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ABSTRACT

Blind image deblurring (BID) is an ill-posed inverse problem,
typically solved by imposing some form of regularization (prior
knowledge) on the unknown blur and original image. A recent ap-
proach, although not requiring prior knowledge on the blurring filter,
achieves state-of-the-art performance for a wide range of real-world
BID problems. We propose a new version of that method, in which
both the optimization problems with respect to the unknown image
and with respect to the unknown blur are solved by the alternating
direction method of multipliers (ADMM) – an optimization tool that
has recently sparked much interest for solving inverse problems,
namely due to its modularity and state-of-the-art speed. Our ap-
proach also handles seamlessly the realistic case of blind deblurring
with unknown boundary conditions. Experiments with synthetic
and real blurred images show the competitiveness of the proposed
method, both in terms of speed and restoration quality.

Index Terms— Blind deblurring, blind deconvolution, alternat-
ing direction method of multipliers, non-cyclic deconvolution.

1. INTRODUCTION

Blind image deblurring (BID) is an inverse problem where the ob-
served image is modeled as resulting from the convolution with a
blurring filter, possibly followed by additive noise, and the goal is to
estimate both the underlying image and the blurring filter. Clearly,
BID is a severely ill-posed problem, for which there are infinitely
many solution. Furthermore, the convolution operator is itself typ-
ically ill-conditioned, making the inverse problem extremely sensi-
tive to inaccurate filter estimates and to the presence of noise.

To deal with the ill-posed nature of BID, most methods use prior
information on the image and the blurring filter. Concerning the blur,
earlier methods typically imposed hard constraints, whereas more
recent ones use regularization [7, 8, 9, 13, 17, 18, 20, 21, 22, 23].
Those methods are thus of wider applicability, e.g., to the practically
relevant case of a generic motion blur, typically addressed by encour-
aging sparsity of the blur filter estimate [9, 11, 13, 17, 21, 22, 23].
This paper builds upon the method proposed in [4], which stands out
for not using restrictions or regularizers on the blur (apart from a
limited support), being able to recover a wide variety of filters.

Due to the undetermined nature of BID, direct minimization of
the cost functions typically used for deconvolution may not yield
the desired sharp image estimates [4, 16]. In fact, these sharp es-
timates typically corresponds to local (not global) minima of those
cost functions. Several strategies have been devised to address this
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issue, such as the alternating estimation of the image and the blur
filter, the use of restrictions, normalization steps, and careful initial-
ization. Recently, a normalized image prior was proposed so that the
global minimum would not correspond to the blurred image [15].
Multi-resolution approaches, which avoid some local minima, were
recently proposed [3, 13, 15, 17, 22]. Good local minima can also
be found by using continuation schemes, where the regularizing pa-
rameter is gradually decreased [4, 17, 21, 22]. In a Bayesian frame-
work, it has been claimed that a MAP estimate of the blur filter (after
marginalizing out the unknown image) is preferable to a joint MAP
estimate of the image and the filter [13, 16, 17, 20].

Most blind and non-blind deblurring methods assume periodic
boundary conditions (to allow using FFT-based convolutions), in-
stead of the more realistic unknown boundary conditions (UBC) [5].
This incorrect assumption is a problem in non-blind deblurring and
becomes worse in BID (although it has mostly been ignored), since
the filter estimate is affected by the inaccuracy of the cyclic model.
A simple way to evade the UBC problem is to use the “edgetaper”
function, which softens the boundaries of the degraded images, re-
ducing the effect of wrongly assuming periodic boundary conditions;
this approach is used in [13], while [21] employs a more sophisti-
cated version thereof [19]. Other works on BID [17, 15], although
not explicitly reporting it, adopt some strategy for dealing with the
boundaries, since they present good results on real blurred images.

In this paper, we improve upon the method of [4]. We fully em-
brace the UBC, without an increase in computational cost, due to the
way in which we use the alternating direction method of multipliers
(ADMM) to solve the minimizations required by that method [5].
Using the ADMM, we also manage to impose positivity on the blur-
ring filter, reaching considerable speed and quality improvements
over the original version. The paper is organized as follows: Section
2 sets the scenario, by introducing the BID problem, reviewing the
method of [4], and the ADMM; Section 3 introduces the proposed
approach, and Section 4 reports experimental results.

