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ABSTRACT

Convex optimization problems are common in hyperspectral unmix-
ing. Examples are the constrained least squares (CLS) problem used
to compute the fractional abundances in a linear mixture of known
spectra, the constrained basis pursuit (CBP) to find sparse (i.e.,
with a small number of terms) linear mixtures of spectra, selected
from large libraries, and the constrained basis pursuit denoising
(CBPDN), which is a generalization of BP to admit modeling er-
rors. In this paper, we introduce two new algorithms to efficiently
solve these optimization problems, based on the alternating direction
method of multipliers, a method from the augmented Lagrangian
family. The algorithms are termed SUnSAL (sparse unmixing by
variable splitting and augmented Lagrangian) and C-SUnSAL (con-
strained SUnSAL). C-SUnSAL solves the CBP and CBPDN prob-
lems, while SUnSAL solves CLS as well as a more general version
thereof, called constrained sparse regression (CSR). C-SUnSAL
and SUnSAL are shown to outperform off-the-shelf methods in
terms of speed and accuracy.

1. INTRODUCTION

Hyperspectral unmixing (HU) is a source separation problem with
applications in remote sensing, analytical chemistry, and other areas
[10, 11, 12]. Given a set of observed mixed hyperspectral vectors,
HU aims at estimating the number of reference spectra (the end-
members), their spectral signatures, and their fractional abundances,
usually under the assumption that the mixing is linear [10, 12].

Unlike in a canonical source separation problem, the sources in
HU (i.e., the fractional abundances of the spectra/materials present
in the data) exhibit statistical dependency [15]. This characteristic,
together with the high dimensionality of the data, places HU beyond
the reach of most standard source separation algorithms, thus foster-
ing active research in the field.

Most HU methods can be classified as statistical or geometri-
cal. In the (statistical) Bayesian framework, all inference relies on
the posterior probability density of the unknowns, given the observa-
tions. According to Bayes’ law, the posterior probability density re-
sults from two factors: the observation model (the likelihood), which
formalizes the assumed data generation model, possibly including
random perturbations such as additive noise; the prior, which may
impose natural constraints on the endmembers (e.g., nonnegativity)
and on the fractional abundances (e.g., belonging to the probability
simplex, since they are relative abundances), as well as model spec-
tral variability [5, 14, 16].

Geometrical approaches exploit the fact that, under the linear
mixing model, the observed hyperspectral vectors belong to a sim-
plex set whose vertices correspond to the endmembers. Therefore,
finding the endmembers amounts to identifying the vertices of that
simplex [18, 16, 3, 13, 20, 1].

Sparse regression is another direction recently explored for HU
[9], which has connections with both the statistical and the geomet-
rical frameworks. In this approach, the problem is formulated as
that of fitting the observed (mixed) hyperspectral vectors with sparse
(i.e., containing a small number of terms) linear mixtures of spec-
tral signatures from a large dictionary available a priori. Estimating
the endmembers is thus not necessary in this type of methods. No-
tice that the sparse regression problems in this context are not stan-
dard, as the unknown coefficients (the fractional abundances) sum to
one (the so-called abundance sum constraint – ASC) and are non-
negative (abundance non-negativity constraint – ANC). These prob-
lems are thus referred to as constrained sparse regression (CSR).

Several variants of the CSR problem can be used for HU; some
examples follow. In the classical constrained least squares (CLS),
the fractional abundances in a linear mixture of known spectra are
estimated by minimizing the total squared error, under the ANC and
the ASC. Although no sparseness is explicitly encouraged in CLS,
under some conditions (namely positivity of the spectra) it can be
shown that the solutions are indeed sparse [2]. Constrained basis
pursuit (CBP) is a variant of the well-known basis pursuit (BP) cri-
terion [4] under the ANC and the ASC; as in BP, CBP uses the ℓ1
norm to explicitly encourage sparseness of the fractional abundance
vectors. Finally, constrained basis pursuit denoising (CBPDN) is a
generalization of CBP that admits modeling errors (e.g., observation
noise).

