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Abstract. We introduce a fully unsupervised contour estimation strat-
egy based on parametrically deformable models. The problem is for-
mulated in a statistical parameter estimation framework with both the
contour and observation model (likelihood) parameters are considered
unknown. Although other choices could fit in our formulation, we fo-
cus on Fourier and spline contour descriptors. To estimate the optimal
parametrization order (e.g. number of Fourier coefficients) we adopt the
minimum description length (MDL) principle. The result is a paramet-
rically deformable contour with adaptive smoothness and which also au-
tonomously estimates the observation model parameters.

1 Introduction and Previous Work

Image segmentation and contour estimation are among the most important,
interesting, and challenging problems in image analysis and low-level computer
vision. When no special assumptions are made concerning the morphological
structure of the objects/regions to be estimated in the observed image, we are
in the presence of an image segmentation problem, in the common meaning of
the term. When the problem is more confined to that of finding some individual
image region, it is commonly referred to as a contour estimation problem; a
typical example is organ boundary estimation in medical images.

1.1 Snakes and Related Approaches

Having its roots in the seminal work of Kass, Witkin, and Terzopoulos [18§],
snake-type approaches constitute one of the most successful class of approaches
to contour estimation. In its original version [18], snakes work by minimizing
an energy function composed of an (internal) elastic-type term which penalizes
the contour deformations, and an (external) attraction potential linking it with
image features of interest. The result is a desired compromise between contour
smoothness, on one hand, and adequacy to the observed data, on the other hand.
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The major drawbacks of conventional snake-type techniques are: lack of adap-
tiveness (all parameters have to be set a priori); inability to reparametrize itself
during the deformation process; use of information strictly along the boundary,
making it highly “myopic” and sensitive to initialization.

In recent years, several significant improvements, modifications, and refor-
mulations have been proposed to overcome the referred limitations of the tra-
ditional snake-type models; see [4], [5], [6], [7], [14], [24], [28], and further ref-
erences therein). Active contours with the ability to grow (or shrink) in order
to accommodate larger (or smaller) objects, or even change their topology, have
been proposed [22]. A particularly elegant and successful topology-independent
formulation is the one recently proposed in [3] and [21]. This, however, is not
very well suited to low-quality images (e.g., noisy medical images) since (like the
original snake model) it relies on image gradients.

1.2 Deformable Templates/Models

Deformable templates and models constitute another important approach to con-
tour and object estimation. Here, global models generally described by a small
number of parameters are used (in contrast with snakes, which typically use ex-
plicit contour descriptions); these models may directly describe (contour/object)
shapes or a deformation suffered by basic template. The model parameters are
then estimated in the presence of the observed data. Fundamental work on de-
formable templates is that of Grenander and his collaborators; see [2], [12], and
[13] and references therein. For other important references on this type of ap-
proach see (this is by no means an exhaustive list): [16], [17], [30], [33], [34],
and other references therein. As above, one of the main difficulties when using
deformable templates is their lack of adaptiveness, with parameters having to
be set a priori.

1.3 The Bayesian Viewpoint

From a Bayesian estimation view-point, active contours are interpretable as maz-
imum a posteriori (MAP) estimators; the internal energy and the external poten-
tial terms are associated with the a priori probability function and the likelihood
function, respectively; for details, see [11], [31]. Deformable templates may not
include a deformation energy since the parametrization may itself guarantee
regularity of the represented shape [6]; nevertheless, when approached from a
Bayesian viewpoint, it is common to include a prior to bias the estimate towards
some preferred /predicted shape [16], [17], [30], [33], [34].

The Bayesian estimation perspective has the advantage of giving meaning to
all the involved entities; e.g., the form of the energy term that links the con-
tour with the image contents, i.e. the likelihood function (in Bayesian terms)
can be derived from knowledge about the observation model rather than simply
from common sense arguments [10], [11]. The main difficulty in this approach
is still the choice of the parameters involved in the definition of the a priori
probability function and of the observation model (e.g., noise variances). In [11],



we have proposed an adaptive Bayesian approach for a ventricular contour esti-
mation problem. A technique which adaptively estimates the observation model
parameters was proposed in [10]. Recent work in [35] also presents an adaptive
snake-related scheme and contributes to the unification of energy-minimizing
and Bayesian approaches.

1.4 Solving the Minimization Problem

Regardless of their theoretical /conceptual setting, both classical snake-type ap-
proaches and deformable templates/models lead to difficult minimization prob-
lems. A diverse set of approaches has been proposed to solve them: determinis-
tic iterative energy minimization schemes (see many references in [6]); dynamic
programming [1], [10]; multiresolution algorithms [16]; and stochastic methods
including simulated annealing [31], the Metropolis algorithm [17], and simple
(Langevin) diffusion or jump-diffusion processes [12], [2], [13].

