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Abstract
This paper introduces an expectation-maximization

(EM) algorithm for image restoration (deconvolution)
based on a penalized likelihood formulated in the wavelet
domain. The observed image is assumed to be a convolved
and noisy version of the original image. The restora-
tion process promotes a low-complexity reconstruction ex-
pressed in the wavelet coefficients, taking advantage of
the well known sparsity of wavelet representations. Al-
though similar formulations have been considered in pre-
vious work, the resulting optimization problems have been
computationally demanding. The EM algorithm herein
proposed combines the efficient image representation of-
fered by the wavelet transform (DWT) with the diagonal-
ization of the convolution operator provided by the FFT.
The algorithm alternates between an FFT-based E-step
and a DWT-based M-step, resulting in an efficient iterative
process requiring ��� ����� operations per iteration.

1 Introduction
Wavelet-based methods have had a decided impact on

the field of image processing, especially in coding and de-
noising. Their success is due to the fact that the wavelet
transforms of images tend to be sparse (i.e., most of the
wavelet coefficients are close to zero). This implies that
image approximations based on a small subset of wavelets
are typically very accurate, which is a key to wavelet-based
compression. The MSE performance of wavelet-based de-
noising is also intimately related to the approximation ca-
pabilities of wavelets. Thus, the conventional wisdom is
that wavelet representations that provide good approxima-
tions will also perform well in estimation problems [2].

Image deconvolution is a more challenging problem
than denoising. In addition to additive noise, the observed
image is convolved with an undesired point response func-
tion associated with the imaging system. This is a classic,
well-studied image processing task, but applying wavelets
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has proved to be a challenging problem. Deconvolution
is most easily dealt with (at least computationally) in the
Fourier domain. However, image modelling and denoising
is best handled in the wavelet domain; here lies the prob-
lem. Convolution operators are generally quite difficult to
represent in the wavelet domain, unlike the simple diago-
nalization obtained in the Fourier domain. This naturally
suggests the possibility of combining Fourier-based decon-
volution and wavelet-based denoising, and several ad hoc
proposals for this sort of combination have appeared in the
literature.

In this paper we formally develop an image decon-
volution algorithm based on a maximum penalized like-
lihood estimator (MPLE). The MPLE cannot be com-
puted in closed-form, and so we propose an expectation-
maximization (EM) algorithm to numerically compute it.
The result is an EM iterative deconvolution algorithm
which alternates between the Fourier and wavelet domains.
Several existing methods can be viewed as ad hoc approx-
imations to this new approach. We compare our results
with two existing state-of-the-art methods in a benchmark
problem and show that it performs better.

2 Problem Formulation
The goal of image restoration is to recover an original

image � from an indirect noisy observation �,

� � ��� �� (1)

We adopt the standard notation where �, �, and � are vec-
tors obtained by lexicographically stacking the pixels of
the corresponding images. Here, we assume that the di-
mension of these vectors is � , and so� is an � �� ma-
trix which models the imaging systems. In (1), � is Gaus-
sian white noise, ���� � � ����� ����, where � �������
denotes a multivariate Gaussian density with mean � and
covariance� evaluated at �, and � is an identity matrix.

3 Previous Approaches
3.1 Recovery in the Fourier Domain

Many imaging systems can be well approximated with
a space-invariant, periodic convolution, in which case the



corresponding matrix � is block-circulant. It can then be
diagonalized by the 2D discrete Fourier transform (DFT),
� � ����, where � is the matrix that represents the
2D DFT, �� � ��� is the inverse transform�, and �
is a diagonal matrix (the DFT of the convolution opera-
tor). This means that � can be applied in the DFT do-
main with a point-wise multiplication (since � is diago-
nal): �� � ����� � �����, where �� � �� denotes
the DFT of �. Of course, in practice, one uses the fast
Fourier transform (FFT) algorithm, and not matrix multi-
plications, to compute forward and inverse DFTs.