1.1. Contribution

In this paper, we introduce a class of alternating direction algorithms
to solve several CSR problems (namely CLS, CBP, and CBPDN).
The proposed algorithms are based on the alternating direction
method of multipliers (ADMM) [8, 7, 6], which decomposes a diffi-
cult problem into a sequence of simpler ones. Since ADMM can be
derived as a variable splitting procedure followed by the adoption of
an augmented Lagrangian method to solve the resulting constrained
problem, we term our algorithms as SUnSAL (spectral unmixing by
splitting and augmented Lagrangian) and C-SUnSAL (constrained
SUnSAL).

The paper is organized as follows. Section 2 introduces notation
and formulates the optimization problems. Section 3 reviews the
ADMM and the associated convergence theorem. Section 4 intro-
duces the SUnSAL and C-SUnSAL algorithms. Section 5 presents
experimental results, and Section 6 ends the paper by presenting a
few concluding remarks.

2. PROBLEM FORMULATION: CSR, CLS, CBP, CBPDN

Let A ∈ Rk×n denote a matrix containing the n spectral signatures
of the endmembers, x ∈ Rn denote the (unknown) fractional abun-
dance vector, and y ∈ Rk be an (observed) mixed spectral vector.



In this paper, we assume that A is known; this is the case the CSR
approach [9], where it is a library with a large number of spectral sig-
natures, thus usually n > k. Matrix A can also be the output of an
endmember extraction algorithm, in which case usually n≪ k. The
key advantage of the CSR approach is that it avoids the estimation
of endmembers, quite often a very hard problem.

The general CSR problem is defined as

(PCSR): min
x

L(x)︷ ︸︸ ︷
(1/2)∥Ax− y∥22 + λ∥x∥1 (1)

subject to: x ≥ 0, 1T x = 1,

where ∥x∥2 and ∥x∥1 denote the ℓ2 and ℓ1 norms of x, respectively,
λ ≥ 0 is a parameter controlling the relative weight between the ℓ2
and ℓ1 terms, 1 denotes a column vector of 1’s, and the inequality
x ≥ 0 is to be understood in the componentwise sense. The con-
straints x ≥ 0 and 1T x = 1 correspond to the ANC and ASC, re-
spectively. The CLS problem corresponds to PCSR with λ = 0. The
CBP and CBPDN problems are also equivalent to particular cases of
PCSR, as stated next.

The CBP optimization problem is

(PCBP): min
x
∥x∥1 (2)

subject to: Ax = y, x ≥ 0, 1T x = 1,

Notice that PCBP corresponds to PCSR with λ→∞.
The CBPDN optimization problem is

(PCBPDN): min
x
∥x∥1 (3)

subject to: ∥Ax− y∥2 ≤ δ, x ≥ 0, 1T x = 1.

Problem PCSR is equivalent to PCBPDN in the sense that for any
choice of δ for which PCBPDN is feasible, there is a choice of λ for
which the solutions of the two problems coincide [19]. Finally, no-
tice that PCBP corresponds to PCBPDN with δ = 0.

3. THE ADMM

Consider an unconstrained problem of the form

min
x∈Rn

f1(x) + f2(Gx), (4)

where f1 : Rn → R̄, f2 : Rp → R̄, and G ∈ Rp×n. The ADMM
[6, 7, 8], the key tool in this paper, is as shown in Fig. 1. The follow-
ing is a simplified version of a theorem of Eckstein and Bertsekas
stating convergence of ADMM.

