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Abstract—We propose a new fast algorithm for solving one of
the standard formulations of image restoration and reconstruc-
tion which consists of an unconstrained optimization problem
where the objective includes an `2 data-fidelity term and a non-
smooth regularizer. This formulation allows both wavelet-based
(with orthogonal or frame-based representations) regularization
or total-variation regularization. Our approach is based on a
variable splitting to obtain an equivalent constrained optimiza-
tion formulation, which is then addressed with an augmented
Lagrangian method. The proposed algorithm is an instance of
the so-called alternating direction method of multipliers, for which
convergence has been proved. Experiments on a set of image
restoration and reconstruction benchmark problems show that
the proposed algorithm is faster than the current state of the art
methods.

I. INTRODUCTION

A. Problem Formulation

Image restoration/reconstruction is one of the earliest and
most classical linear inverse problems in imaging, dating back
to the 1960’s [1]. In this class of problems, a noisy indirect
observation y, of an original image x, is modeled as

y = Bx + n,

where B is the matrix representation of the direct operator
and n is noise. As is common, we are adopting the vector
notation for images, where the pixels on an M ×N image are
stacked into a an (NM)-vector in, e.g., lexicographic order.
In the sequel, we denote by n the number of elements of x,
thus x ∈ Rn, while y ∈ Rm (m and n may or may not be
equal).

In the particular case of image deblurring/deconvolution, B
is the matrix representation of a convolution operator; if this
convolution is periodic, B is then a (block) circulant matrix.
This type of observation model describes well several physical
mechanisms, such as relative motion between the camera and
the subject (motion blur), bad focusing (defocusing blur), or
a number of other mechanisms which are well modeled by a
convolution. In more general image reconstruction problems,
B represents some linear direct operator, such as a set of to-
mographic projections (Radon transform), a partially observed
(e.g., Fourier) transform, or the loss of part of the image pixels.
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It is well known that the problem of estimating x from
y is ill-posed, thus this inverse problem can only be solved
satisfactorily by adopting some sort of regularization (or prior
information, in Bayesian inference terms). One of the stan-
dard formulations of wavelet-based, regularization of image
restoration/reconstruction problems is built as follows. Let the
unknown image x be represented as a linear combination of
the elements of some frame, i.e., x = Wβ, where β ∈ Rd,
and the columns of the n × d matrix W are the elements
of a wavelet1 frame (an orthogonal basis or a redundant
dictionary). Then, the coefficients of this representation are
estimated from the noisy image, under one of the well-known
sparsity inducing regularizers, such as the `1 norm (see [15],
[18], [21], [22], [23], and further references therein). Formally,
this leads to the following optimization problem:

β̂ = arg min
β

1
2
‖BWβ − y‖22 + τ φ(β) (1)

where φ : Rd → R̄, usually called the regularizer or
regularization function is usually nonsmooth, or maybe even
nonconvex, and τ ≥ 0 is the regularization parameter. This
formulation is referred to as the synthesis approach [19], since
it is based on a synthesis equation where x is synthesized from
its representation coefficients (x = Wβ) which are the object
of the estimation criterion. Of course, the final image estimate
is computed as x̂ = Wβ̂.

An alternative formulation applies a regularizer directly to
the unknown image, leading to criteria of the form

x̂ = arg min
x

1
2
‖Bx− y‖22 + τ φ(x) (2)

where φ : Rn → R̄ is the regularizer. This type of criteria
are usually called analysis approaches, since they’re based
on a regularizer that analyzes the image itself, φ(x), rather
than the coefficients of a representation thereof. Arguably, the
best known and most often used regularizer used in analysis
approaches to image restoration is the total variation (TV)
norm [11], [40]. Wavelet-based analysis approaches are also
possible [19], but will not be considered in this paper.

Finally, it should be mentioned that problems (1) and (2)
can be seen as the Lagrangians of constrained optimization
problems: (1) is the Lagrangian of the constrained problem

min
β

φ(β) subject to ‖BWβ − y‖22 ≤ ε, (3)

1We adopt the generic term “wavelet” to mean any wavelet-like multi-scale
representation, such as “curvelets”, “beamlets”, “ridgelets”.



