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ABSTRACT

The sparseness and decorrelation properties of the discrete wavelet
transform have been exploited to develop powerful signal denoising
methods. Most existing schemes involve arbitrary thresholding non-
linearities and ad hoc threshold levels, or computationally expensive
signal-adaptive procedures. Furthermore, because the DWT is not
a translation-invariant (TI) transform, results of processing depend
on the relative alignment between data and wavelets in a compli-
cated manner. In the context of denoising, this non-stationarity can
produce undesirable (“pseudo-Gibbs” or “blocking”) artifacts. To
overcome these deficiencies, we propose a new wavelet-based sig-
nal denoising technique derived using the theory of non-informative
Bayesian priors. The resulting estimator is TI and employs a very
simple fixed non-linear shrinkage/thresholding rule. Remarkably,
our new approach is very computationally efficient and performs
better than standard methods that are more computationally demand-
ing.

1. INTRODUCTION

1.1. Background

The discrete wavelet transform (DWT) of real-world signals and
images exhibits two important properties: sparseness, i.e., a few
large coefficients dominate the representation, and decorrelation,
i.e., the transform coefficients have lower correlation than the origi-
nal signal samples. These properties make the DWT ideal for many
tasks including signal estimation and compression; see, e.g., [1].
The idea is to process the DWT coefficients, rather than the sig-
nal samples themselves, according to a three step programme: (i)
compute the DWT of the signal, (ii) perform some specified pro-
cessing on the DWT coefficients, (iii) compute the inverse DWT of
the processed coefficients to obtain the processed signal.

Stimulated by the seminal work in [2], a variety of denoising
methods (following this three step programme) have been proposed;
see [3, 4] and references therein. In this context, the decorrelation
property justifies independent processing of each DWT coefficient;
the sparseness property supports the adoption of threshold/shrinkage
estimators aimed at removing/attenuating those coefficients that are
“small” relative to the noise level. Classical choices are the hard and
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soft thresholding functions, with some fixed threshold level propor-
tional to the known (or estimated) noise standard deviation. “Vis-
uShrink” is a well known method, based on the so-called “univer-
sal threshold” [2]; more sophisticated adaptive schemes have also
been proposed, such as “SureShrink” [5], which generally outper-
form fixed rules.

Recently, wavelet-based estimation has been addressed within
the Bayesian paradigm (see [4] and references therein). In this
approach, the expected decorrelation and sparseness properties of
DWT coefficients is formally captured by an a priori probability
distribution. This prior, combined via Bayes law with the likelihood
function (noise model), leads to the a posteriori distribution of the
unknown signal conditioned on the observed one. An estimation rule
can then be obtained after specifying a loss function, by using the
standard Bayesian decision-theoretic approach [6]. Bayesian rules
have been shown to outperform other methods and constitute the
state-of-the-art in wavelet-based denoising [4, 13]. Moreover, the
Bayesian formalism requires explicit modeling of all assumptions,
thus providing insight into the mechanisms and trade-offs involved.

There are several problematic issues in existing wavelet-based de-
noising schemes: in thresholding methods, the choice of the particu-
lar nonlinearity (e.g., hard or soft) is usually arbitrary; fixed thresh-
old levels are ad hoc and often have to be “tweaked” to yield good
practical results; adaptive threshold selection methods also involve
an arbitrary choice of nonlinearity and are computationally demand-
ing. In many Bayesian methods previously proposed, the priors on
the wavelet coefficients are chosen with the goal of matching empir-
ical coefficient distributions or obtaining rules that mimic the con-
ventional nonlinearities. Moreover, Bayesian methods are generally
very computationally intensive.

An important concern in wavelet-based processing is the non-
stationary nature of the DWT. Since the DWT is not a translation-
invariant (TI) transform, processing results do depend on the relative
alignment between the data set and the wavelets in a complicated
manner. In the context of denoising, this non-stationarity can pro-
duce undesirable artifacts (e.g., see Figure 4). This is an instance
of a more general question: how to perform TI data analysis using
non-TI bases? The common “fix” in wavelet-based denoising appli-
cations is to perform standard (i.e., non-TI) denoising for all possible
relative shifts and then average the results [7, 8, 9]. This (obviously
TI) estimator can be implemented efficiently and generally outper-
forms standard non-TI methods: reduced artifacts, better quantita-
tive performance (under a variety of error measures), more regu-
lar estimates (in approximation-theoretic sense [7, 10]). Further-
more, from a Bayesian viewpoint, TI methods have been recently
shown to implicitly correspond to priors with smoother correlation



behavior (relative to non-TI methods) [11]. Nevertheless, until now,
this TI method has remained an ad hoc solution, lacking a formal
estimation-theoretic justification.