2. BACKGROUND

2.1. Observation model

Consider the linear observation model y = Ax + n, where y ∈ R
n,

x ∈ R
m and n ∈ R

n are vectors containing the pixels (lexico-
graphically ordered) of the degraded image, the (unknown) origi-
nal image, and the additive noise, respectively; A = H ∈ R

n×m,
where H is the matrix representing the convolution with a blur-
ring filter h. For computational convenience, most methods as-
sume this convolution to be cyclic/periodic, thus n = m and H
is a (block) circulant matrix, which is diagonalized by the discrete
Fourier transform (DFT). However, in real-life, the convolution is
not cyclic and to obtain a

√
n × √n blurred image one must have
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Algorithm 1: Continuation-based BID.

1 Set ĥ to the identity filter, x̂ = y and λ = λ0; choose α < 1.
2 repeat
3 x̂← argminx Cλ(x, ĥ)

4 ĥ← argminh Cλ(x̂, h),
5 λ← α λ

6 until stopping criterion is satisfied

access to
√
m×√m = (

√
n+2l)× (

√
n+2l) pixels of the origi-

nal image, assuming the blurring filter to have a (2l+ 1)× (2l+ 1)
support. In this case, the observation operator A = M H ∈ R

n×m

can be factored into the product of a cyclic convolution H ∈ R
m×m

with an masking matrix M ∈ {0, 1}n×m, excluding the boundary
where the cyclic convolution is invalid [5].

2.2. The BID method of [4]

Following [4] (but in [4] the filer was not imposed to have positive
entries) , the image x and the blurring operator H (equivalently, the
filter h) are estimated by minimizing the cost function

Cλ(x, h) =
1

2
‖y−M H x‖22 + λ

m∑
i=1

(‖Fi x‖2)q

︸ ︷︷ ︸
Φ(x)

+ ιS+(h), (1)

where ιS+ is the indicator function of the set S+,

ιS+(u) =
{

0 ⇐ u ∈ S+

∞ ⇐ u /∈ S+,
(2)

S+ is the set of filters with positive entries in a given support (this
positivity constraint was not considered in [4]), λ > 0 is the regular-
ization parameter, and Fi ∈ R

4×m is the matrix that corresponds to
four directional (Sobel-type) edge filters at pixel i, with q ∈ [0, 1].

As shown in [4], good results are obtained by minimizing (1)
alternatingly with respect to h and x, while slowly decreasing the
regularization parameter λ (Algorithm 1). The rationale behind this
continuation scheme is that, with large λ, the initial image estimates
are piece-wise smooth with sharp edges, which allows improving the
estimate of the filter h; this in turn will allow reducing the weight of
the regularizer, thus yielding a better image estimate, and so on. In
[4], the image estimate x̂ was obtained by gradient descent and the
filter estimate ĥ by conjugate gradient (CG). Here, we show how
these two steps can be more efficiently computed by the ADMM.

2.3. The ADMM

The ADMM [10, 14] has recently emerged as an efficient tool to
address several imaging inverse problems (see [1, 2] and references
therein) and is related to other methods, namely split-Bregman (SB)
and Douglas-Rachford [10]. Recently, SB was used for BID, under
total variation [18] and sparsity regularization [11]; however, those
methods do not consider the realist case of non-circular blurring.

Consider the general unconstrained minimization problem

min
z∈Rd

J∑
j=1

g(j)(G(j)z),

Algorithm 2: ADMM

1 Set k = 0, choose μ(j) > 0, u(j)
0 , and d(j)

0 , for j = 1, ..., J
2 repeat
3 rk+1 ←

∑J
j=1 μ

(j)(G(j))T (u(j)
k + d(j)

k )

4 zk+1 ←
[∑J

j=1 μ
(j)(G(j))T G(j)

]−1

rk+1

5 for j = 1 to J do
6 u(j)

k+1 ← proxg(j)/μ(j)(G(j)zk+1 − d(j)
k )

7 d(j)
k+1 ← d(j)

k − (G(j)zk+1 − u(j)
k+1 )

8 end
9 k ← k + 1

10 until stopping criterion is satisfied

where G(j) ∈ R
pj×d are arbitrary matrices and g(j) : Rpj → R are

functions. An equivalent constrained formulation is

min
z∈Rn,u(1)∈R

p1 ,...,u(J)∈R
pJ

J∑
j=1

g(j)(u(j)) (3)

subject to u(j) = G(j)z, for j = 1, ..., J,

where the u(j) are the splitting variables. The ADMM to solve (3)
takes the form of Algorithm 2, as shown in [2]. The challenging steps
are those in lines 4 and 6. Line 6 involves the proximity operator
(PO) of each g(j); recall that the PO of a function f , defined as

proxf (v) = argmin
x

(1/2)‖v− x‖22 + f(x),

has a closed form expression for several choices of f [12]. Con-
cerning line 4, it was show in [1, 2] that the required inversion can
be efficiently obtained in several cases of interest, namely using the
FFT and/or fast wavelet/frame transforms.