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010 2

while (2) is the Lagrangian of

min
x

φ(x) subject to ‖Bx− y‖22 ≤ ε. (4)

Specifically, a solution of (3) (for any ε such that this problem
is feasible) is either the null vector, or else is a minimizer
of (1), for some τ > 0 (see [39, Theorem 27.4]). A similar
relationship exists between problems (2) and (4).

B. Previous Algorithms

For any problem of non-trivial dimension, matrices BW,
B, and W cannot be stored explicitly, and it is costly, even
impractical, to access portions (lines, columns, blocks) of
them. On the other hand, matrix-vector products involving
B or W (or their conjugate transposes BH and WH ) can
be done quite efficiently. For example, if the columns of
W contain a wavelet basis or a tight wavelet frame, any
multiplication of the form Wv or WHv can be performed
by a fast wavelet transform algorithm [34]. Similarly, if B
represents a circular convolution, products of the form Bv
or BHv can be performed with the help of the fast Fourier
transform (FFT) algorithm. These facts have stimulated the
development of special purpose methods, in which the only
operations involving B or W (or their conjugate transposes)
are matrix-vector products.

To present a unified view of algorithms for handling (1) and
(2), we write them in a common form

min
x

1
2
‖Ax− y‖22 + τ φ(x) (5)

where A = BW, in the case of (1), while A = B, for (2).
Arguably, the standard algorithm for solving problems of the

form (5) is the so-called iterative shrinkage/thresholding (IST)
algorithm. IST can be derived as an expectation-maximization
(EM) algorithm [22], as a majorization-minimization (MM,
[29]) method [15], [23], or as a forward-backward splitting
technique [13], [27]. A key ingredient of IST algorithms is
the so-called shrinkage/thresholding function, also known as
the Moreau proximal mapping [13] or the denoising function,
associated to the regularizer φ, which provides the solution
of the corresponding pure denoising problem. Formally, this
function is denoted as Ψτφ : Rm → Rm and defined as

Ψτφ(y) = arg min
x

1
2
‖x− y‖22 + τφ(x). (6)

Notice that if φ is proper and convex, the function being
minimized is proper and strictly convex, thus the minimizer
exists and is unique making the function well defined [13].

For some choices of φ, the corresponding denoising func-
tions Ψτφ have well known closed forms. For example,
choosing φ(x) = ‖x‖1 =

∑
i |xi| (the `1 norm) leads to

Ψτ`1(y) = soft(y, τ), where soft(·, τ) denotes the component-
wise application of the function y 7→ sign(y)max{|y| − τ, 0}.

If φ(x) = ‖x‖0 = |{i : xi 6= 0}|, usually referred to as
the `0 “norm” (although it is not a norm), despite the fact
that this regularizer is not convex, the corresponding shrink-
age/thresholding function also has a simple close form: the
so-called hard-threshold function, Ψτ`0(y) = hard(y,

√
2 τ),

where hard(·, a) denotes the component-wise application of

the function y 7→ y1|y|≥a. A comprehensive coverage of
Moreau proximal maps can be found in [13].

Each IST iteration for solving (5) is given by

xk+1 = Ψτφ

(
xt − 1

γ
AH (Axk − y)

)
, (7)

where 1/γ is a step size. Notice that AH (Axk − y) is the
gradient of the data-fidelity term (1/2)‖Ax− y‖22, computed
at xk; thus, each IST iteration takes a step of length 1/γ
in the direction of the negative gradient of the data-fidelity
term, followed by the application of the shrinkage/thresholding
function associated with the regularizer φ.

It has been shown that if γ > ‖A‖22/2 and φ is convex, the
algorithm converges to a solution of (5) [13]. However, it is
known that IST may be quite slow, specially when τ is very
small and/or the matrix A is very ill-conditioned [4], [5], [21],
[27]. This observation has stimulated work on faster variants
of IST, which we will briefly review in the next paragraphs.

In the two-step IST (TwIST) algorithm [5], each iterate
depends on the two previous iterates, rather than only on the
previous one (as in IST). This algorithm may be seen as a
non-linear version of the so-called two-step methods for linear
problems [2]. TwIST was shown to be considerably faster
than IST on a variety of wavelet-based and TV-based image
restoration problems; the speed gains can reach up to two
orders of magnitude in typical benchmark problems.