1.2. Contributions

This paper tackles the fundamental issues raised above (arbitrary
threshold rules and translation invariance) using the theory of non-
informative Bayesian priors [6]. Our approach mitigates the arbi-
trariness associated with other (Bayesian and non-Bayesian) denois-
ing schemes. We derive a nonlinear shrinkage/threshold rule which
outperforms both VisuShrink and SureShrink and performs nearly as
well as (sometimes better than) the best denoising methods in stan-
dard benchmark problems. Remarkably, since it is a universal-type
fixed rule (no free parameters requiring tuning), our method is as
computationally inexpensive as the simplest ones (e.g., VisuShrink).
Additionally, we derive a Bayesian TI denoising criterion based on a
non-informative translation prior coupled with a quadratic loss func-
tion. To our knowledge, this is the first formal estimation-theoretic
derivation of TI denoising.

The paper is organized as follows. In Section 2, the denois-
ing problem is presented, notation is introduced, and the Bayesian
formulation is described. Section 3 addresses TI denoising in the
Bayesian framework. A new non-informative prior is proposed in
Section 4. In Section 5, a novel procedure is derived which is an
empirical Bayes approach based on the proposed non-informative
prior. Section 6 contains experimenatal comparisons of the perfor-
mance of the new algorithm versus other methods. A final discussion
and some conclusions are given in Section 7.

2. PROBLEM FORMULATION

2.1. Wavelet-based Denoising

Suppose � � ���� � � � � �� �� is a vector of noisy observations of a
discrete signal � � ���� � � � � �� �� ,

� � �� �� (1)

where the noise vector � is comprised of � independent sam-
ples from a zero-mean Gaussian variable of variance ��, that is,
� � � ��� ����, where � denotes an identity matrix. The goal of
a denoising procedure is to recover � from �.

In wavelet-based denoising, the DWT � is applied to the noisy
data yielding the noisy wavelet coefficients � � ��; these are
described by an analogous observation model

� � ����� � � � �
�� (2)

where �� � � ��� ����, since � is an orthonormal transform (ma-
trix), i.e., ��� � �. The wavelet transforms of the majority of
meaningful signals tend to be sparse, i.e., a few large coefficients
dominate the representation [2]. On the other hand, �� � �� is
a set of i.i.d. Gaussian distributed coefficients thus, with high prob-
ability, bounded in magnitude by some level (proportional to their
standard deviation). Therefore, if the magnitude of a wavelet coef-
ficient in � exceeds a specified threshold, then its signal component
is probably much larger than the noise. This pointed the way to sim-
ple denoising schemes based on threshold operations applied to each
coefficient. The decorrelation property of the DWT justifies thresh-
olding the noisy coefficients independently of each other. This is the
simple rationale underlying the (now classical) method proposed in

[2] and all its variants [3]. Formally, let the estimate of the �-th co-
efficient �� be given

by ��� � Æ�����, where Æ� is either the hard or soft threshold-
ing function (see Figure 2) and 	 is the threshold level. Once the
estimates �� � ����� are obtained, the inverse DWT yields a signal
estimate �� ������.

One degree of freedom which is not explicit in the above formu-
lation is the relative alignment (shift) between the data � and the
wavelet basis implicit in � . To be explicit, we now write ��, for

 � �, where � � ��� � � � � � � �� is the set of all possible shifts1

between the wavelet basis and the data. This notation allows ex-
pressing the TI method discussed in the introduction [7, 8, 9] as

�� �
�

�

�
���

���
� �Æ ������ � (3)

where Æ��� stands for the element-wise application of the adopted
threshold or shrinkage rule (e.g., of Æ����).

2.2. Bayesian Formulation

The likelihood function resulting from the observation model (1) is
multivariate Gaussian, mean �, and covariance ���,

��� � � ��� ����� (4)

or equivalently, in the wavelet domain,

��� � � ��� ����� (5)

To capture the sparseness and decorrelation properties of the DWT,
the (signal) prior ����� is formulated on the wavelet coefficients
� � ��; that is, a ����� is specified which induces2 ����� �
������. The Bayesian version of the three step programme is:
(i) compute the DWT of the data � � ��; (ii) obtain an optimal
(according to some loss function) estimate �� given �; (iii) obtain
a signal estimate �� � �����. To see under which conditions this
procedure does yield a Bayes-optimal signal estimate, let us explic-
itly write the estimation rule as the minimizer of the a posteriori
expected loss [6]; specifically,

