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ABSTRACT

The alternating direction method of multipliers (ADMM) is an
efficient optimization tool that achieves state-of-the-art speed in sev-
eral imaging inverse problems, by splitting the underlying problem
into simpler, efficiently solvable sub-problems. In deconvolution,
one of these sub-problems requires a matrix inversion, which has
been shown to be efficiently computable (via the FFT), if the obser-
vation operator is circulant, i.e., under periodic boundary conditions.
We extend ADMM-based image deconvolution to a more realistic
scenario: unknown boundaries. The observation is modeled as the
composition of a periodic convolution with a spatial mask that ex-
cludes the regions where the periodic convolution is invalid. We
show that the resulting algorithms inherit the convergence guaran-
tees of ADMM and illustrate its performance on non-periodic de-
blurring under frame-based regularization.

Index Terms— Image deconvolution, alternating direction
method of multipliers (ADMM), boundary conditions, non-periodic
deconvolution, inpainting.

1. INTRODUCTION

In image deconvolution, the pixels located near the boundary of the
observed image depend on pixels (of the unknown image) located
outside of its domain. Despite that, an adequate treatment of these
unobserved boundary pixels is almost always avoided in the litera-
ture, where the deconvolution is typically tackled by assuming one of
the classical boundary condition (BC) [17], such as zero (or Dirich-
let), reflexive (or Neumann), or anti-reflexive [10]. For the sake of
simplicity and computational convenience, most fast deconvolution
algorithms assume periodic BC, which has the advantage of allow-
ing convolutions to be efficiently carried out using the FFT. How-
ever, as illustrated in Fig. 1, these BC are quite unnatural and are not
accurate models of most real imaging systems. Deconvolution algo-
rithms that ignore this mismatch and wrongly assume periodic BC
lead to the well known boundary artifacts. A better assumption about
the image boundaries is simply that they are unobserved/unknown,
which models well a canonical imaging system where an image sen-
sor captures the cental part of the image projected by the lens.

Deconvolution algorithms based on the alternating direction
method of multipliers (ADMM [14, 5]) hold the state-of-the-art in
terms of speed, having been shown (see, e.g., [1, 2]) to be consider-
ably faster than the classical iterative shrinkage-thresholding (IST)
algorithms [9, 12] and their accelerated versions [3, 4, 23]. The
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Fig. 1. Illustration of the (unnatural) assumptions underlying the
periodic, reflexive, and zero boundary conditions.

standard ADMM-based approach to image deconvolution involves a
sub-problem that requires a matrix inversion. This inversion can be
efficiently computed in the case of periodic BC (as shown in [1, 2]),
but not if we assume unknown boundaries. In this paper, we address
this issue by factoring the observation operator into a convolution
and a spatial mask that keeps only those pixels that no not depend on
the boundary values. We propose an instance of ADMM in which
these two operations are decoupled into separate sub-problems that
can be efficiently handled.

Assuming unknown boundaries to avoid the boundary artifacts
in image deconvolution has been proposed by several authors [6, 16,
19, 22]. In [19], unknown boundaries were considered in the con-
text of quadratic (Tikhonov) regularization and it was shown that the
corresponding matrix inversion can be reduce to an FFT-based in-
version followed by the solution (via, e.g., conjugate gradient – CG)
of a much smaller system (of the same dimension as the unknown
boundary). Very recently, [22] adapted this technique to deconvo-
lution under non-smooth regularization, by proposing an algorithm
based on variable splitting and quadratic penalization. That method
is related to, but it is not ADMM, thus has no convergence guar-
antees. Recent work in [16] proposes an approach for deblurring
with unknown boundaries, using MFISTA [3], which is known to be
slower than ADMM-based methods [1].