Another two-step variant of IST, named fast IST algorithm
(FISTA), was recently proposed and also shown to clearly
outperform IST in terms of speed [4]. FISTA is a non-smooth
variant of Nesterov’s optimal gradient-based algorithm for
smooth convex problems [35], [36].

A strategy recently proposed to obtain faster variants of
IST consists in relaxing the condition γ > γmin ≡ ‖A‖22/2. In
the SpaRSA (standing for sparse reconstruction by separable
approximation) framework [44], [45], a different γt is used in
each iteration (which may be smaller than γmin, meaning larger
step sizes). It was shown experimentally that SpaRSA clearly
outperforms standard IST. A convergence result for SpaRSA
was also given in [45].

Finally, when the slowness is caused by the use of a small
value of the regularization parameter, continuation schemes
have been found quite effective in speeding up the algorithm.
The key observation is that IST algorithm benefits significantly
from warm-starting, i.e., from being initialized near a mini-
mum of the objective function. This suggests that we can use
the solution of (5), for a given value of τ , to initialize IST
in solving the same problem for a nearby value of τ . This
warm-starting property underlies continuation schemes [24],
[27], [45]. The idea is to use IST to solve (1) for a larger value
of τ (which is usually fast), then decrease τ in steps toward its
desired value, running IST with warm-start for each successive
value of τ .

C. Proposed Approach

The approach proposed in this paper is based on the
technique known as variable splitting, which goes back at least
to Courant in the 40’s [14], [43]. Since the objective function
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(5) to be minimized is the sum of two functions, the idea is
to split the variable x into a pair of variables, say x and v,
each to serve as the argument of each of the two functions,
and then minimize the sum of the two functions under the
constraint that the two variables have to be equal, so that the
problems are equivalent. Although variable splitting is also the
rationale behind the recently proposed split-Bregman method
[25], in this paper, we exploit a different type of splitting to
attack problem (5). Below we will explain this difference in
detail.

The constrained optimization problem resulting from vari-
able splitting is then dealt with using an augmented Lagrangian
(AL) scheme [37], which is known to be equivalent to the
Bregman iterative methods recently proposed to handle imag-
ing inverse problems (see [46] and references therein). We
prefer the AL perspective, rather than the Bregman iterative
view, as it is a standard and more elementary optimization
tool (covered in most textbooks on optimization). In particular,
we solve the constrained problem resulting from the variable
splitting using an algorithm known as alternating direction
method of multipliers (ADMM) [17].

The application of ADMM to our particular problem in-
volves solving a linear system with the size of the unknown
image (in the case of problem (2)) or with the size of its
representation (in the case of problem (1)). Although this
seems like an unsurmountable obstacle, we show that it is not
the case. In many problems of the form (2), such as (circular)
deconvolution, recovery of missing samples, or reconstruction
from partial Fourier observations, this system can be solved
very quickly in closed form (with O(n) or O(n log n) cost).
For problems of the form (1), we show how exploiting the
fact that W is a tight Parseval frame, this system can still be
solved efficiently (typically with O(n log n) cost.

We report results of a comprehensive set of experiments, on
a set of benchmark problems, including image deconvolution,
recovery of missing pixels, and reconstruction from partial
Fourier transform, using both frame-based and TV-based reg-
ularization. In all the experiments, the resulting algorithm is
consistently and considerably faster than the previous state of
the art methods FISTA [4], TwIST [5], and SpaRSA [45].

Arguably, the speed of the proposed algorithm, which we
term SALSA (split augmented Lagrangian shrinkage algo-
rithm), comes from the fact that it uses (a regularized version
of) the Hessian of the data fidelity term of (5), that is, AHA,
while the above mentioned algorithms essentially only use
gradient information.

D. Organization of the Paper

Section II describes the basic ingredients of SALSA: vari-
able splitting, augmented Lagrangians, and ADMM. In Section
III, we show how these ingredients are combined to obtain the
proposed SALSA. Section IV reports experimental results, and
Section V ends the paper with a few remarks and pointers to
future work.