Theorem 1 ([6]) Let G have full column rank and f1, f2 be closed,
proper, and convex. Consider arbitrary µ > 0 and u0,d0 ∈ Rp.
Consider three sequences {xk ∈ Rn, k = 0, 1, ...}, {uk ∈
Rp, k = 0, 1, ...}, and {dk ∈ Rp, k = 0, 1, ...} that satisfy

xk+1 = arg min
x
f1(x) +

µ

2
∥Gx−uk−dk∥22 (5)

uk+1 = arg min
u
f2(u) +

µ

2
∥Gxk+1−u−dk∥22 (6)

dk+1 = dk − (Gxk+1 − uk+1). (7)

Then, if (4) has a solution, the sequence {xk} converges to it; other-
wise, at least one of the sequences {uk} or {dk} diverges.

Algorithm ADMM
1. Set k = 0, choose µ > 0, u0, and d0.
2. repeat
3. xk+1 ∈ arg minx f1(x) + µ

2
∥Gx− uk − dk∥22

4. uk+1 ∈ arg minu f2(u) + µ
2
∥Gxk+1 − u− dk∥22

5. dk+1 ← dk − (Gxk+1 − uk+1)
6. k ← k + 1
7. until stopping criterion is satisfied.

Fig. 1. The alternating direction method of multipliers (ADMM).

4. APPLICATION OF ADMM

In this section, we specialize the ADMM to each of the optimization
problems stated in Section 2.

4.1. ADMM for CSR and CLS: the SUnSAL Algorithm

We start by writing the optimization PCSR in the equivalent form

min
x

(1/2)∥Ax− y∥22 + λ∥x∥1 + ι{1}(1
T x) + ιRn

+
(x), (8)

where ιS is the indicator function of the set S (i.e., ιS(x) = 0 if
x ∈ S and ιS(x) =∞ if x /∈ S). We now apply the ADMM using
the following translation table:

f1(x) ≡ 1

2
∥Ax− y∥22 + ι{1}(1

T x) (9)

f2(x) ≡ λ∥x∥1 + ιRn
+
(x) (10)

G ≡ I. (11)

With the current setting, step 3 (Fig. 1) of the ADMM requires
solving a quadratic problem with linear equality constraint, the solu-
tion of which is

xk+1 ← B−1w −C(1T B−1w − 1) (12)

where

B ≡ AT A + µI (13)

C ≡ B−11(1T B−11)−1 (14)

w ≡ AT y + µ(uk + dk). (15)

Step 4 of the ADMM (Fig. 1) is simply

uk+1 ← arg min
u

(1/2)∥u− νk∥22 + (λ/µ)∥u∥1 + ιRn
+
(u) (16)

where νk ≡ xk+1 − dk. Without the term ιRn
+

, the solution of (16)
would be the well-known soft threshold [4]:

uk+1 ← soft(νk, λ/µ). (17)

A straightforward reasoning leads to the conclusion that the effect of
the ANC term ιRn

+
is to project onto the first orthant, thus

uk+1 ← max{0, soft(νk, λ/µ)}, (18)

where the maximum is to be understood in the componentwise sense.
Fig. 2 shows the SUnSAL algorithm, which is obtained by re-

placing lines 3 and 4 of ADMM by (12) and (18), respectively.
The objective function (8) is proper, convex, lower semi-

continuous, and coercive, thus it has a non-empty set of minimizers



Algorithm SUnSAL
1. Set k = 0, choose µ > 0, u0, and d0.
2. repeat
3. w← AT y + µ(uk + dk)
4. xk+1 ← B−1w −C(1T B−1w − 1)
5. νk ← xk+1 − dk

6. uk+1 ← max{0, soft(νk, λ/µ)}
7. dk+1 ← dk − (xk+1 − uk+1)
8. k ← k + 1
9. until stopping criterion is satisfied.

Fig. 2. Spectral unmixing by variable slitting and augmented La-
grangian (SUnSAL).

(see [19], for definitions of these convex analysis concepts). Func-
tions f1 and f2 in (9) and (10) are closed and G ≡ I is obviously
of full column rank, thus Theorem 1 can be invoked to ensure
convergence of SUnSAL.

Concerning the computational complexity, we refer that, in hy-
perspectral applications, the rank of matrix B is no larger that the
number of bands, often of the order of a few hundred, thus B−1 can
be easily precomputed. The complexity of the algorithm per itera-
tion is thus O(n2), corresponding to the matrix-vector products.

