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ABSTRACT

Blind image deblurring (BID) is a challenging ill-posed
inverse problem. Most BID methods work by imposing some
regularization on the unknown blur, and use iterative opti-
mization schemes. Recently, a method was proposed that,
although not requiring prior knowledge on the blurring filter,
achieves state-of-the-art performance on a wide class of real-
world BID problems. The drawback of that method is that the
iterations have to be manually stopped.

In this paper, we propose new stopping criteria for itera-
tive BID algorithms. The rationale behind the proposed cri-
teria is that if the blur filter is well estimated, the residual
will be spectrally white, whereas with a wrong filter, the im-
age estimate will exhibit structured artifacts, which are not
white. Comprehensive experiments using the proposed crite-
ria to stop the method mentioned in the previous paragraph
show that it yields, on average, an ISNR only 0.16dB (∼ 3%)
below what is obtained by stopping the algorithm at the best
ISNR (which, of course, can’t be done in practice).

Index Terms— Blind image deblurring, whiteness, stop-
ping criteria, image deconvolution.

1. INTRODUCTION

Image deblurring (ID) is an inverse problem in which the
observed image, y, is modeled as the degradation of a sharp
image, x, by a convolution with a blurring filter h, plus some
noise, n. With application in many areas (e.g., astronomy,
photography, surveillance, remote sensing), fundamental re-
search on ID can be divided into non-blind problems, in
which the blurring filter h is assumed to be know, and blind
ID (BID), in which both the image x and the blurring filter
h are unknown. Despite its narrower applicability, non-blind
ID is already a challenging problem to which a large amount
of research has been devoted, mainly due to the fact that the
convolution operators of interest are typically very ill-posed.
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In BID, even if the degradation operator was not ill-posed,
the problem would still be inherently ill-posed, since there
is an infinite number of solutions (pairs of image estimates
and blurring filters) that are compatible with the observed de-
graded image. In order to obtain reasonable results, almost all
BID methods restrict the class of the blurring filters. These re-
strictions have been applied either in a hard way, through the
use of parametric models [1, 2], or in a soft way, through the
use of priors/regularizers [3, 4, 5, 6]. In contrast to those ap-
proaches, a recent BID method [7] does not use prior knowl-
edge about the blurring filter, but still achieves state-of-the-art
performance on a wide range of BID problems (both synthetic
and real data). That method is iterative and starts by esti-
mating the main features (edges) of the image, by setting the
regularizing parameter to a high value, and gradually learns
the image and filter details, by slowly decreasing the value
of the regularizing parameter. The drawback of the method
is that it needs to be manually stooped, which corresponds
to manually tuning the regularization parameter. In fact, find-
ing robust stopping criteria and/or adjusting the regularization
parameter in iterative (blind or non-blind) ID algorithms is a
long standing problem, which is still an open research topic
[8, 9, 10].

While strategies for automatically estimating the value of
the regularization parameter are relatively developed for non-
blind ID [8, 9, 10], the same is not true for the blind case.
Most of the existing BID methods require the regularizing
parameters to be somehow tuned or empirically selected. De-
spite that, there are some recent BID approaches [3, 5, 6] that
manage to determine the regularization parameter. Some of
these approaches [3, 5] were developed for variational meth-
ods and do not fit the BID technique of [7]. The maximum
a posteriori (MAP) approach from [6] did not show to work
successfully in combination with the method of [7].

This paper proposes stopping criteria based on the as-
sumption that the additive noise is spectrally white. The ra-
tionale is that if the blurring filter is correctly estimated, the
residual associated to the deblurred image is white. This ra-
tionale is implemented by using measures of whiteness to
assess the fitness of the current estimates to the degradation



model. The best stopping criterion based on whiteness mea-
sures was successfully tested on a large set of experiments,
leading to an average decrease of 3% of the ISNR compared
to what is obtained by stopping the algorithm at the maximum
ISNR (something that, of course, cannot be done in practice,
as it requires the original image). Whiteness measures of the
residual have been previously used to assess model accuracy
[11, 12]; however, those works are on very different areas.

2. THE BLIND DECONVOLUTION METHOD

The degradation we aim at inverting is modeled by

y = h ∗ x+ n, (1)

where y, x and n are, respectively, the degraded image, the
(unknown) original image, and additive noise; h is the (un-
known) point spread function (PSF) of the blurring operator,
and ∗ denotes two-dimensional convolution.

In the BID method proposed in [13, 7], the pair (h, x) is
estimated by minimizing a cost function:

Cλ(x, h) =
1

2
‖y − h ∗ x‖22 + λR[f(x)]. (2)

The first term in (2) is the classical data fidelity term that re-
sults from assuming that the noise n is white and Gaussian,
R[f(x)] is a regularizing function which favors solutions in
which the image edges (extracted by a function f ) are sparse,
and λ is the regularizing parameter. More details on the edge
extractor f(·) and on the regularization criterion R(.) can be
found in [13, 7].

