
problem P1(D, x, δ):

P1(D,x, δ) : min
α

‖α‖1 subject to ‖x−Dα‖2 ≤ δ. (3)

Another class of methods adopts greedy schemes in which the
unknown support is obtained sequentially; detailed descrip-
tions and references may be found in [6]. The important thing
to mention in this respect is the fact that a thorough theoretical
study leads to guarantees for such approximation methods to
perform well (see [6] and the many references therein), thus
making the solution of P0(D,x, δ) accessible.

Returning to image processing tasks, here are few key core
examples where sparse and redundant representation modeling
is used for handling commonly encountered problems:
• Compression: Nominally, x requires a description by

n numbers. However, if we can solve P0(D,x, δ), for
some δ ≥ ε, then the resulting solution, denoted as αδ

0,
affords an approximation x̂ = Dαδ

0 to x using at most k0

scalars, with an approximation error at most δ. Notice that
if x was generated by M(D, k0, τ, ε), it is guaranteed
that there exists a x0 = Dα0, where ‖α0‖00 = k0,
and such that ‖x − x0‖2 ≤ ε ≤ δ. By increasing δ
we obtain a deeper compression with fewer non-zeros,
and a larger approximation error. This way (and ignoring
quantization issues), we obtain a rate-distortion curve for
a compression mechanism.

• Denoising and Linear Inverse Problems: Consider a
noisy indirect measurement of x, i.e., y = Hx + v,
where v is an additive noise known to obey ‖v‖2 ≤ δ.
The operator H could be the identity (in which case the
problem reduces to denoising), it could represent a blur,
a tomographic projection, the masking of some pixels
(which leads to inpainting), down-sampling (which leads
to super-resolution), a random set of projections (which
leads to compressed sensing; see [10] and references
therein), or any other kind of linear degradation. By
solving P0(HD, y, ε + δ), the resulting solution αδ+ε

0

will have at most k0 nonzeros. A theoretical analysis
establishes that if k0 is small enough, then αε+δ

0 is at most
O((ε+δ)k0/n) away from the original representation α,

implying a very effective reconstruction [9]. Thus, we can
expect to identify directly the sparse components of the
underlying signal x and obtain an approximation/estimate
x̂ = Dαδ+ε

0 .
• Morphological Component Analysis (MCA): Suppose

that the observed signal is a superposition of two different
signals, i.e., x = x1+x2, where x1 is sparsely generated
using model M(D1, k1, τ, ε1) and x2 is sparsely gener-
ated using model M(D2, k2, τ, ε2). Can we separate the
two superimposed signals? For example, can we separate
the texture and cartoon contents of an image, given
that both are sparsely generated by two quite different
dictionaries? Observe that x can be modeled has having
been generated by M([D1, D2], k1 + k2, τ, ε1 + ε2),
where [D1, D2] denotes the concatenation of the two
dictionaries. Thus it makes sense to solve the problem
P0([D1, D2], x, ε1 + ε2); the solution α = (α1, α2)
allows generating a plausible answer to the separation
problem: x̂1 = D1α1 and x̂2 = D2α2 [26].

A wide range of other applications can also be envisioned.
All these applications call for the solution of P0(D, x, δ),
or variants of it and, as mentioned above, these can be
approximated reliably by practical algorithms.

C. Geometric Interpretation and Relation to Other Models

In order to gain a geometric insight into the proposed model
and some alternatives to it, we return to the beginning of this
section, considering a large corpus of examples of images (or
image patches) X = {xj , j = 0, 1, 2, ...} ⊂ IRn. We concen-
trate on one arbitrary image x0 ∈ X and its δ-neighborhood,
and aim to study the behavior of this neighborhood in the n-th
dimensional space IRn.