1.5 Proposed Approach

In this paper, we propose a fully adaptive contour estimation strategy based
on parametrically deformable models. The problem is formulated in a statistical
estimation framework where both the contour parameters and the observation
model parameters are considered unknown. Although other choices fit in our for-
mulation, we focus on Fourier and spline parametric representations. An issue
arising in parametrically deformable contours is the choice of the parametrization
order (i.e., the number of parameters); to deal with it, we adopt the minimum
description length (MDL) principle [25], [26]. The final result is a parametrically
deformable contour with adaptive smoothness and which autonomously esti-
mates the observation model parameters (e.g., noise variance, in additive noise
models). Another aspect stressed in this paper is that care should be taken in
deriving the observation model; in particular, for low quality images (such as
medical images) gradient-based external energies may be completely useless.

2 Proposed Technique

2.1 Parametrically Deformable Contours

General Formulation. Deformable contours are (regular) shapes defined by
a small number of parameters. Classical examples include Fourier and spline
descriptors. Since the search space is already confined by the fact that the shapes
are described by a small number of parameters, the elastic energy which penalizes
deformations (as in snake-type models) is not needed. For example, a curve
described by a small number of Fourier coefficients is automatically smooth.
Let 6 k) denote the set of parameters (parameter vector) defining the shape
of a continuous closed contour. This parameter vector belongs to 6, the set
of allowable configurations. The subscript -(k) is used to indicate a K-order



parametrization, e.g., a Fourier description with K terms or a spline with K
control points. The closed contour (on the image plane) represented by ) is a
continuous periodic vector function v(t) = [z(t) y(¢)], of period 2w, i.e., of unit
fundamental angular frequency?; its N-points discrete version is a (N x 2) vector
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where v; = v(i2r/(N —1)),fori = 0,1,..., N—1. Given ), the explicit contour
representation v is obtained by some deterministic operator V| i defined on Oy,
ie., we write v =V k)0 k-

Fourier Descriptors. The complex Fourier series description of a continuous
closed curve v(t) = [2(t) y(t)]7 (of unit fundamental angular frequency?®) is
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where the complex Fourier coefficients are

I .
=5 [ lele) v e )
T Jo
(see [15], [30]). The discrete complex Fourier series representation is
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By truncating the series in Eq. (3) (or in Eq. (1)) to K terms (with K <
N), a smoothed version of the curve is obtained. The above defined parameter
vector 6 contains, in this case, 2K complex Fourier coefficients (i.e., 4K real
parameters)
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Thus, the order of the parametrization defines the degree of smoothness of the
contours. Operator V) is, in this case, simply a matrix product

v =Vk) Ok) = Fix)0x),

3 If ¢ is understood as the arc length of the contour, it can be normalized such that
the total length equals 27.



where Fg is the (N x K) matrix representing the K-term truncated Fourier
series, i.e., [Fix)],, = eIk2m/N for i =0,1,..,N—land k=0,1,..., K — 1. Tt is
worth noticing that, if there are no further constraints, i.e. O is the Euclidean
space IR*® | then the set of all contours (described by the elements of Ok)) is
itself a linear space; it is the range R(V(K)) of the linear operator V).

Spline Descriptors. We consider cubic B-splines [15], widely used to represent
contours with a small number of parameters. Spline representations in snake-type
models have been explored by several authors (see [6] and references therein);
the key idea has been that since splines minimize a deformation-like energy, the
search can be confined to a set of such functions under the action of the image
potential. B-splines provide a parametric curve representation of the form

K-1

v(t) = [2() y(t)] = Y [of af] Bi(t) (6)

k=0

where [af, al] = a; € IR? are the control points and the By(t) are the (cubic
B-spline) basis functions, also known as blending functions. The key feature of
this representation, which is uniquely defined by the control points, is: the basis
functions are such that the cubic B-spline minimizes, among all functions passing
by the control points, the second-order deformation energy [6]. Discretization is
obtained by taking N equispaced samples of v(¢); here, we assume that N > K.
Accordingly, and interpreting the set of K control points as the parameter vector

T
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the operator V) is, in this case, also a matrix product
v =W ) = By by (8)

where the elements of (N x K') matrix Bk are given by [Bx],, = Bi(2mi/(N—
1)). Note that, also in this case, in the absence of constraints on the control
points, that is if O ) = IR2X | the set of all splines with K control points is itself
a linear space.