2. ADMM

Following [13], consider the unconstrained minimization problem

min
z∈Rd

J∑
j=1

gj(H
(j)z), (1)

where H(j) ∈ R
pj×d are arbitrary matrices, and gj : Rpj → R are

convex functions. The instance of ADMM proposed in [13] to solve
(1) is presented in Algorithm 1, where ζ(j) ∈ R

pj denotes the j-th

582978-1-4799-2341-0/13/$31.00 ©2013 IEEE ICIP 2013



block of ζ in the following partition

ζ =

⎡
⎢⎣
ζ(1)

...
ζ(J)

⎤
⎥⎦ ,

and a similar notation is used for uk and dk.
Lines 4 and 6 of this algorithm are the main steps and those

that can pose computational challenges. These steps, however, were
shown to have fast closed-form solutions in several cases of inter-
est [1, 13, 18, 21]. In particular, the matrix inversion in line 4 can
sometimes (e.g., in periodic deconvolution problems) be computed
cheaply, by exploiting the matrix inversion lemma, the FFT and other
fast transforms (see [1, 13]), while line 6 corresponds to a so-called
Moreau proximity operator (MPO), defined (for some function f ) as

proxf (y) = argmin
x

1

2
‖y− x‖22 + f(x);

for several choices of f , proxf has a simple closed form [7].

Algorithm 1:

1 Initialization: set k = 0, choose μ1, ..., μJ > 0, u0, d0.
2 repeat
3 ζ ← uk + dk

4 zk+1 ←
( J∑

j=1

μj(H
(j))∗H(j)

)−1 J∑
j=1

μj(H
(j))∗ζ(j)

5 for j = 1 to J do
6 u(j)

k+1 ← proxgj/µj
(H(j)zk+1 − d(j)

k )

7 d(j)
k+1 ← d(j)

k − (H(j)zk+1 − u(j)
k+1 )

8 end
9 k ← k + 1

10 until stopping criterion is satisfied

Under the condition that (1) has a solution, Algorithm 1 inher-
its the convergence guarantees of ADMM given in [11]. For our
formulation, sufficient conditions for Algorithm 1 to converge to a
solution of 1 are: μ1, ..., μJ > 0; all functions gj are proper, closed,
and convex; the matrix G =

[
(H(1))∗...(H(J))∗

]∗ ∈ R
p×d has full

column rank (where ()∗ denotes matrix/vector conjugate transpose,
and p =

∑
j pj).

3. PROPOSED APPROACH

This section introduces the proposed approach for deblurring with
unknown boundaries. The description will use the frame-based anal-
ysis formulation, arguably one of the standard forms of regulariza-
tion for this class of imaging inverse problems [1, 2, 13, 20]. Ex-
tension to other popular regularizers, namely total variation (TV) or
frame-based synthesis formulations is straightforward.

3.1. Deconvolution with periodic BC

We begin by considering the usual observation model used in image
deconvolution with periodic BC: y = Ax + w, where x ∈ R

n

and y ∈ R
n are vectors containing all pixels (lexicographically or-

dered) of the original and the observed images, respectively, w de-

notes white Gaussian noise, and A ∈ R
n×n is the matrix represent-

ing the (periodic) convolution with some filter. In the frame-based
analysis approach, the estimated image, x̂ ∈ R

n, is obtained as

x̂ = arg min
x∈Rn

1

2
‖y− Ax‖22 + λ φ(Px), (2)

where P ∈ R
q×n (q ≥ n) is the analysis operator of some frame

(e.g., a redundant wavelet frame or a curvelet frame [15]), φ is a
regularizer encouraging the vector of frame analysis coefficients to
be sparse, and λ > 0 is the regularization parameter. A typical
choice for φ, herein adopted, is φ(z) = ‖z‖1 =

∑
i |zi|.

Problem (2) can be written in the form (1), with J = 2 and

g1 : Rn → R, g1(v) =
1

2
‖y − v‖22, (3)

g2 : Rq → R, g2(z) = λ‖z‖1, (4)

H(1) ∈ R
n×n, H(1) = A, (5)

H(2) ∈ R
q×n, H(2) = P. (6)

The Moreau proximity operators of g1 and g2, key components
of Algorithm 1 (line 6), have simple expressions,

proxg1/µ1
(v) =

y + μ1v

1 + μ1
, (7)

proxg2/µ2
(z) = soft

(
z,

λ

μ2

)
, (8)

where “soft” denotes the well-known soft-threshold function

soft(v, γ) = sign(v)�max{|v| − τ, 0}, (9)

where the sign, max, and absolute value functions are component-
wise, and � denotes the component-wise product.