For a small enough value of δ, moving δ away from x0

along directions e = x − x0, where x ∈ X , represent small
permissible perturbation directions that lead to feasible signals.
The question we pose is: do those fill the entire δ−ball in
IRn space? We denote this set of permissible directions as
Ωδ

x0
. Gathering all vectors e ∈ Ωδ

x0
into an n×|Ωδ

x0
| matrix

Ex0 , we aim to study the behavior of its singular values.
We will be interested in families of structured images, for
which the effective rank of such matrices is kx0 ¿ n, for any
x0 ∈ X . This is equivalent to the statement that the kx0 +1-th
singular-value and beyond in these matrices tend to be near-
zero and are therefore negligible, and the effective directions
in the obtained subspace can be accumulated as an orthogonal
set of kx0 columns in a n× kx0 matrix Qx0

.
Signals satisfying the above local low-dimensionality as-

sumption essentially exhibit a local behavior that is approx-
imately a linear subspace of dimension kx0 , shifted around
x0. While this subspace and its dimension may vary from
one point to another, all of them are characterized as being
far smaller than the ambient n dimensions [34]. Experimental
studies show that most informative signals we work with, such
as images, audio, and more, follow such a structure, and this
can be exploited in processing them [54], [37], [38].

Based on the above description, it is tempting to build
a model of a signal source by holding many instances of
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example signals X , and using these directly to characterize
these local subspaces; this is known as a local PCA modeling
[54]. In this approach, the columns of Qx0

are the principal
directions of the signal for the location x0, and those are
permitted to vary freely as a function of x0. In general, a
complete model of this sort requires either a storage of X and
extraction of Qx0

per need, or a storage of all the possible
unitary bases, Qx, gathered off-line for every x ∈ X . Both
options are prohibitive in most cases.

If we can further assume that a small number of such
matrices, {Qp, p = 1, ..., P} (say, a few hundreds or
thousands), covers all possible cases, this model can be made
more efficient. This calls for a (fuzzy-) clustering of the signals
x ∈ X to subgroups that correspond each to a different matrix
Qp. As the range of each matrix Qp is a low-dimensional
subspace, we essentially use an arrangement of many low-
dimensional subspaces to approximate the distribution of all
signals X . Such a model has been proposed in recent years as
a generalization to principal component analysis [54], and has
shown to be very effective in grasping the behavior of image
content, by working on small patches [34], [37], [38].

The sparse and redundant representation model is one step
further in an attempt to make such local model more concise.
Assuming for simplicity that all these local subspaces are of
the same dimensionality, k0, using sparse representations of
cardinality k0 over a dictionary D with m columns, we have
at our disposal

(
m
k0

)
subspaces, just by allowing k0-sparse

representations with all the possible supports. This way, our
dictionary holds very efficiently all the key directions required
to represent the signal anywhere in IRn, while enabling a
very large number of possibilities. Clearly, though, this comes
at the price of further restricting the structure of the model
by assuming that the atoms in the dictionary are principal
directions shared by many sub-spaces.

For completeness of this presentation, we mention that
rather than describe the model of the signal by constructing
parameters that characterize its local behavior, one could
use the local neighbors directly. This is known as a direct
example-based modeling, and its use for texture synthesis
[20], inpainting, denoising [7], and other applications show
promising results. Such a direct technique is very appealing,
but it works well only if the sampling of the signal source
is dense enough. This approach could be considered as an
extreme sparse representation modeling of the signal x, such
that the δ-local neighborhood serves as its local (and varying)
dictionary. A related approach models image patches as being
probably close to a low dimensional manifold [47].

IV. IMAGE PROCESSING APPLICATIONS

We now turn to discuss specific applications where sparse
and redundant representation modeling is shown to be highly
effective. We should note that in migrating from the above
core ideas to applications, there is much room for imagination
and creativity, as a direct deployment of the outlined ideas
will not necessarily operate well. Thus, as we show next, each
of the applications described below take a different route in
using the model proposed, choosing the dictionary to work

with, adopting the numerical scheme to approximate sparse
representation, and more.