2.2 The Observation Model

Although this is an often overlooked aspect, great care should be takin in defining
the observation model. For specific applications (e.g., finding organ boundaries in
medical images), all the available knowledge about the image acquisition process
should be included [10], [11]. Not doing so may result in poor results, specially
on very low quality images (see [10]).

The observed image I is an indirect, imperfect, and random function of the
parameter vector 6k, from which it has to be estimated. This observation model



has a set of specific parameters ¢, i.e., we write I = S (B(K),¢). The complete
observation model is split into two blocks as follows:

v
O k) L Vi) Oy =v  (the ideal contour) 9)
i del
y AL Bodely (the observed image) (10)
where the first step depends on the type of parametrization chosen, and the
second step captures the image generation/acquisition model. We now make the
following assumptions concerning the observed image model, i.e. Eq. (10):

Conditional independence: given the contour v = V), the image pixels
are independently distributed.

Region homogeneity: The conditional probability function of each pixel de-
pends only on whether it belongs to the inside or outside region of the con-
tour; i.e., all pixels inside (resp. outside) have a common distribution char-
acterized by a parameter vector ¢, (resp. by @out), With ¢ = [din, doutl-

From these assumptions, the likelihood function is written as

p(1|0 k), ¢) = H P (Liij) | Pin) H P (L. j)|Pout) (11)

(6,7)€Z(V) (,)€O(V)

where I(; j) denotes pixel (i,7) of image I, while Z(v) and O(v) are the in-
side and outside regions of this contour, respectively; likewise, p(I; j)|¢iy) and
P(I(i,5)|Pout) are the pixel-wise conditional probabilities, of the inner and outer
regions, respectively. This is a region-based model [10], [11], [14], [28] which,
unlike gradient-based techniques, uses all the data in the image, and not only a
narrow stripe along the contour. Moreover, it makes sense in situations where
gradients do not characterize a region; e.g., when the two regions have the same
mean but different variances.

2.3 The Estimation Criterion

The goal of an unsupervised scheme is clearly to estimate 6 k) and ¢ from the
observed image I based on the observation model (the likelihood function), i.e.,
to obtain the maximum likelihood (ML) estimate

(810 8) = 2 g, 60 &) (12)

(K)»

However, since K is unknown, this maximization suffers from a model order
problem which can be stated as follows (assuming, for simplicity, known ¢):

— The parameter spaces {O k), K =1,2,...} are nested in the following sense:

for each 6 k) € Ok, there is some 0’(K+1) € O(k41) such that

P18y #) = P18 141, P)- (13)



In the Fourier descriptor case, O x) = [g{ , &1, ... 8k _1] € O(x) and 0(’K+1) =
gl el . ...gk ,,[0,0]] € Ok +1) describe the same contour. For the spline
parametrization it is also clear that O ) = [of ,af ,...,ak ;] € O and

0(K+1) [af,al,..,ak 1,[0,0]] € Or1) correspond to same curve.

— Consequently, K can not be estimated directly by maximizing the likelihood
function; in fact, p(I|0 (K)> @), where O(K) is the ML estimate of 8 given
K, is a non- decreasmg function of K [23].

To overcome this difficulty, we adopt Rissanen’s minimum description length
(MDL) criterion [25], [26], [27]. MDL is an information-theoretical principle
which, simply put, states that the best model is the one allowing the shortest
joint description of the observed data and the model itself. Formally,

() 8) . = v min {—~logp(6xc), @) + LBy, @)}, (14)

with HT\K) standing for the joint estimates of K and g, i.e., 0/(\1() = 5(1?). The
first term of the objective function in the right-hand side of Eq. (14) is simply
the Shannon codelength* obtained when coding I based on the probabilistic
model p(I|0 k), ) [8]. The second term is the codelength of the parameters
which can be split as L(0k),¢) = L(fk)) + L(¢). Being independent of K,
L(¢) can be omitted from the objective function. As shown in [25], [27], the
optimal codelength for each real-valued parameter is %log M, where M is the
number of data points to be encoded (in our case the number of image pixels).
Accordingly,

2K log M, for the Fourier parametrization,
( K) ¢) =

Klog M, for the spline parametrization, (15)

because a K-order Fourier parametrization involves 2K complex parameters, i.e.
4K real ones, while a spline with K control point involves 2K real parameters.
Notice that, if K is known, the MDL and ML estimates coincide; this is an
important feature of the MDL principle.