To solve the CLS problem, we simply run SUnSAL with λ = 0.
Moreover, the ANC (non-negativity constrain) can be turned off by
using (17) instead of (18) and the ASC (sum to one constraint) can
be deactivated by setting C = 0 in (12).

4.2. ADMM for CBP and CBPDN: the C-SUnSAL Algorithm

Given that the CBP problem corresponds to CBPDN with δ = 0, we
address only the latter. Problem PCBPDN is equivalent to

min
x
∥x∥1 + ιB(y,δ)(Ax) + ι{1}(1

T x) + ιR+(x), (19)

where B(y, δ) = {z : ∥z− y∥2 ≤ δ} is a radius-δ closed ball
around y. To apply the ADMM we use the following definitions:

f1(x) = ι{1}(1
T x) (20)

f2(u) = ιB(y,δ)(u1) + λ∥u2∥1 + ιRn
+
(u2) (21)

G = [AT I]T . (22)

where u = [u1
T uT

2 ]T . With the above definitions, the solution of
line 3 of ADMM (Fig. 1), a quadratic problem with linear equality
constraints, is

xk+1 ← B−1w −C(1T B−1w − 1), (23)

where

B ≡ AT A + I (24)

C ≡ B−11(1T B−11)−1 (25)

w ≡ AT (u1,k + d1,k) + (u2,k + d2,k). (26)

Because the variables u1 and u2 are decoupled, line 4 of
ADMM (Fig. 1) consists in solving two separate problems,

u1,k+1 ∈ arg min
u

(1/2)∥u− ν1,k∥22 + ιB(y,δ)(u) (27)

u2,k+1 ∈ arg min
u

(1/2)∥u− ν2,k∥22 + (λ/µ)∥u∥1 + ιRn
+
(u)

(28)

Algorithm C-SUnSAL
1. Set k ← 0, choose µ > 0, u1,0, d1,0, u2,0, and d2,0.
2. repeat
3. w← AT (u1,k + d1,k) + (u2,k + d2,k)

4. xk+1 ← B−1w −C(1T B−1w − 1)
5. ν1,k ← Axk+1 − d1,k

6. u1,k+1 ← ψB(y, δ)(ν1,k)
7. ν2,k ← xk+1 − d2,k

8. u2,k+1 ← max{0, soft(ν2,k, λ/µ)}
9. d1,k+1 ← d1,k − (Axk+1 − u1,k+1)
10. d2,k+1 ← d2,k − (xk+1 − u2,k+1)
11. k ← k + 1
12. until stopping criterion is satisfied.

Fig. 3. Constrained spectal unmixing by variable slitting and aug-
mented Lagrangian (C-SUnSAL).

where

ν1,k = Axk+1 − d1,k (29)
ν2,k = xk+1 − d2,k. (30)

The solution of (27) is the projection onto the ball B(y, δ), given by

u1,k+1← ψB(y, δ)(ν1k) ≡

{
ν1k, ∥ν1,k − y∥2 ≤ δ
y +

ν1,k−y

∥ν1,k−y∥2
δ, ∥ν1,k − y∥2 > δ.

(31)
Similarly to (18), the solution of (28) is given by

u2,k+1 ← max{0, soft(ν2,k, λ/µ)}. (32)

Fig. 3 shows the C-SUnSAL algorithm for CBPDN, which re-
sults from replacing line 3 of ADMM (Fig. 1) by (23) and line 4 of
ADMM by (31)–(32). As mentioned above, C-SUnSAL can be used
to solve the CBP problem simply by setting δ = 0. As in SUnSAL,
the ANC and/or the ASC can be deactivated trivially.

The objective function (19) is proper, convex, lower semi-
continuous, and coercive, thus it has a non-empty set of minimizers.
Functions f1 and f2 in (20) and (21) are closed and G in (22) is
obviously of full column rank, thus Theorem 1 can be invoked to
ensure convergence of C-SUnSAL.