In most cases of interest, � is ill-conditioned or even
non-invertible (there are very small values, or even zeros,
in the diagonal of �) and direct inversion leads to a dra-
matic amplification of the observation noise or is even im-
possible. Therefore, some regularization procedure is re-
quired. A common choice is to adopt an MPLE

�� � �	�
��
�

�� ��� ������ � ������� � (2)

where ������ � � ������ ���� is the likelihood function
corresponding to the observation model in (1), and ������
is a penalty function. From a Bayesian perspective, this
is a maximum a posteriori (MAP) criterion under the prior
����, such that ������ � � ��� ����.

If ���� � � �����	�, the MAP estimate �� can be ex-
pressed as (see, e.g., [1])

�� � ��	��
�
��� ��	��

�
��

�� ���� (3)

If � is modelled as a sample of stationary Gaussian field
with periodic boundary conditions, 	 is block-circulant
and diagonalized by the DFT (	 � ��
�, where 

is diagonal) and (3) can be written in the DFT domain,

�� � ����
��
�
�����
��

�
��

��� ������

(4)
Since
 and� are diagonal, the leading cost in implement-
ing (4) is ��� �����, corresponding to the FFTs�� and
�� and to the inverse FFT expressed by the left multipli-
cation by��. Equation (4) is known as a Wiener filter.

Unfortunately, this FFT-based procedure only discrimi-
nates between signal and noise in the frequency domain. It
is known that real-world images are not well modelled by
stationary Gaussian fields. A typical image � will not ad-
mit a sparse Fourier representation; the signal energy may
not be concentrated in a small subspace, making it difficult
to remove noise and preserve signal simultaneously.

3.2 Wavelet-Based Image Restoration
In wavelet-based methods, the image � is re-expressed

in terms of a wavelet expansion, which typically provides

�Matrix � is unitary, i.e., ��� � ��� � �, where ���� denotes
conjugate transpose.

a sparse representation. Letting � denote the inverse dis-
crete wavelet transform (DWT), we write � ���, where
� � ��� the vector of wavelet coefficients of � [2]. As
above, let us consider the MPLE/MAP criterion, now ex-
pressed in terms of the wavelet coefficients �. Consider-
ing some penalty ������ emphasizing sparsity of � (e.g., a
complexity-based penalty [3], [4]), we have

�� � �	�
��
�

�



���
���� � ��� � ������

�
� (5)

When � � �, that is, for direct denoising problems,
wavelet-based methods are extremely efficient (thanks to
the fast implementations of the DWT) and achieve state-
of-the-art performance (see [5] and references therein).

Wavelet-based approaches are known to be very effec-
tive also in image restoration problems [6], [7], [8]. How-
ever, these methods face difficulties: (a) unlike � alone,
�� is not block-circulant, thus can not be diagonalized
by a DFT; (b) unlike � alone, �� is not orthogonal,
thus precluding efficient coefficient-wise denoising rules.

In [6], a method applicable to problems involving arbi-
trary linear operators, including any convolution, was pro-
posed. The results are promising, but the algorithm can be
quite numerically intensive, requiring ��� �� operations
unless suboptimal simplifying approximations are made.

When � is (approximately) diagonalized by �,
the wavelet-vaguelette (WV) approach leads to efficient
thresholding restoration procedures [9]. However, this is
not applicable for most convolution operators. An adapta-
tion of the WV method, based on wavelet-packets matched
to the frequency behavior of certain convolutions, was pro-
posed in [7]. This method was extended to a complex
wavelet hidden Markov tree (HMT, see [16]) scheme in
[12]. Although these methods are computationally fast,
they are not applicable to most convolutions. Moreover,
choosing the (image) basis to conform to the operator
is exactly what wavelet methods set out to avoid in the
first place. Other methods for more general deconvolution
problems have been proposed. In [10], an approach that
adapts the linear filtering spatially, based on an edge detec-
tion test, was proposed. The algorithm presented in [13]
combines Fourier domain regularization with wavelet do-
main thresholding. Another interesting method is the one
in [11]. The methods of [12, 13, 11, 6] constitute the state-
of-the-art.