2.4 A Bayesian Perspective

The MDL principle was not proposed by Rissanen with a Bayesian interpretation
in mind [27]. However, Eq. (14) has a clear Bayesian interpretation as a mazimum
a posteriori (MAP) estimator,

(001 ®) 4 p = Ar8mx {p (8- $11)} = argmax {p (6. #) p (8- 8)}
with the prior

(), d) { exp {—2K log M}, for the Fourier parametrization, (16)

exp{—Klog M}, for the spline parametrization.

* In bits or nats for binary or natural logarithms, respectively [8].



Since K is the number of terms in the Fourier description of the contour, or
the number of control points in the spline model, these are basically implicit
smoothing priors. The smaller K is, the simpler (smoother) the contours will
be. These priors have the advantage of avoiding the shrinkage associated with
smoothing priors explicitly expressed on the contour coordinates [30]. Finally,
we stress that the criterion in Eq. (14) does not require the previous specification
of parameters, thus constituting a fully unsupervised estimator.

3 Solving the Optimization Problem

3.1 Introduction

We are now left with the difficult task of solving

(H(K), d)) MDL = arg min E(B(K) 5 ¢) (17)
where the objective (energy) function is given by

E(0x),¢) =— > _logp(Lijldm) — Y logp (Lijldour) + KB (18)

(6,5)€Z(V) (i,1)€0(V)

with v = V(k) k), while 8 = 2log M or 8 = log M, for the Fourier or spline
descriptors, respectively.

The optimization problem will be dealt with in a hierarchical way: in a lower
(inner) level, the energy is minimized with respect to f k) and ¢, keeping K
constant; in an upper (outer) level, the resulting function is minimized with
respect to K,

m}}n{ min E(G(K),qb)}. (19)

(K)>»

3.2 Minimizing the Energy for Fixed K

Introduction. If K is known, the problem (17)-(18) is closely related to classi-
cal deformable (known order) template matching, which can still only be achieved
by iterative schemes. Several two-alternating-steps schemes have been proposed
for this kind of objective functions; see [6] for references and an elucidative re-
view. Our particular problem, however, has two important specificities: (i) the
observation parameters ¢ are unknown; (ii) the region nature of the data term
does not allow the energy to be written as a sum (or integral) of elementary
energies, one for each template point, as is required in [6].



An equivalent constrained problem. To rewrite the problem in terms of the
explicit contour v, we have to constrain the solution to the space of those that
can be obtained as v = Vi) k). Let this space (which is the range of V(K))
be denoted {2(x) = Vi) O k)- Then, a constrained problem equivalent to the
unconstrained original one is
~ . minimize: E'(v, ¢
(V’ ¢) MDL solution of (subject to: v é QUZ)> (20)

where E'(v,¢) is given by (18) without the K term. From Vv € k), the
parameter estimate is obtained as 5( K) = V(;(l)i? Notice that the inverse V(;(l) is
well defined on J g (the range of Vk)) by the fact that (in both the Fourier
and spline cases) V k) is linear and its null space only contains the null vector
[19]. This is basically a form of the invariance property of ML estimation [23].

The Algorithm. To solve the constrained minimization problem (20), we use
a form of the gradient projection method [20], [29]. In this technique, which is
simply a modification of classical gradient descent, the (negative) gradient is
projected onto the constraint space thus assuring that the updated solutions
always belong to this space [20]. Concerning ¢, there are no constraints, and
we assume that the energy can be exactly minimized with respect to it (see
comments below). Formally, the proposed algorithm works as follows:

Fixed-K Algorithm

Step 0: Initialization: assume some initial estimate V9 € k). Let n =0.
Step 1 Update the estimate of ¢

o = arg mqian E'N", ). (21)

Step 2 Compute a small step in the direction opposed to the gradient of the
energy with respect to the contour (at its present location)

ov =—¢ vsgn(VE' (v, dAan) ‘v:VH) (22)

where vsgn(-) denotes a coordinate-wise sign function.
Step 3 Compute the projection of §v onto 2k, denoted Px)dv, and update
the contour estimate as

vl =gn 4 'P(K)(SV. (23)

Step 4 If some stopping criterion is met, stop, otherwise go back to Step 1.