A. Image Denoising

We obtain an observed image y, a noisy version of an
unknown underlying clean image x, i.e., y = x + v, and
our goal is to recover x. A popular noise model is to consider
v ∼ N (0, σ2I). In line with the discussion in Section III-B,
denoising could be performed by solving P0(D,y, δ) for an
appropriate choice of the dictionary D and the scalar δ. In
the following we describe several such options, as practiced
in the past decade. Note that we can replace P0(D,y, δ) and
P1(D,y, δ) with the equivalent (Lagrangean) form

Gp(D, y, λ) : min
α

λ‖α‖p
p +

1
2
‖y −Dα‖22, (4)

that replaces the constraint by a penalty. We shall use these
two modes interchangeably, and often times we shall prefer to
work with p > 0 for obtaining better denoising performance.

1) Orthogonal Wavelet Denoising: Wavelet-based models
had a strong impact on the field of image processing, espe-
cially in coding and denoising. Their success is due to the
tendency of images to become sparse in the wavelet transform
domain [41], [43], [49]. This implies that image approxi-
mations based on a small subset of wavelets are typically
very accurate, which is a key to wavelet-based denoising
and compression. Interestingly, it has been found that the
human visual system exploits this sparseness property by using
wavelet-like representations in the visual cortex [35], [46].

As already mentioned in Section II, the discrete wavelet
transform (DWT) of an image x is represented by the mul-
tiplication α = Tx, where T is an orthogonal matrix, i.e.,
x = T T α. Therefore, the dictionary to be used within
Gp(D, y, λ) is D = T T . Due to the unitarity of T , we have
that ‖Dα−y‖22 = ‖T T α−y‖22 = ‖α−Ty‖22, and thus our
denoising process translates into

α̂ = arg min
α

λ‖α‖p
p +

1
2
‖α− β‖22, (5)

where β = Ty is the DWT of the noisy image; that is, we have
problem Gp(I,β, λ). Of course, the final image estimate is
obtained as x̂ = T T α̂. As both terms, ‖α‖p

p and ‖α−β‖22, are
separable, the optimization decouples into a set of independent
scalar problems of the form x̂i = arg minx 0.5(x−y)2+λ|x|p,
which have particularly simple closed form solutions in the
two notable cases p = 0 and p = 1, called hard- and
soft-thresholding, respectively. The corresponding functions
hard(y, a) and soft(y, a) are shown in Figure 1; soft thresh-
olding should use a = λ, whereas hard thresholding should
use

√
2λ.

The solution of (5) is thus obtained by applying this
soft/hard thresholding function in a component-wise fashion
to the observed coefficients Ty and this way obtain α̂. Then,
an inverse DWT leads to the denoised image, x̂ = T T α̂.
This signal/image denoising method just described is the well-
known transform–shrink–inverse-transform approach, which
sparked the explosion of interest in wavelet-based signal/image
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Fig. 1. The soft and hard shrinkage curves.

processing that took place in the early 90’s [17], [18], [42],
[43], [53].

It should be noted that another important contribution to this
explosion of interest in wavelet was the development of fast
wavelet transforms [40]; instead of the quadratic cost O(n2)
of a direct implementation of matrix-vector products by the
orthogonal matrix T and its inverse T T , it is possible to
compute these products with linear cost O(n), by exploiting
the multi-scale structure of the wavelet basis. Notice that this
is even faster than the O(n log n) cost of the fast Fourier
transform (FFT).

2) Denoising With Wavelet Frames: It is well known that
the dyadic image partitioning underlying the orthogonal DWT
causes blocky artifacts in the processed images. In denoising
problems, translation-invariant approaches have been shown to
significantly reduce these artifacts and produce a substantial
improvement in the denoising outcome [13], [27], [36].

Let x be represented with a redundant dictionary D that has
more columns than rows, as advocated in Section III, i.e. x =
Dα. Assume that D is associated with some transform matrix
T = D+. This allows computing α from x as α = Tx, via
the well-known perfect reconstruction property DT = I [52].
When D is a tight frame, we simply have T = DT , thus
DDT = I; this is the case, for example, for any orthogonal
basis. In the case of an overcomplete tight frame, DDT = I
holds, but, unlike in an orthogonal basis, DT D 6= I.