4 The Best of Both Worlds
Our approach brings the best of the wavelet and Fourier

worlds into image deconvolution: the speed and conve-
nience of the FFT, matched to the observation model, and
the adequacy of wavelet-based image models/priors.



4.1 An Equivalent Model and the EM Algorithm
The observation model in (1), written with respect to the

DWT coefficients �, becomes � � ��� � �. Our first
step consists in decomposing the white Gaussian noise �
into the sum of two non-white Gaussian processes,

� � ���� � ��� (6)

where �� and �� are independent “noises” following

����� � � ������ ��

����� � � ������ �
��� ����� ��

This decomposition allows writing a two-stage observation
model which is equivalent to the original one�

� � �� � ��� � �� ���
� � ��� ���

(7)

Clearly, if we had �, we would have a pure denoising prob-
lem (the first equation in (7)). This observation is the key
to our approach since it suggests treating � as missing data
and using the EM algorithm (see, e.g., [14]) to estimate �.

In our EM algorithm, � is the missing (or unobserved)
data, which, together with �, constitutes the complete data
��� ��. The EM algorithm produces a sequence of esti-
mates ����	�� 	 � �� 
� �� ���� by alternatingly applying two
steps (until some convergence criterion is met):
� E-step: Computes the conditional expectation of the log-
likelihood of the complete data, given � and the current
estimate ���	�. The result is the so-called 
-function:


��� ���	�� � �
�
��� ���� ���� � �� ���	�	 � (8)

� M-step: Updates the estimate according to

���	� 
� � �	�
��
�

��
��� ���	�� � �������� (9)

4.2 The E-Step: FFT-Based Estimation
It is clear from (7) that when � is given, � does not

depend on �. Consequently,

���� ���� � ������ �������

Since � ��� � ���, and �� is zero-mean white with
unit variance, the complete-data loglikelihood is

��� ���� ���� 	
��� � ���

���
	 �

���� ��� � ���

���
�

after dropping all terms that do not depend on �. This
shows that the complete-data log-likelihood is linear with
respect to the missing data �. Consequently, all that is re-
quired in the E-step is to compute

���	� � ������ ���	�� � 

� ������ ���	�� ��� (10)

and plug it into the complete-data log-likelihood:

����������� � �
�
�

� ��� � �������
���

�
��� � ������

���
�

(11)

Since both ������ and �������	�� are Gaussian densities,
������ ���	�� 	 �������������	�� is also Gaussian. Standard
manipulation of Gaussians allows concluding that

����� ������� ��� ��

��
�� ��� ����������� (12)

which can be efficiently implemented by FFT. Writing���	� � ����	�, and recalling that ����� � � and
that������ � ���, we can write the E-step as

���	� � ���	� � ��

��
�� �� �����	��� (13)

revealing its similarity with a Landweber iteration for solv-
ing �� � � [15]. Of course this is just the E-step; our
complete EM algorithm in not a Landweber algorithm.

4.3 M-Step: Wavelet-Based Denoising
In the M-step, the parameter estimate is updated as

specified in (9), where 
��� ���	�� is given by (11):

�������
� �	�
��

�

�
��� � ���	��� � ���������

�
�

(14)
This is simply a MPLE/MAP estimate for a “direct” de-
noising problem, ���	� �������, and can be computed
by applying the corresponding denoising rule to ���	�.

For example, under the 
� penalty (i.i.d. Laplacian
prior),

������ � ����� � �


�

���� (15)

���	�
� is obtained by applying the well-known soft thresh-
olding function to the wavelet coefficients of ���	� [3]. Let-
ting ���	� ������	� be the DWT of ���	�, each component
of ���	� 
� is given separately by

����	� 
� � sign �����	�� ������	�� � ���
�
�

(16)

where �
�� is defined as ���� � �, if � � �, and ���� � �,
if � � �. Other priors/penalties yield different denoising
rules in the M-Step.