Concerning the computational complexity, the scenario is simi-
lar to that of SUnSAL, thus complexity of C-SUnSAL is O(n2) per
iteration.

5. EXPERIMENTS

We now report experimental results obtained with simulated data
generated according to y = Ax + n, where n ∈ Rk models addi-
tive perturbations. In hyperspectral applications, these perturbations
are mostly model errors dominated by low-pass components. For
this reason, we generate the noise by low-pass filtering samples of
zero-mean i.i.d. Gaussian sequences of random variables. We define
the signal-to-noise ratio (SNR) as

SNR ≡ 10 log10

(
E[∥Ax∥22]
E[∥n∥22]

)
.

The expectations in the above definition are approximated with sam-
ple means over 10 runs. The original fractional abundance vectors
x are generated in the following way: given s, the number of non-
zero components in x, we generate random samples uniformly in the
(s− 1)−simplex and distribute randomly these s values among the



Table 1. RSNR values and execution times for the Gaussian library
defined in the text (average over 10 runs).

SUnSAL C-SUnSAL lsqnonneg
SNR RSNR time RSNR time RSNR time
(dB) (dB) (sec) (dB) (sec) (sec)
20 10 0.12 3 0.12 3 31
30 32 0.12 27 0.12 25 32
40 37 0.12 30 0.12 27 48
50 48 0.12 47 0.12 42 57

Table 2. RSNR values and execution times for the USGS library
(average over 10 runs).

SUnSAL C-SUnSAL lsqnonneg
SNR RSNR time RSNR time RSNR time
(dB) (dB) (sec) (dB) (sec) (sec)
30 6 0.13 1.5 0.13 -7 22
40 17 0.13 12.2 0.13 10 32
50 23 0.13 14.5 0.13 15 47

components of x. We considered two libraries (i.e., matrices A):
a 200 × 400 matrix with zero-mean unit variance i.i.d. Gaussian
entries and a 224 × 498 matrix with a selection of 498 materials
(different mineral types) from the USGS library denoted splib061.

As far as we know, there are no special purpose algorithms for
solving the CSR, CBP, and CBPDN problems. Of course these
are canonical convex problems, thus they can be tackled with stan-
dard convex optimization techniques. Namely, the CLS, which is a
particular case of CSR, can be solved with the MATLAB function
lsqnonneg, which we use as baseline in our comparisons.

Tables 1 and 2 report reconstruction SNR (RSNR), defined as

RSNR = 10 log10

(
E[∥x∥22]

E[∥x− x̂∥22]

)
,

where x̂ is the estimated fractional abundance vector, and execution
times, for the two libraries referred above. The lsqnonneg is run
with its default options. SUnSAL and C-SUnSAL run 200 iterations,
which was found to be more than enough to achieve convergence.

We highlight the following conclusions: (a) the proposed algo-
rithms achieve higher accuracy in about two orders of magnitude
shorter time. This is a critical issue in imaging application where an
instance of the problem has to be solved for each pixel; (b) the lower
accuracy obtained with the USGS matrix is due to the fact that the
spectral signatures are highly correlated resulting in a much harder
problem than with the Gaussian matrix.

6. CONCLUDING REMARKS

In this paper, we introduced new algorithms to solve a class of opti-
mization problems arising in spectral unmixing. The proposed algo-
rithms are based on the alternating direction method of multipliers,
which decomposes a difficult problem into a sequence of simpler
ones. We showed that sufficient conditions for convergence are sat-
isfied. In limited set of experiments, the proposed algorithms were
shown to clearly outperform an off-the-shelf optimization tool. On-
going work includes a comprehensive experimental evaluation of the
proposed algorithms.

1http://speclab.cr.usgs.gov/spectral.lib06
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[14] S. Moussaoui, H. Hauksdóttir, F. Schmidt, C. Jutten, J. Chanussot,
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