Relation to other schemes. The projection operation guarantees that ¥v*+! €
(k) since V" € (k) and (k) is a linear space. Moreover, since P(g)v" = v",
and the projection operator is linear, the update (23) can be rewritten as

vt = Pry (V' +0v); (24)

this reveals the similarity of this algorithm with the two-steps schemes described
in [6], if we leave aside the parameter estimation performed in Step 1. Our Step
2 corresponds to what is termed deformation, in [6], while our projection step
(Step 3) corresponds to what is there called model fitting. Since any linear space
is a convex set, this algorithm can also be seen as having some relation with the
projection onto convex sets (POCS) technique [32]. Finally, some resemblance
with the ezpectation-mazimization (EM) scheme of Dempster et al [9] may be
noticed; our Step 1 plays the role of M-step while Step 2 and Step 3 represent
the E-step.

3.3 Some comments.

Concerning Step 1. Implementing Step 1 consists in obtaining the ML es-
timate of ¢ = [di, GDoutl], considering a fixed contour ¥", from the likelihood
function (11). This depends on the particular image model assumed which, in
the experiments presented ahead, will be:

Gaussian. All pixels are independent and Gaussian distributed with means
Min and poyt and variances Ui2n and ‘7(2)11’5’ for the inside and outside regions,
respectively. In this case, ¢y = [win 0], out = [Hout Toyuils and Step
1 consists simply in computing the (inside and outside) sample mean and
variance (which are the ML estimates given independent samples).

Rayleigh. In this case, which adequately models echographic images [10], the

pixels are Rayleigh distributed. For the inside pixels, we have

2
p(Lijlod) = Lig exp _@ (25)
) 1%in oL 202
and a similar expression (with ‘7(2)11’5) for the outside ones. The parameter
vector is now ¢ = [07 o2 ] and the respective ML estimates are (see [10])

simply one half of the sample means of squares.

Concerning Step 2. Here, we have to compute the gradient of the energy
E'(v, ¢) with respect to each coordinate of the explicit contour representation
v. Since the coordinates represent pixel locations in a digital image, they are
intrinsically discrete (in fact integer-valued) and the gradient is approximated
by discrete differences relatively to each contour coordinate. It is possible to
show that this gradient is always normal to the contour; this is exactly true
for a continuous representation and a good approximation for a fine enough
discretization. Parameter € should be kept small to avoid instabilities near the
minima of the objective function.



Concerning Step 3. This step requires finding the point in (2(x) which is
closest to dv,

Pk (F" +0v) = Vik) (argréain [ Vi) O k) — (V" 4 6v) ||2> (26)

(K)

where || - || denotes Euclidean norm; in other words, we have to look for the k)
which best fits v + v in a mean squared error sense. The two parameterizations
considered have to be studied separately:

Fourier. In this case, the elements of 6 k) represent coordinates in an orthog-
onal basis; then, all that has to be done is to compute the Fourier series
(according to (3)) truncated to the first K terms.

Splines In this case, what has to be solved is the least squares fit expressed
in (26), with V k) = Bk, which involves the pseudo-inverse of matrix Bk,

1
Pirey (W + 6v) = By (Bl By ) By (¥ +0v). 27)

Of course, for each K, this operator can be computed before running the
algorithm.

3.4 Solving with respect to K

When K is unknown, which is the general case, the algorithm described above
is inserted into an outer loop which sweeps a range of values { Kmax, ..., 2, 1}.

Unknown-K Algorithm

Step A: Let K = Kmax and take some initial contour estimate V9 € Q(K).

Step B: Run the Fixed-K Algorithm with the current value of K, and
taking v0 € 2k as initial contour estimate. Store the final values of 6k =
Vi)V and E (8, $).

Step C: If K > 1,let K = K —1,let v° € Q(x) = Vk11)0k+1), and go back
to Step B (i.e. take the result of the previous Fixed-K Algorithm as the
initial estimate for the next one).

Step D: Find the minimum of all stored values of E (6 k), ¢) and take cor-
responding estimates as the final ones.

4 Experimental Results

5 Concluding Remarks

We have presented a new approach to unsupervised deformable contour esti-
mation. The problem is formulated as a statistical parameter estimation prob-
lem; since the number of parameters is unknown (the order of the contour



parametrization), the MDL principle was invoked. The observation model pa-
rameters are also considered unknown and estimated simultaneously with the
contour. After showing that, for a given order, the resulting optimization prob-
lem can be formulated as a constrained one, we apply a form of the gradient
projection algorithm. This, in turn, is inserted into an outer loop which takes
care of the order estimation part.

Examples were presented, using both synthetic and medical ultrasound im-
ages, showing the ability of the proposed method to estimate contours in an
unsupervised manner, i.e. adapting to unknown smoothness and unknown ob-
servation parameters. In the case of the synthetic images, the good adequacy
between the estimated and true parameter values testifies for the good perfor-
mance of our approach.
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