II. BASIC INGREDIENTS

A. Variable Splitting

Consider an unconstrained optimization problem in which
the objective function is the sum of two functions, one of
which is written as the composition of two functions,

min
u∈Rn

f1(u) + f2 (g(u)) , (8)

where g : Rn → Rd. Variable splitting is a very simple
procedure that consists in creating a new variable, say v,
to serve as the argument of f2, under the constraint that
g(u) = v. This leads to the constrained problem

min
u∈Rn, v∈Rd

f1(u) + f2(v)

subject to g(u) = v,
(9)

which is clearly equivalent to unconstrained problem (8):
in the feasible set {(u,v) : g(u) = v}, the objective
function in (9) coincides with that in (8). The rationale behind
variable splitting methods is that it may be easier to solve the
constrained problem (9) than it is to solve its unconstrained
counterpart (8).

The splitting idea has been recently used in several image
processing applications. A variable splitting method was used
in [43] to obtain a fast algorithm for TV-based image restora-
tion. Variable splitting was also used in [6] to handle problems
involving compound regularizers; i.e., where instead of a
single regularizer τφ(x) in (5), one has a linear combination
of two (or more) regularizers τ1φ1(x) + τ2φ2(x). In [6] and
[43], the constrained problem (9) is attacked by a quadratic
penalty approach, i.e., by solving

min
u∈Rn, v∈Rd

f1(u) + f2(v) +
α

2
‖g(u)− v‖22, (10)

by alternating minimization with respect to u and v, while
slowly taking α to very large values (a continuation process),
to force the solution of (10) to approach that of (9), which in
turn is equivalent to (8). The rationale behind these methods
is that each step of this alternating minimization may be
much easier than the original unconstrained problem (8). The
drawback is that as α becomes very large, the intermediate
minimization problems become increasingly ill-conditioned,
thus causing numerical problems (see [37], Chapter 17).

A similar variable splitting approach underlies the recently
proposed split-Bregman methods [25]; however, instead of
using a quadratic penalty technique, those methods attack
the constrained problem directly using a Bregman iterative
algorithm [46]. It has been shown that, when g is a linear
function, i.e., g(u) = Gu, the Bregman iterative algorithm is
equivalent to the augmented Lagrangian method [46], which
is briefly reviewed in the following subsection.

B. Augmented Lagrangian

Consider the constrained optimization problem

min
z∈Rn

E(z)

s.t. Hz− b =0,
(11)
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where b ∈ Rp and H ∈ Rp×n, i.e., there are p linear
equality constraints. The augmented Lagrangian function for
this problem is defined as

LA(z, λ, µ) = E(z) + λT (b−Hz) +
µ

2
‖Hz− b‖22, (12)

where λ ∈ Rp is a vector of Lagrange multipliers and µ ≥ 0
is called the penalty parameter [37].

The so-called augmented Lagrangian method (ALM) [37],
also known as the method of multipliers (MM) [28], [38],
consists in minimizing LA(z, λ, µ) with respect to z, keeping
λ fixed, then updating λ, and repeating these two steps
until some convergence criterion is satisfied. Formally, the
ALM/MM works as follows:

Algorithm ALM/MM
1. Set k = 0, choose µ > 0, and λ0.
2. repeat
3. zk+1 ∈ arg minz LA(z,λk, µ)
4. λk+1 = λk + µ(Hzk+1 − b)
5. k ← k + 1
6. until stopping criterion is satisfied.

It is also possible (and even recommended) to update the
value of µ in each iteration [37], [3, Chap. 9]. However, unlike
in the quadratic penalty approach, the ALM/MM does not
require µ to be taken to infinity to guarantee convergence to
the solution of the constrained problem (11).

Notice that (after a straightforward complete-the-squares
procedure) the terms added to E(z) in the definition of the
augmented Lagrangian LA(z, λk, µ) in (12) can be written
as a single quadratic term (plus a constant independent of z,
thus irrelevant for the ALM/MM), leading to the following
alternative form of the algorithm (which makes clear its
equivalence with the Bregman iterative method [46]):

Algorithm ALM/MM (version II)
1. Set k = 0, choose µ > 0 and d0.
2. repeat
3. zk+1 ∈ arg minz E(z) + µ

2 ‖Hz− dk‖22
4. dk+1 = dk − (Hzk+1 − b)
5. k ← k + 1
6. until stopping criterion is satisfied.