Among the infinite number of possible solutions (x, h)
for the inverse problem in (1), a suitable one is reached iter-
atively by starting with a strong regularization (setting λ to
a high value), which is gradually decreased (see Algorithm
1). Initial estimates consist in cartoon-like images, strongly
piece-wise-constant. The sharp edges of these images, when
compared with the blurred image y, allow to learn and im-
prove the estimate of the blurring filter h, which, on the other
hand, allows to reduce the strength of the regularization and to
learn finer image details. This slow decrease of the regulariz-
ing parameter was shown to lead to good deblurring solutions,
without imposing prior information on the blurring filter (for
more details, see [7]).

So far, the stopping criterion of the method, which corre-
sponds to setting the final value of the regularizing parame-
ter, was manually tuned for each experiment. This was done
either based on the ISNR value, in the case synthetic experi-
ments, or by visual assessment of the restored image (in the
case of real blurred images) [7]. In the following section, we
describe a new method for automatically stopping this BID
algorithm (or other BID algorithms).

Algorithm 1: Blind Image Deconvolution

1 Set λ to the initial value; choose α < 1.
2 Set x̂ = y
3 repeat
4 ĥ← arg minh Cλ(x̂, h)

5 x̂← arg minx Cλ(x, ĥ)

6 λ← λ ∗ α
7 until stopping criterion is satisfied

3. THE STOPPING CRITERIA

The proposed stopping criteria are based on measures of the
fitness of the estimated data (x̂, ĥ) to the degradation model
(1), naturally based on the residual image:

r = y − ĥ ∗ x̂. (3)

The statistics of the residuals r are then compared with those
assumed for the noise n of the degradation model (1). In par-
ticular, the noise n is assumed to be white (uncorrelated), thus
a measure of the whiteness of the residuals r is used to assess
the adequacy of the estimates (x̂,ĥ) to the model. Note that
this is a relatively generic assumption, which is true for most
real-life situation.

3.1. Measures of whiteness

The first step of our method is to normalize the residual image
to zero mean and unit variance; for simplicity of notation,
let this normalized residual still be denoted as r. The auto-
correlation (and auto-variance, since the mean is zero) of the
normalized residual r, at 2D lag (m,n), is estimated by

Rrr(m,n) =
∑
i,j

r(i, j) r(i−m, j − n), (4)

where the sum extends over the whole image.
The auto-covariance of a spectrally white image is a delta

function at the origin, δ(m,n). A possible measure of white-
ness of r is thus the distance between the estimated auto-
correlation Rrr(m,n) and the ideal delta function. Consider-
ing a window of (2L+1)×(2L+1) pixels, the first measure of
whiteness that we consider is simply the energy ofRrr(m,n)
outside the origin,

MR(r) = −
L,L∑

(m,n)=(−L,−L)
(m,n)6=(0,0)

(
Rrr(m,n)

)2
, (5)

where the minus sign is used so that MR(r) is larger for
whiter residuals. In the experiments reported below, we have
used L = 4.



Considering that the auto-covariance has more significant
values for smaller lags, it makes sense to give more weight to
these terms. Based on that, a weighted version of the measure
in (5) was also considered,

MRW (r) = −
L,L∑

(m,n)=(−L,−L)
(m,n)6=(0,0)

W (m,n)
(
Rrr(m,n)

)2
, (6)

where W (m,n) is a matrix of weights. In the experiments,
we have used a Gaussian weighting.

Let Srr(ω1, ω2) denote the power spectral density of r, at
2D spatial frequency (ω1, ω2),

Srr(ω1, ω2) = F(Rrr), (7)

where F is the two-dimensional discrete Fourier trans-
form (2D-DFT). In agreement with the fact that the auto-
correlation of a white signal is a delta function, a white signal
has a flat power spectral density. To measure the flatness of
Srr, we measure its Shannon entropy, after adequate normal-
ization; recall that the maximum entropy is achieved by a flat
distribution. The resulting measure of whiteness is denoted
as MH(r).

The stopping criterion consists in stopping the BID algo-
rithm when the whiteness measure used (MR(r), MRW (r),
or MH(r)) starts decreasing. To avoid a premature stopping
(of course, we have no guarantee that the whiteness measure
does not oscillate), we actually run the algorithm until the
whiteness measure decreases considerably, and then return
the image estimate obtained at the iteration at which the max-
imum whiteness was observed.