3. PROPOSED ALGORITHM

We propose using ADMM to tackle each of the inner minimizations
in Algorithm 1 (lines 3 and 4), with Cλ(x, h) as defined in (1). Of
course, for q < 1, the problem is non-convex, thus we have no the-
oretical convergence guarantees; however, as shown below, the em-
pirical performance of the algorithm is very competitive.

3.1. Updating the Image Estimate

The image estimate update problem of Algorithm 1 (line 3) can be
written in the unconstrained formulation as

Cλ(x, h) =
1

2
‖y−M H x‖22 + λ

m∑
i=1

(‖Fi x‖2)q , (4)

and in constrained formulation (3) by letting J = m+ 1, and

G(j) = Fj , for j = 1, ...,m (5)

G(m+1) = H, (6)

g(j)(u(j)) = λ
∥∥u(j)

∥∥q

2
, for j = 1, ...,m, (7)

g(m+1)(u(m+1)) =
1

2

∥∥y−M u(m+1)
∥∥2

2
. (8)
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The key steps of the resulting instance of Algorithm 2 are (as men-
tioned above) those in lines 4 and 6. Line 4 can be written as

zk+1 ← K
(
ρ HT (u(J)

k + d(J)
k ) + μ

m∑
j=1

FT
j (u

(j)
k + d(j)

k )
)
,

where we have set μ(1) = · · · = μ(m) = μ and μ(m+1) = ρ, and

K =
(
ρ HT H + μ

m∑
j=1

FT
i Fi

)−1

; (9)

if the convolutions with the edge filters represented by the matrices
Fi are performed with periodic boundary conditions, K can be effi-
ciently computed in the DFT domain (using the FFT), since both H
and F are block-circulant matrices (see [1, 2], for details).

To implement line 6 of Algorithm 2, we need the two PO:

proxg(j)/μ(v) = argmin
x

λ

μ
‖x‖q2 +

1

2
‖v − x‖22

= v-shrink
(
v, λ/μ, q

)
, (10)

for j = 1, ...,m, and (with I denoting an identity matrix)

proxg(m+1)/ρ(v) = argmin
x

1

ρ

∥∥y −Mx
∥∥2

2
+

1

2

∥∥v − x
∥∥2

2

=
(
ρ I+ MT M

)−1(MT y + ρv
)
. (11)

The proximity operator in (11) can be easily computed: MT M
is a binary diagonal matrix, with zeros corresponding to the unob-
served boundary pixels, and MT y is the extension of y ∈ R

n to R
m

by zero-padding. Finally, “v-shrink” in (10) is a vectorial shrinkage
function, which can be shown (details are omitted) to be given by

v-shrink(y, τ, q) =

{
y shrink

(
1, τ ‖y‖q−2

2 , q
)

if ‖y‖2 	= 0
0 if ‖y‖2 = 0

(12)

where shrink(z, τ, q) = argminx
1
2
‖z − x‖22 + τ |x|q has closed

form solutions for q ∈ {0, 1/2, 2/3, 1, 4/3, 3/2, 2} (in some cases
as functions of the roots of cubic and quartic equations [12]).

3.2. Updating the Blur Estimate

The blur estimate update problem of Algorithm 1 (line 4) can be
written in unconstrained formulation as

min
h

1

2
‖y −MXh‖22 + ιS+(h),

and in constrained form (3), with J = 2, G(1) = X, G(2) = I, and

g(1)(u(1)) =
1

2
‖y −Mu(1)‖22, g(2)

(
u(2)) = ιS+(u

(2)), (13)

where h ∈ R
m is the vector containing the blurring filter elements

(lexicographically ordered) and X ∈ R
m×m is the square matrix

representing the convolution of image x with the filter in h.
The resulting instance of Algorithm 2 involves (in line 4) the

inversion of the matrix μ(1)XT X + μ(2)I which can be efficiently
computed in the DFT domain, using the FFT. Concerning the two
(J = 2) proximity operators in line 6, we have that proxg(1)/μ(1)

has exactly the same form as (11), with μ replacing ρ. Finally, since
the proximity operator of the indicator of a convex set is simply the

orthogonal projection on that set [12],

proxg(2)/μ(2)(v) = proxιS+
(v) = PS+(v), (14)

which consists in setting to zero any negative entries and those out-
side the given support.