It has been shown that, with adequate initializations, the
ALM/MM generates the same sequence as a proximal point
algorithm applied to the Lagrange dual of problem (11) [30].
Moreover, the sequence {dk} converges to a solution of this
dual problem and all cluster points of the sequence {zk} are
solutions of the (primal) problem (11) [30].

C. ALM/MM for Variable Splitting

We now review how the ALM/MM can be used to address
problem (9), in the particular case where g(u) = Gu, i.e.,

min
u∈Rn, v∈Rd

f1(u) + f2(v)

subject to Gu = v,
(13)

where G ∈ Rd×n. Problem (13) can be written in the form
(11) using the following definitions:

z =
[

u
v

]
, b = 0, H = [G − I ], (14)

and

E(z) = f1(u) + f2(v). (15)

With these definitions in place, Steps 3 and 4 of the ALM/MM
(version II) can be written as follows:

(uk+1,vk+1) ∈ arg min
u,v

f1(u) + f2(v) +

µ

2
‖Gu− v − dk‖22 (16)

dk+1 = dk − (Guk+1 − vk+1) (17)

The minimization problem (16) is not trivial since, in
general, it involves non-separable quadratic and possibly non-
smooth terms. A natural to address (16) is to use a non-
linear block-Gauss-Seidel (NLBGS) technique, in which (16)
is solved by alternatingly minimizing it with respect to u and
v, while keeping the other variable fixed. Of course this raises
several questions: for a given dk, how much computational
effort should be spent in approximating the solution of (16)?
Does this NLBGS procedure converge? Experimental evidence
in [25] suggests that an efficient algorithm is obtained by
running just one NLBGS step. It turns out that the resulting
algorithm is the so-called alternating direction method of
multipliers (ADMM) [17], which works as follows:

Algorithm ADMM
1. Set k = 0, choose µ > 0, v0, and d0.
2. repeat
3. uk+1 ∈ arg minu f1(u) + µ

2 ‖Gu− vk − dk‖22
4. vk+1 ∈ arg minv f2(v) + µ

2 ‖Guk+1 − v − dk‖22
5. dk+1 = dk − (Guk+1 − vk+1)
6. k ← k + 1
7. until stopping criterion is satisfied.

For later reference, we now recall the theorem by Eckstein
and Bertsekas, in which convergence of (a generalized version
of) ADMM is shown. This theorem applies to problems of the
form (8) with g(u) = Gu, i.e.,

min
u∈Rn

f1(u) + f2 (Gu) , (18)

of which (13) is the constrained optimization reformulation.

Theorem 1 (Eckstein-Bertsekas, [17]): Consider problem
(18), where f1 and f2 are closed, proper convex functions,
and G ∈ Rd×n has full column rank. Consider arbitrary
µ > 0 and v0,d0 ∈ Rd. Let {ηk ≥ 0, k = 0, 1, ...} and
{νk ≥ 0, k = 0, 1, ...} be two sequences such that

∞∑

k=0

ηk < ∞ and
∞∑

k=0

νk < ∞.
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Consider three sequences {uk ∈ Rn, k = 0, 1, ...}, {vk ∈
Rd, k = 0, 1, ...}, and {dk ∈ Rd, k = 0, 1, ...} that satisfy

ηk ≥
∥∥∥uk+1 − arg min

u

{
f1(u) +

µ

2
‖Gu−vk−dk‖22

}∥∥∥

νk ≥
∥∥∥vk+1 − arg min

v

{
f2(v) +

µ

2
‖Guk+1−v−dk‖22

}∥∥∥
dk+1 = dk − (Guk+1 − vk+1).

Then, if (18) has a solution, the sequence {uk} converges,
uk → u∗, where u∗ is a solution of (18). If (18) does not have
a solution, then at least one of the sequences {vk} or {dk}
diverges.

Notice that the ADMM algorithm defined above generates
sequences {uk}, {vk}, and {dk} which satisfy the conditions
in Theorem 1 in a strict sense (i.e., with ηk = µk = 0). One
of the important consequences of this theorem is that it shows
that it is not necessary to exactly solve the minimizations in
lines 3 and 4 of ADMM; as long as sequence of errors is
absolutely summable, convergence is not compromised.