3.2. Local Measures of Whiteness

The approach described in the previous subsection implicitly
assumes that the residual r is stationary and ergodic; i.e.,
we are estimating the auto-covariance by averaging over the
whole image (see (4)). Of course, in practice, the residual
is not stationary, in fact exhibiting clear spatial variability.
These observation lead us to considered also local versions
of the previous measures of whiteness, where local auto-
covariance estimates:

Rbrr(m,n) =
∑
i,j∈B

r(i, j) r(i−m, j − n), (8)

where b indexes an image block, and B is the set of pixels
in that block. In the experiments reported below, we have
used 9 × 9 blocks, separated horizontally and vertically by
5 pixels. Of course, in this case, the residual is normalized
to zero mean and unit variance on a block-by-block fashion,
rather than globally. Given this block partition, the three lo-
cal measures of whiteness, M l

R(.), M l
RW (.) and M l

H(.) were
computed, by averaging the block-wise application ofMR(.),
MRW (.), and MH(.), respectively.

4. EXPERIMENTS

The proposed stopping criteria were tested on most of the
experiments described in [7]; specifically, we have consid-
ered: (a) four benchmark images: “Lena”, “Barbara”, “Cam-
eraman” and “Satellite”; (b) the different blurring filters used
in [7], out-of-focus, linear motion blur, square blur, random
blur, nonlinear motion blur, and Gaussian blur; (c) experi-
ments with no added noise and with Gaussian white noise,
at a blurred-signal-to-noise-ratio (BSNRs) of 30dB; (d) ex-
periments with and without constrains (parametric form and
symmetry) on the blurring filter (see [7] for full details).

For all the possible combinations of images, blurs, and
constraints descried in the previous paragraph (a total of more
than 100 different experiments), the three global and local
measures described in Section 3 were computed. Table 1
summarizes the results obtained using the global stopping cri-
teria. It is clear that all three criteria (based on MR, MRW ,
andMH ) are able to stop the algorithm at estimates which are,
on average, only slightly worse (-0.39dB, -0.40dB, -0.38dB)
than the best ISNR achieved by manual stopping. This result
is also reasonably stable, as show by the standard deviation of
the ISNR decrease, which is clearly below 1dB. This can be
considered as a successful result, considering the wide set of
degradations that were considered and the well-known diffi-
culty of the BID problem.

Best MH MR MRW

ISNR ∆ISNR ∆ISNR ∆ISNR
Mean 5,88 -0,39 -0,40 -0,38

Standard dev. 2,63 0,65 0,70 0,72

Table 1. Experimental results (in dB). First column: best
ISNR obtained during the iterations. Second, third, and fourth
columns: ∆ISNR denotes the differences between the ISNR
obtained by stopping with each of the automatic criteria and
the best ISNR.

Despite the good performance of the global whiteness
measures, the local measures (Subsection 3.2) turned out
to yield even better results. Table 2 shows detailed results
obtained with the best local measure: M l

RW . The average
difference in ISNR with respect to the maximum is−0.16dB,
with a standard deviation of 0.21dB. The rightmost column
of Table 2 shows the difference in number of iterations be-
tween the automatically stopped algorithm and the manually
stopped version (highest ISNR), showing that the automatic
criterion tends to stop slightly earlier. In fact, only the noisy
case (third row) is meaningful; in the noiseless experiments,
the ISNR stabilizes in the latter iterations, thus these large dif-
ferences correspond in fact to quite similar image estimates.



Best ∆ISNR ∆ISNR ∆Iter.
ISNR mean st. dev. mean

All 5,88 dB -0,16 dB 0,21 dB -5,4
noiseless 6,90 dB -0,15 dB 0,26 dB -9,9

noisy 4,85 dB -0,16 dB 0,16 dB -0,9
constrained 6,60 dB -0,20 dB 0,27 dB -6,7

unconstrained 5,36 dB -0,13 dB 0,16 dB -4,5

Table 2. Results obtained using M l
RW . First column: ISNR

of the best iteration. Second and third columns: mean and
standard deviation of ∆ISNR (defined as in Table 1). Third
column: standard deviation of the ISNR error. Fourth col-
umn: difference in iterations.

4.1. Real Blurred Photos

The stopping criterion based on M l
RW was also tested on a

real blurred photo (ou-of-focus). We have used one of the
photos from [7] (see Fig.1, left). The proposed automatic cri-
terion stopped the algorithm at an iteration in which the esti-
mated image (Fig. 1, right) is equal to the best estimate that
was visually obtained along the algorithm.

5. CONCLUSIONS AND FUTURE WORK

We have proposed stopping criteria for iterative blind image
deconvolution algorithms, based on whiteness measures ap-
plied to the residual error. We have used the proposed stop-
ping criteria with a recent state-of-the-art method; on a wide
range of synthetic experiments, we showed that the best of
the proposed criteria yields ISNR losses with the respect to
the best ISNR of only 0.16dB, on average. The method was
also successfully tested on a real blurred photo, although more
experiments on real data are needed and are under way.

The proposed approach is quite general and does not re-
quire any knowledge about the type of convolution opera-
tor. This fact makes the proposed criteria easily applicable
to other blind or non-blind deconvolution methods, a research
direction that we plan to explore in the near future.
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