Line 4 of Algorithm 1 (the other key component) has the form

zk+1 ←
(
A∗A+

μ2

μ1
P∗P

)−1(
A∗ζ(1) +

μ2

μ1
P∗ζ(2)). (10)

Assuming that P corresponds to a Parseval1 frame (i.e., P∗P = I,
although possibly PP∗ �= I), the matrix inverse in (10) is simply
computed in the DFT domain(

A∗A+
μ2

μ1
I
)−1

= U∗
(
|Λ|2 + μ2

μ1
I
)−1

U, (11)

in which U and U∗ are the unitary matrices representing the DFT
and its inverse, and Λ is the diagonal matrix of the DFT coefficients
of the convolution kernel (i.e., A = U∗ΛU).

The inversion in (11) has O(n log n) cost, since matrix
(|Λ|2 +

(μ2/μ1)I
)

is diagonal and the products by U and U∗ (the DFT
and its inverse) can be computed using the FFT. The leading cost
of each application of (10) (line 4 of Algorithm 1) is thus either the
O(n log n) cost associated with (11) or the cost of the products by
P∗. For most tight frames used in image restoration, this product has
fast O(n log n) algorithms [15]. We conclude that, under periodic
BC and for a large class of frames, each iteration of Algorithm 1 for
solving (2) has O(n log n) cost.

Finally, this instance of ADMM has convergence guarantees,
since: (1) g2 is coercive, so is the objective function in (2), thus its
set of minimizers is not empty [8]; (2) g1 and g2 are proper, closed,

1Obviously, we only need the frame to be tight (P∗P = ωI, [15]), but
assuming ω = 1 lightens the notation and doesn’t cause loss of generality.
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convex functions; (3) matrix H(2) = I obviously has full column
rank, which implies that G = [A∗ I∗]∗ also has full column rank.

3.2. Deconvolution with unknown boundaries

In the unknown boundary model, the observed image y ∈ R
m de-

pends on a larger sharp image x ∈ R
n that contains unobserved

boundary pixels,
y = MAx+ n, (12)

where M ∈ {0, 1}m×n (with m < n) is a masking matrix, whose
role is to observe only the subset of the image domain in which the
elements of Ax do not depend on the boundary pixels. For a blurring
filter of a limited support of size (1 + 2 l)× (1 + 2 l), matrix M re-
moves a band of width l of the outermost pixels of the full convolved
image Ax. The BC assumed for the convolution represented by A
is thus irrelevant, and we may adopt periodic BCs, for computational
convenience.

Problem (12) can be seen as hybrid of deconvolution and in-
painting [6], where the missing pixels constitute the unknown
boundary. Inpainting and periodic deconvolution are thus partic-
ular cases of this general model (obtained for A = I and M = I,
respectively). This model is also suitable for problems where some
interior pixels are missing; e.g., in a deblurring problem with sat-
urated (thus unreliable) pixels, or in a super-resolution problem.
More generally, matrix M can take values in [0, 1], allowing to
differently weight the observed pixels; this case allows spatially
varying regularization, but will not be considered in this paper.

Under model (12), the frame-based analysis formulation (2)
changes to

x̂ = arg min
x∈Rm

1

2
‖y−MAx‖22 + λ‖Px‖1. (13)

At this point, one could be tempted to map (13) into (1) using (3),
(4), and (6), and simply change (5) into

H(1) ∈ R
m×n, H(1) = MA. (14)

The problem with this choice is that the matrix to be inverted in line
4 of Algorithm 1 would become(

A∗M∗MA+ (μ2/μ1) I
)
, (15)

which, unlike (10), is not easily invertible due to the presence of M.
To sidestep this difficulty, we propose to decouple the action of the
(DFT diagonal) operator A from the spatial operator M, by keeping
(4), (5), and (6), and replacing (3) by

g1 : Rn → R, g1(v) =
1

2
‖y −Mv‖22. (16)

With this choice, line 4 of Algorithm 1 is still given by (10) (with its
efficient FFT-based implementation (11)), while mask operator M
only affects the Moreau proximity operator of the new g1,

proxg1/µ1
(v) = argmin

u
‖Mu− y‖22 + μ1‖u− v‖22 (17)

=
(
M∗M+ μ1I

)−1(
M∗y + μ1v

)
. (18)

Notice that, due to the special structure of M, matrix M∗M is di-
agonal, thus the inversion in (18) has O(n) cost, the same being
true about the product M∗y, which corresponds to extending the
observed image y to the size of x, by creating a boundary of zeros
around it. Of course, both

(
M∗M+ μ1I

)−1
and M∗y can be pre-

computed and then used throughout the algorithm, as long as μ1 is
kept constant.