�� � �	
��

�
�

�

��������������� (6)

where 
������ is the adopted loss function measuring the “discrep-
ancy” between � and any candidate estimate ��; ������ is the a pos-
teriori probability density function, as usually obtained via Bayes
law as ������ � ���������������. Inserting ���

� � � in (6),
after noticing that2�� � ��, �� � ��, and ������ � ������, and
since

������ 	 ������ �����

� ������ ������
��

� ������ ����� 	 ������� (7)

we can write

�� ���� �	
��

�
�

�

����

�����
�
�������� ��� (8)

1Throughout this paper we assume the use of the periodic (or circular)
DWT and all shifts are taken to be circular as well.

2Notice that �� � �� and �� � �� because � is an orthonormal
transformation (matrix), thus possessing a unit Jacobian.



Now, if 
����
�����

�
�� � 
��� ���, then

�� � ��� �	
��

�
�

�

��� ��������� ���

� ���ÆBayes ���� (9)

where ÆBayes��� is the resulting optimal Bayes estimation rule in the
wavelet domain. This is a formal derivation of the standard pro-
gramme followed (often without clear justification) in all Bayesian
approaches to wavelet-based denoising. It happens that the two most
common loss functions do verify the sufficient condition:


 For squared error loss, which leads to the posterior mean estimate,

�����

�����
�
�� � ����

�����
�
���� � �������� �


���� �
�� is a trivial consequence of the orthonormality of the

DWT.


 For 0/1 loss, which produces the maximum a posteriori (MAP)
estimate when �� �,


������
��
�����

�
�� �

�
�� ����

� ����
�
��� 
 �

�� otherwise

which is obviously equal to 
������� �
��, again due to the or-

thonormality of � .

Notice that this is not true in general; it is easy to come up with many
loss functions that do not satisfy this condition.

3. BAYESIAN TRANSLATION INVARIANT DENOISING

Let us now revisit TI denoising under a Bayesian perspective. Like
the classical wavelet denoising schemes, the Bayes estimators de-
scribed above are implicitly dependent on the alignment between
data and wavelets. Equation (9), with explicit reference to 
, be-
comes ��� ����

� ÆBayes ����� � (10)

The correct Bayesian approach is to consider 
 as an additional un-
known characterized by a prior ��
�. A uniform probability mass
function ��
� � �

�
on the set of all shifts � , is a non-informative

prior expressing that no one shift is a priori preferable to any other.
A moments thought reveals that this is the only prior that can possi-
bly lead to a TI estimate.

We are now in a position to derive a TI Bayes estimator. To begin,
notice that we now have a pair of unknowns ��� 
�, and therefore
a new loss function must be specified. The fact that we are only
interested in estimating � is formalized by adopting a squared error
loss function independent of 
,


���� 
�� ���� 
��� � 
�����
��� (11)

Accordingly, the Bayes estimate is the posterior mean

�� �
�
���

�
� ���� 
�����

�
�
���

��
���

�
� ������ 
���� �� �

���

� (12)

where ��� is simply the shift-dependent posterior mean, i.e., the es-
timate given in (10), under squared error loss. So, the TI estimate

is simply a weighted average of all possible shift-dependent esti-
mates3. What remains, is to identify the weights ��
���.

Using Bayes rule and the fact that ��
� is a constant (flat prior),

��
��� �
����
���
��

���

����
���
�
�

����
��
���

����
�
� (13)

showing that the weights in (12) are proportional to the marginal
likelihoods ����
�. This shows that, in general, the optimal TI esti-
mator weights each shift-dependent estimator proportionally to the
evidence ����
� given by the data in favor of the corresponding shift

. That is, the Bayes-optimal TI rule is

�� �
�
���

��
������
� ÆBayes ����� � (14)

where ÆBayes��� stands for the posterior mean wavelet based estima-
tion rule (derived from a specific wavelet domain prior). Only if
����
� � const. would this optimal TI estimator coincide with the
standard TI method expressed in (3).

4. A NEW PRIOR FOR WAVELET COEFFICIENTS

Since (under certain loss functions) Bayes-optimal signal denoising
can be carried out in the wavelet domain, let us focus on the choice
of a prior for the wavelet coefficients. With the decorrelation prop-
erty giving support to modeling the coefficients independently, the
standard approach is to model each coefficient with an informative
prior that attempts to explicitly capture the sparseness property; i.e.,
using heavy-tailed densities [12, 13, 4]. Here, we take a different
approach; the coefficients are still modeled as independent, but we
attempt to remain non-informative, letting the data speak for them-
selves. Formally, we adopt a hierarchical Bayesian framework with
the following levels.