4. EXPERIMENTS

In all the experiments, we use q = 1/2, λ0 = 0.5, α = 1/2, and
the following setting for the two ADMM algorithms: (a) the image
estimate (line 3 of Algorithm 1) is computed with 20 iterations of
the algorithm explained in Subsection 3.1, initialized with d

(j)
0 = 0,

u
(j)
0 = G(j)x̂ (where x̂ is the estimate from the previous outer it-

eration of Algorithm 1), μ = 0.5, and ρ = 2λ; (b) the filter esti-
mate (line 4 of Algorithm 1) is computed with 15 iterations of the
algorithm explained in Subsection 3.2, initialized with d

(j)
0 = 0,

u
(j)
0 = G(j)ĥ (where ĥ is the filter estimate from the previous outer

iteration), μ(1) = 0.01, and μ(2) = 0.1; (c) all the ADMM penalty
parameters (μ(j)) are updated using the empirical rule described in
[10]. Both the proposed method and the method of [4] (implemented
in MATLAB and run on an Intel Core i3 CPU) were stopped at the
best ISNR (improvement in signal to noise ratio1), in the synthetic
experiments, or at the best visual result, for the real images.

The proposed approach was compared against its ancestor [4],
in a set of 30 synthetic experiments with two benchmark images
(Lena and Cameraman), five 9× 9 blur kernels (see Fig. 1), at three
noise levels (BSNR ∈ {∞, 40, 30}dB). Instead of periodic bound-
ary conditions, we extended the images with values equal to the
nearest boundary and both methods were run assuming unknown
boundaries (see Subsection 2.1). For most experiments, the pro-
posed method led to considerably higher ISNR, while being more
than three times faster; even higher speed-ups are expected if the
fixed number of iterations is replaced by adequate stopping criteria.
The average ISNR and processing times in Table 1 show that the
proposed method clearly outperforms the baseline from [4].

Fig. 1. Blurring filters used in the synthetic experiments: out-of-
focus, linear motion, square, nonlinear motion, and Gaussian.

Table 1. Comparison between the baseline method [4] and our
ADMM approach. The results for each BSNR value are averages
over the five blurring filters and two images (Lena and Cameraman).

ISNR (dB) time (s)
BSNR (dB) [4] Proposed [4] Proposed

∞ 5.83 8.87 249 69
40dB 4.95 6.65 131 55
30dB 3.83 5.01 110 46

Fig. 2 shows results obtained with a real motion blurred photo,
using several BID methods: the proposed approach, that of [4], and
two recent state-of-the-art methods proposed in [15, 17] (available at

1ISNR is computed as in [4], after compensating for possible shifts and
affine transformations of the intensity values.
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Blurred photo. [4], 138 seconds. [15], 285 seconds. [17], 177 seconds. Our method, 62 seconds.

Fig. 2. Real blurred image and deblurred images (estimated blurs are shown in inset at the bottom right corner of each image), obtained by
several methods (image size: 256× 200; blur support: 23× 23).

a) Observed photo.

c) [4], 210 seconds. d) Our method, 75 seconds.

Fig. 3. Actual photo with out-of-focus blur. Results obtained, with
several BID methods. Image size: 256× 256. Filter size: 13× 13.

tinyurl.com/a2ltbu4 and tinyurl.com/avuw5bk), with
their parameters manually adjusted for the visually best result. Be-
sides being considerably faster, our method attained the best restora-
tion, yielding an image with sharp edges and no significant artifacts.
Fig. 3 shows results obtained with an actual photo out-of-focus us-
ing the proposed approach and its ancestor method [4]. Our method
attained a sharper image within one third of the processing time.

5. CONCLUSIONS AND ONGOING WORK

We have proposed a new algorithm for blind deconvolution, improv-
ing over the recent method of [4] in two ways: a significant speedup
(by using the ADMM) and the ability to handle unknown boundary
conditions (more realistic than the usual periodic ones). Experiments
with synthetic and real blurred images show that our method outper-

forms several state-of-the-art methods, both in terms of speed and
restoration quality. Ongoing research aims at developing adequate
stopping criteria for the inner ADMM algorithms, as well as for the
outer iterations, namely following our recent work in [6].
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