Similarly to what was shown for the periodic BC case, the pro-
posed ADMM approach for deblurring with unknown boundaries
has a leading cost of O(n log n) per iteration. Considering the simi-
larities of our approach with the one of Section 3.1, it is sufficient to
confirm that the new g1 in (16) is proper, closed, and convex (which
is obviously the case), to guarantee the convergence of the proposed
ADMM algorithm.

4. EXPERIMENTS

To test our approach, the 256× 256 Lena image was degraded with
four 19×19 blurs, namely, uniform (square), out-of-focus (circular),
linear motion (at 45o), and Gaussian, followed by the addition of
Gaussian white noise at 40dB, 50dB, and 60dB blurred signal to
noise ratio (BSNR). The observed images contain only the region
where the convolution does not depend on the boundaries: for 19×
19 blurs, the observed images contain 238× 238 pixels.

On each degraded image, the algorithm proposed in Section
3.2 was run, as well as the periodic version (Section 3.1), with
and without pre-processing the observed image with the “ed-
getapper” MATLAB function. The algorithms are stopped when
‖zk − zk−1‖2/‖zk‖2 < 10−3 and λ was adjusted to yield the
highest SNR of the reconstructed image.

Table 1 shows, for each blur and BSNR, the ISNR (improve-
ment in SNR) values obtained with the three algorithms mentioned
in the previous paragraph. The huge impact of wrongly assuming
periodic BC is clear in these results, as well as in the example shown
in Fig. 2. Although the “edgetaper” function is able to somewhat
mitigate this effect, the visual results are far from acceptable. Notice
also that (as can be seen in Fig. 2), the proposed approach produced
a remarkably accurate estimate of the unobserved boundary region.
Regarding computational cost, the algorithm for unknown bound-
aries is essentially similar to its periodic BC counterpart, which is
known to achieve state-of-the-art convergence speed [1, 2].

deconvolution method
blur, BSNR periodic “edgetaper” proposed

uniform, 60dB -2.52 3.06 10.63
out-of-focus, 60dB -1.50 5.04 14.21
linear motion, 60dB -1.84 7.31 16.41

Gaussian, 60dB -0.33 3.94 4.69

uniform, 50dB -2.53 3.06 9.02
out-of-focus, 50dB -1.50 5.02 10.99
linear motion, 50dB -1.84 7.29 14.63

Gaussian, 50dB -0.33 3.87 4.21

uniform, 40dB -2.54 3.05 6.83
out-of-focus, 40dB -1.50 4.88 7.95
linear motion, 40dB -1.84 7.12 11.22

Gaussian, 40dB -0.33 3.48 3.48

average -1.40 4.76 9.52

Table 1. ISNR values achieved by the 3 tested approaches (see text).

5. CONCLUSIONS AND FUTURE WORK

We proposed a new strategy to extend fast ADMM-based algorithms
in order to address deconvolution problems with unknown bound-
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observed (238× 238) periodic (ISNR = -2.52dB)

edgetaper (ISNR = 3.06dB) proposed (ISRN = 10.63dB)

Fig. 2. Results obtained on the Lena image, degraded by a uniform
19×19 blur at 60dB BSNR, by the three algorithms considered (see
text). Notice that the algorithms that assume periodic BC (in addition
to huge artifacts) produce 238× 238 images, while the proposed al-
gorithm yields 256×256 images, by estimating the unknown bound-
ary (marked by the dashed square).

aries, while previous versions were limited to periodic boundary
conditions. The proposed approach was illustrated using a frame-
based analysis formulation, and the resulting algorithm was shown
to inherit the convergence guarantees of ADMM and to have the
same computational cost per iteration as the version that assumes
periodic boundary conditions.

Besides allowing deblurring with unknown boundaries, the pro-
posed ADMM approach is also applicable to a more general class
of inverse problems, such as super-resolution and simultaneous in-
painting and deblurring; these will be topics of future work.
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