A standard example of a tight wavelet frame, known as
a shift-invariant representation, contains all possible shifts of
each element of an orthogonal wavelet basis. The size of
D in such a case is n × (n log n), in the case of a full
wavelet decomposition (all the available scales). In recent
years, other wavelet-type frames have been introduced, such
as the curvelets, to address the problem of finding optimally
sparse representations for images with discontinuities along
piecewise smooth edges [8].

Returning to our denoising goal, we adopt again the formu-
lation of Gp(D,y, λ) in Equation (4) as a way to derive the
denoising algorithm. Thus, we aim to solve

α̂ = arg min
α

λ‖α‖p
p +

1
2
‖Dα− y‖22, (6)

with D as described above.
Unlike (5), this problem does not have a simple closed form

solutions, not even in the two notable cases p = 0 and p = 1

mentioned above, because the presence of D destroys the
separability which was present in (5). The denoising problem
posed in (6) can be solved (at least approximately) by greedy
techniques, if the dimensions involved are relatively low (n ≤
1000) [6]. Considering a high dimensional case (e.g., n = 106,
representing an image of size 1000 × 1000), such greedy
methods are no longer relevant. In recent years, iterative
shrinkage/thresholding (IST) algorithms, tailored for objective
functions of the form (6), were independently proposed by
several authors [45], [28], [16], [29], [3], [22], [24], [50],
[51]. Recently, the work reported in [14] brought important
contributions (including strong convergence results) to the
study of a class of forward-backward splitting algorithms,
which includes IST as a particular member. The IST algorithm
for (6) has the form

α̂t+1 = arg min
α

λ‖α‖p
p +

1
2
‖α− βt‖22, (7)

where βt = α̂t − ν DT (Dα̂t − y). Each step of (7) is a
pure denoising problem of the form (5), which has a simple
closed form solution. This way, the overall denoising process
requires a sequence of simple steps of multiplication by D
and its adjoint, and a scalar shrinkage step. Assuming that
the multiplication by the dictionary (and its adjoint) has a
fast O(n log n) algorithm, the overall process is very fast and
effective. We should also mention that fast IST-like algorithms
were recently proposed by several authors [4], [21], [55].

3) Denoising With Learned Dictionaries: To complete our
discussion on image denoising, we now turn to a more recent
development that employs a learned dictionary D. Rather than
working on the image as a whole, we now adopt the sparse
and redundant representation model on small image patches of
size

√
n×√n (a typical choice is in the range 5 ≤ √

n ≤ 20)
[23]. We assume that each and every patch in the given image
(with overlaps) is expected to have a sparse representation with
respect to D. Thus, the dictionary is a small matrix of size
n×m, where for example, n ≈ 100 and m ≈ 200.

Embarking from the formulation of P0(D,y, δ) in Equation
(2), we define the following optimality criterion for denoising
the complete image based on the patch model,

min
x,{αi}i∈Ω

1
2
‖x− y‖22 +

∑

i∈Ω

‖αi‖00 (8)

subject to ‖Rix−Dαi‖2 ≤ δ, ∀i ∈ Ω.

In this formulation, the domain of the image is defined as Ω,
and we index locations in it by i ∈ Ω. The operator Ri extracts
a patch of size

√
n×√n from location i. For each patch we

construct a representation αi that should be both sparse and
represent Rix to within a pre-specified error.

Our goal is to find both the set of representations, and
a clean image estimate x̂. A block-coordinate relaxation
technique can be used, where we fix x = y and find the
representations {αi}i∈Ω first. These are found by solving a set
of problems of the form P0(D, Riy, δ). Since these problems
are of low-dimension, a greedy approach, such as the OMP,
can be used effectively. Once found, x̂ can be computed by
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Fig. 2. Denoising results using the local-patch processing algorithm [23].
Top left: the original image; Top right: The noisy image with σ = 25
(PSNR=20.19dB); Bottom left: Denoised using a redundant DCT dictionary
(PSNR=31.00dB); and Bottom right: Denoised using an adaptive dictionary
(PSNR=32.25dB).