 According to the noise model above, ����� � � ���� �
��, where

�� is assumed known.4


 Each (unknown) coefficient is modeled as conditionally zero-
mean Gaussian ����

�
� � � ��� � �� �, for � �� � �.


 Total ignorance about each (unknown) variance is expressed by a
non-informative improper5 Jeffreys (hyper) prior ����� � 	

�
	�
�

.

This non-informative prior exhibits the following important scale
invariance property: if the data � (equivalently ���� and noise stan-
dard deviation �) are re-scaled by an arbitrary factor (e.g., corre-
sponding to a change in measurement units), then any inference re-
sults are not effected, apart from the corresponding re-scaling of the
estimated signal. For more details on Jeffreys priors and invariance,
see, e.g., [6]. Other Bayesian denoising methods that the authors
are aware of (based on Laplacian, Gaussian mixture, or other heavy-
tailed densities, for example) do not share this desirable invariance
property.

3A Bayesian expert will immediately identify this as a model averaging
procedure [14].

4Assuming known noise variance is not a shortcoming; excellent esti-
mates are easily obtained, e.g., from the MAD scheme [2].

5A density function is called improper if it is not normalizable because
its integral is not finite. Improper priors are common in Bayesian inference
[6]; in fact, only the relative weighting expressed by the shape of the prior
impacts the a posteriori density [6, 14].



To gain some insight into our new prior, let us consider the
marginal a posteriori density ��������; its defining expression,

�������� �

�
����� �

�
� ������

�
�

�
��������

�����

�
������

�
� ����

�
� ���

�
�� �� �


����

� (15)

reveals the presence of an equivalent prior ����� which is a con-
tinuous mixture of zero-mean Gaussians, weighted according to the
Jeffreys prior ����� � 	

�
	�
�

. Since this prior is the limiting case of

the conjugate inverse-Gamma family [6], the resulting prior �����
is itself a limiting case of a family of Student-t densities; this is so
because t densities can be seen as mixtures of Gaussians of common
mean with an inverse-Gamma weighting of the variance [14]. In
particular, the integration indicated in (15) yields ����� 	 �

����
. In-

terestingly, this prior is itself scale-invariant, symmetric, extremely
heavy-tailed, and improper.

Both continuous and finite Gaussian mixtures have been used be-
fore by several authors, as informative priors for wavelet-based de-
noising. Finite mixtures of Gaussians were considered in [12, 13];
these require (hyper) parameter specification or estimation from the
data, which is a crucial issue due to the non-invariant nature of these
priors. Student-t densities (i.e., continuous mixtures of Gaussians
which are common robust substitutes for Gaussian priors [14]) have
been used in wavelet-based denoising with specially selected param-
eter settings [4]. Our (non-informative) prior leaves us with no free
parameters to adjust.

5. A NEW WAVELET-BASED DENOISING ALGORITHM

It turns out that the hierarchical Bayesian setup built in the previous
section leads to an improper a posteriori probability density function
(15). This fact is well known from other applications where similar
hierarchical Bayes formulations are used (see, e.g., [14], pages 139-
140).

To bypass this difficulty we adopt a parametric empirical Bayes-
type approach [15], i.e., we break the fully Bayesian analysis chain
as follows:


 First, an estimate ���� is obtained according to the MAP cri-
terion based on the marginal likelihood ������

�
� � and on the

corresponding Jeffreys prior.


 Given the estimate ���� , both the MAP and the posterior mean
estimates of �� are given by the well known shrinkage esti-
mator, resulting from a Gaussian likelihood (of variance ��)

together with a � ������� � prior,

��� � �������� � ��
��� (16)

Since �� � �� � ���, the marginal likelihood is very simply
����� � � ��� ��� � ���. The Jeffreys prior is now ����� � 	
������ � ���, with the corresponding MAP estimate being

�� �� � �	
 ���
	�
�
��

�
�

�
�
�

����� ����

���� � ������

�

	
���
�
� ��



�

� (17)

where ���� stands for “the positive part of”, i.e., ���� � �, if � � �,
and ���� � �, if � � �. By plugging this estimate into (16), we
obtain our final shrinkage/thresholding rule,

��� �
�
��� � ���

�
�

��
� (18)

plotted in Figure 1. In Figure 2, the new rule is shown together
with the classical soft and hard thresholding functions (for the same
threshold value); notice how the proposed rule places itself between
these two rules, behaving close to the soft rule for small ��, and close
to the hard rule for large ��. An important feature of our rule is that,
unlike the soft threshold, it approaches identity as the observed value
becomes large (see Figure 1).
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Figure 1: New non-linear shrinkage/thresholding rule, with its fixed
(with respect to the noise variance) threshold.
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Figure 2: This figure illustrates how the new rule, when the same
threshold is adopted, exhibits a behavior between those of the hard
and soft thresholding rules.