Summarizing, our EM algorithm consists of
E-Step: compute ���	� according to (12),
M-Step: compute ���	� 
� from ���	� according to (14).

The computational complexity of the M-Step is domi-
nated by the DWT, usually ���� for an orthogonal DWT.
The computational load of the E-step is dominated by the



��� ����� cost of the FFT. The complete algorithm is
thus ��� �����.

The orthogonal DWT can be replaced by the undeci-
mated DWT (UDWT). In this case,� is a � � �� �����
matrix (rather than � � � ), and the cost of the M-step
increases to ��� �����, keeping the global cost of the al-
gorithm at ��� �����. Denoising with the UDWT has
the desirable property of being translation-invariant, thus
drastically reducing the blocking artifacts which character-
ize the methods based on the orthogonal DWT [17].

4.4 The Adopted Denoising Rule
In the experimental results presented ahead, we use a

very simple wavelet-based denoising rule which we have
proposed in [18], [5]. This rule has no free parameters,
yet yields state-of-art performance among methods of sim-
ilar complexity. Letting, as above, ����	� denote a generic
wavelet coefficient of ���	�, this rule is:

����	� 
� �

�
�����	��� � ���

�
�����	� � (17)

The key feature is that this rule only requires knowledge
of the noise variance (��, in this case), and has no other
parameters to adjust. Although it was derived from an em-
pirical Bayes procedure, it was shown that it is the MAP
estimate corresponding to a prior of a particular form [5].

5 Experimental Results
In all the experimental results, we adopt the UDWT,

using Daubechies-2 (Haar) wavelets. Convergence is de-
clared when the relative increase of the log posterior falls
below a threshold (usually 0.0005). Parameter � does not
affect the monotonicity properties of the EM algorithm;
however, since the log-posterior (5) being maximized is
not concave, it may affect the local maximum to which
the algorithm converges. In all the experiments reported,
we use � � 
���; we found experimentally that this is a
good general-purpose choice. The algorithm is initialized
with a Wiener estimate, as given by (4), with � � � and
	 � 
���.

In the first set of two examples we replicate the exper-
imental condition of [12]. The point spread function of
the blur operator is given by ��� � �
 � �� � �����, for
�� � � ��� ���� �. Noise variances considered are �� � �
and �� � �. Fig. 1 shows the original “cameraman”
image, together with the observed and restored versions,
while Fig. 2 plots the evolutions of the SNR of the re-
stored images and of the log-posterior (5) being maxi-
mized. The SNR improvements obtained by our method
are ������ and ���
��, for �� � � and �� � �, re-
spectively, which is better than the values reported in [12]
(������ and ������), obtained with more sophisticated
wavelet transform and prior model.

In the last example, we consider the setup of [13]. The
blur is uniform of size � � �, and the noise variance is
such that the SNR of the noisy image, with respect to the
blured image without noise (BSNR), is ����. Fig. 3
shows the observed and restored versions for this exam-
ple. The improvement in SNR achieved by our method is
7.57dB, slightly better than the 7.30dB improvement re-
ported in [13]. For the same conditions, the SNR improve-
ment obtained in [10] is 6.7dB.

Figure 1: Original image (top), blurred and noisy images
(second line), and restored images (third line). Left col-
umn: �� � �; right column: �� � �.

6 Conclusions
This paper proposed a MPLE criterion for image de-

convolution. The criterion is based on a wavelet domain
penalty criterion that preserves image edges and details.
The MPLE must be computed numerically, and we derived
an EM algorithm for this purpose. The EM algorithm leads
to a simple procedure that alternates between Fourier do-
main filtering and wavelet domain denoising. Our new ap-
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Figure 2: Evolution of the SNR of the restored image and
of (minus) the log-posterior for the examples in Fig. 1 (top:
�� � �; bottom: �� � �.

proach outperforms two of the best existing methods. In
future work, we plan to investigate the performance and
properties of the MPLE in greater detail.
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