Fig. 3. The atoms of the (redundant) DCT and the adaptive dictionaries. In
both cases the atoms are of size 8 × 8 pixels, and there are m = 256 of
them.

fixing these representations and solving

min
x

1
2
‖x− y‖22 + λ

∑

i∈Ω

‖Rix−Dαi‖22. (9)

Notice that the constraints have been turned into a penalty for
this expression to be easy to handle. Since this is a purely
quadratic expression, its minimization is easily obtained as a
linear set of equations. As it so happens, this set of equations
leads to a simple averaging of the cleaned patches, with a
small portion the noisy image [23].

As for the identity of D, one could use a pre-specified
dictionary, such as a redundant DCT, or gather many patch
examples and learn a dictionary that sparsifies them, with
the hope that this property generalizes well to the image
to be cleaned [1]. Alternatively, somewhat better denoising
can be obtained if the learning procedure is employed on
patches extracted from the noisy image y itself, adapting to the
specific image content to be handled [23]. Figure 2 presents
the denoising results for the DCT and the adaptive dictionaries,
and 3 shows the dictionaries themeselves.

B. Image Deblurring

Image deblurring is one of the earliest and most classical
linear inverse problems in imaging, dating back to the 1960’s
[2]. In image deblurring a noisy blurred version of x is ob-
served, i.e., y = Hx+v, where H represents a blur operation,
which in practice may result from physical mechanisms such
as relative motion between the camera and the subject (motion
blur), lack of focus (defocusing blur), or a number of other
mechanisms which are well modeled by a convolution.

There are (too) many image deblurring algorithms, and
some of these exploit sparse representation modeling in var-
ious ways. We present one such approach here, to illustrate
the power of this model, and the simplicity with which one
can get state-of-the-art results for this application by a simple
adoption of the paradigm presented.

As in the denoising case discussed above, image deblurring
can be approached using the form Gp(HD, y, λ) as defined
in Equation (4), where we have adopted the idea presented in
Section III-B of adding the blur operation into the effective
dictionary. Thus the problem that needs to be solved is

α̂ = arg min
α

λ‖α‖p
p +

1
2
‖HDα− y‖22. (10)

Assuming that we operate on the whole image using a tight
frame of some sort (e.g., redundant Haar as in [27]), as
described in Section IV-A2, we can apply the IST algorithm to
this problem, leading to update equations of the same form as
(7), but with HD replacing D. Figure 4 exemplifies wavelet-
based deblurring, where H represents a 9 × 9 uniform blur
and and D is a shift-invariant Haar frame.

(a)

(b) (c)

Fig. 4. (a) Original image, (b) blurred image (uniform 9 × 9), and (c)
deblurred image, using the IST algorithm.

C. Image Inpainting

Image inpainting refers to the desire to fill-in missing values
in an image, based on their surrounding neighbors. Such a
problem is often encountered in a faulty transmission of image
content over unreliable channels, when missing blocks are to
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Fig. 5. Two input images with missing pixels (in black) are given on the
left (top and bottom). The corresponding MCA inpainting results from [26]
are shown on the right.

be recovered. Another instance of the inpainting problem is
obtained in cases of scratches in images (e.g. old film) that
are to be fixed, or if one desires to manipulate an image
content to remove portions from it. Ever since its introduction
in the image processing literature, this problem attracted a
considerable attention and many solutions have been proposed.
One popular family of inpainting algorithms is based on partial
differential equations that propagate the information from the
borders of the holes in the image.