The Bayesian (variance) estimator in (17) has an interesting (fre-
quentist) interpretation. Ignoring the ���� function (necessary sim-
ply because we are estimating ��� from an estimate of ��� � ��, and
the valid parameter space is ���

� ), this is an instance of the problem:
given � i.i.d. � ��� ��� observations, ��� ���� ��, what is the best es-
timator of the form ��� � ������ � � ������, in a mean squared error
(MSE) ����� ������� sense? It is well known that � � ���� � ��
(in our case, � � �, � � ���) yields the minimum MSE (although
biased) estimate of �� [16]. This coincides with the MAP rule with
a Jeffreys prior on ��.



6. PERFORMANCE COMPARISON

Here we compare the performance of various TI wavelet based esti-
mators. Two non-Bayesian methods, Sureshrink and Visushrink, are
tested; in these methods, the TI estimates are obtained by applying
the standard (non-TI) denoising for all possible relative shifts and
then taking the (un-weighted) average of the results, which is the
conventional non-Bayesian approach to TI denoising [7, 8, 9]. Our
empirical (non-informative) Bayesian method is also compared with
another (more complicated and computationally demanding) empir-
ical Bayesian approach in which each wavelet coefficient is mod-
eled as an independent Gaussian mixture random variable [13]. To
our knowledge, the Gaussian mixture based method is representa-
tive of the very best wavelet denoising methods available, and hence
it serves as a good benchmark for our new, less computationally
demanding technique. In both cases, because both approaches are
empirical Bayesian methods, a means for properly calculating or es-
timating ��
��� is not readily apparent. Hence, in both cases we,
again, employ the standard TI averaging (equivalent to approximat-
ing ��
��� as a constant). If we pursued a fully Bayesian denois-
ing scheme, then we could easily calculate the true value of ��
���
and compute the optimal TI posterior mean estimate given by the
weighted average in (14).

As shown in Figure 3, the new rule performs consistently (i.e., for
several test signals and a wide range of SNRs) better than the widely
accepted (and computationally heavier) SureShrink. With respect
the standard approach using the “universal threshold” (VisuShrink)
[2], which has a similar computational load, our rule achieves far su-
perior results. Moreover, the performance of the proposed technique
is comparable with the far more computationally demanding Gaus-
sian mixture based method. We also note that, although not shown
here, our experiments have shown that the MSE performance of TI
methods is slightly better than that of their non-TI counterparts. The
subjective improvement of the TI methods is apparent in the results
shown in Figure 4.

7. CONCLUSIONS

In this paper we have addressed the ad hoc selection of thresh-
old rules and TI wavelet based estimation using the theory of
non-informative Bayesian priors. In particular, we have devel-
oped a new empirical Bayes wavelet-based denoising rule using
a non-informative Jeffreys prior. Our new rule performs remark-
ably simple non-linear shrinkage/thresholding, and (unlike other
Bayesian schemes) has no free parameters requiring tuning, estima-
tion, or elicitation. Moreover, it outperforms both VisuShrink and
SureShrink and performs nearly as well as (sometimes better than)
the best denoising methods in standard benchmark problems (to our
knowledge, the best existing techniques are Bayesian; e.g., see the
recent comparisons in [13]). A Bayesian TI denoising method that is
optimal under squared loss was derived based on a non-informative
uniform prior placed on the shift. We pointed out that this optimal
TI method can be used in conjunction with any wavelet coefficient
prior. However, we also note that it is difficult to compute the evi-
dences ��
 ��� (optimal weights for averaging shift-dependent esti-
mates) under an empirical Bayes approach like the one underlying
our new rule. We are currently investigating methods for estimating
��
 ��� in such cases.
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Figure 3: Input and output SNR values for various TI wavelet
denoising schemes applied to Donoho and Johnstone’s test sig-
nals. The wavelets used were: Daubechies-2 (Haar) for Blocks,
Daubechies-8 for Doppler and HeaviSine, and Daubechies-6 for
Bumps.
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Figure 4: Comparison of TI and non-TI empirical Bayes estimator.