More recently, sparse representation modeling found its
way into this field, with promising performance. At its core,
the inpainting problem can be formulated as the problem
Gp(MD, y, λ), where m is a diagonal mask matrix of size
n × n, with 1-s for existing pixels, and 0-es elsewhere. We
further assume that in the missing pixels the image y is set
to zero. Having posed the problem this way, all the above
discussion on denosing and deblurring becomes relevant, and
in fact leads to an effective solution of the problem.

There are several algorithms proposed for the inpainting
problem along the above lines, some of which adopt the
global approach of handling the image as a whole [26], and
others that operate on patches [32], [33], [39]. Due to their
close resemblance to deblurring algorithms, we shall not dwell
further on this topic, and simply show typical examples. The
results shown in Figure 5 are taken from [26]. This inpainting
algorithm follow the global approach, and combines MCA (for
separation of cartoon and texture content) with inpainting. The
MCA dictionary used is composed of curvelets and local-DCT,
and as can be seen, the quality of the filling-in is near-perfect.

D. Super Resolution

With high-definition TV and electronic displays becoming
ever more popular, a very pressing task is how to convert
all the old images and videos to a higher resolution, such
that their sharpness and naturalness match those of true high-
resolution images. Image super-resolution is arguably one of
the most classical inverse problems in image processing and

is, by nature, intrinsically under-determined. The problem can
be simply stated as that of recovering a high-resolution image
x ∈ IRn from its low-resolution version y ∈ IRk (with q < n).
We model the relation between these two by

y = SHx = Lx, (11)

where H is a linear filter that models certain low-pass filtering
(blurring, e.g., with a Gaussian kernel), S is a down-sampling
operator, and L = SH . The dimension of y is significantly
smaller than that of x, thus there are infinitely many possible
vectors x that satisfy the above equation.

Obviously, to obtain a unique and “good” high-resolution
image, proper regularization is needed by imposing certain
priors on the solution. As discussed in Section III-C, one
plausible model for natural images is based on local PCA. The
model suggests that a small image patch is likely to have a very
sparse representation with respect to a dictionary of densely
sampled patches from natural images. Empirical evidence has
suggested that a large set (of the order of a hundred thousand)
of patches randomly sampled from natural images is in fact
an excellent candidate for such a dictionary [57].

With respect to such a dictionary of high-resolution patches,
denoted as Dh, we may assume that any high-resolution image
patch has a sparse representation,

x = Dh α, (12)

for some α with ‖α‖0 ≤ k. Thus, the super-resolution
problem becomes that of recovering α from low-dimensional
measurements

y = Lx = L Dh α. (13)

Notice that Dl = L Dh can be seen as a dictionary of
corresponding low-resolution image patches. We may thus
attempt to recover α by solving Pp(Dl, y, δ) or Gp(Dl, y, λ).
This seemingly naive choice of dictionary has turned out to be
extremely effective for generating high-quality high-resolution
images. Such a sparsity-based approach for super resolution
has been thoroughly explored in [57], [56]. Figure 6 shows a
typical result in comparison with other state-of-the-art super-
resolution methods in the literature. It is striking to see that
such a simple scheme achieves qualitatively and quantitatively
better results than other much more sophisticated learning or
estimation schemes.

V. SUMMARY AND CONCLUSIONS

In this paper, we have briefly reviewed sparse and redun-
dant representations as a new model that harnesses the local
low-dimensional structure of natural images. Overwhelming
theoretical and empirical evidence suggest that this model
provides a unified mathematical and computational framework
for image processing. Within this framework, one can develop
more efficient and effective solutions to many conventional
image processing tasks, including but not limited to image
compression, denoising, deblurring, inpainting, super resolu-
tion, segmentation, and more. Despite its success so far, many
difficult and open problems remain regarding why these algo-
rithms work so well and under what conditions. We hope this
paper could inspire researchers to investigate these problems
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Fig. 6. The girl image magnified by a factor of 4. Top left: low-resolution
input, To right: `2-based back projection, Bottom left: learning-based method
in [30], and Bottom right: the sparse representation method.

further and gain better insights about image modeling and
processing.
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