The proof of Theorem 1 is based on the equivalence
between ADMM and the so-called Douglas-Rachford splitting
method (DRSM) applied to the dual of problem (18). The
DRSM was recently used for image recovery problems in
[12]. For recent and comprehensive reviews of ALM/MM,
ADMM, DRSM, and their relationship with Bregman and
split-Bregman methods, see [26], [42].

III. PROPOSED METHOD

A. Constrained Optimization Formulation of Image Recovery

We now return to the unconstrained optimization formu-
lation of regularized image recovery, as defined in (5). This
problem can be written in the form (18), with

f1(x) =
1
2
‖Ax− y‖22 (19)

f2(x) = τφ(x) (20)
G = I. (21)

The constrained optimization formulation is thus

min
x,v∈Rn

1
2‖Ax− y‖22 + τφ(v)

subject to x = v.
(22)

At this point, we are in a position to clearly explain the
difference between this formulation and the splitting exploited
in split-Bregman methods (SBM) for image recovery [25].
In those methods, the focus of attention is a non-separable
regularizer that can be written as φ(x) = ϕ(Dx), as is
the case of the TV norm. The variable splitting used in
SBM addresses this non-separability by defining the following
constrained optimization formulation:

min
x,v∈Rn

1
2‖Ax− y‖22 + τϕ(v)

subject to Dx = v.
(23)

In contrast, we assume that the Moreau proximal mapping
associated to the regularizer φ, i.e., the function Ψτφ(·)
defined in (6), can be computed efficiently. The goal of our
splitting is not to address the difficulty raised by a non-
separable and non-quadratic regularizer, but to exploit second

order (Hessian) information of the function f1, as will be
shown below.

B. Algorithm and Its Convergence

Inserting the definitions given in (19)–(21) in the ADMM
presented in the previous section yields the proposed SALSA
(split augmented Lagrangian shrinkage algorithm).

Algorithm SALSA
1. Set k = 0, choose µ > 0, v0, and d0.
2. repeat
3. xk+1 = arg minx ‖Ax− y‖22 + µ‖x− vk − dk‖22
4. vk+1 = arg minv τφ(v) + µ

2 ‖xk+1 − v − dk‖22
5. dk+1 = dk − (xk+1 − vk+1)
6. k ← k + 1
7. until stopping criterion is satisfied.

Since SALSA is an instance of ADMM with G = I, the
full column rank condition in Theorem 1 is satisfied. If the
minimizations in lines 3 and 4 are solved exactly, we can then
invoke Theorem 1 to guarantee the convergence of SALSA.

In line 3 of SALSA, a strictly convex quadratic function has
to be minimized, which leads to the following linear system

xk+1 =
(
AHA + µ I

)−1 (
AHy + µx′k

)
, (24)

where x′k = vk + dk. As shown in the next subsection, this
linear system can be solved exactly (naturally, up to numerical
precision), i.e., non-iteratively, for a comprehensive set of
situations of interest. The matrix AHA + µ I can be seen
as a regularized (by the addition of µI) version of the Hessian
of f1(x) = (1/2)‖Ax− y‖22, thus SALSA does use second
order information of this function. Notice also that (24) is
formally similar to the maximum a posteriori (MAP) estimate
of x, from observations y = Ax + n (where n is white
Gaussian noise of variance 1/µ) under a Gaussian prior of
mean x′k and covariance I.

The problem in line 4 is, by definition, the Moreau proximal
mapping of φ applied to v′k = xk+1 − dk, thus its solution
can be written as

vk+1 = Ψτφ/µ(v′k). (25)

If this mapping can be computed exactly in closed form
(for example, if φ(x) = ‖x‖1 thus Ψ is simply a soft
threshold), then, by Theorem 1, SALSA is guaranteed to
converge. If Ψ does not have a closed form solution and
requires itself an iterative algorithm (e.g., if φ is the TV norm),
then convergence of SALSA still holds if one can guarantee
that the error sequence νk (see Theorem 1) is summable. In
principle, this can be achieved if the iterative algorithm used
to approximate Ψ is initialized with the result of the previous
outer iteration, and a decreasing stopping threshold is used;
this idea will be exploited in a future paper. In our experiments
with TV regularization reported in this paper, we use a fixed
number of iterations of Chambolle’s algorithm to approximate
Ψ; this was empirically found not to compromise convergence
of SALSA.
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C. Computing xk+1

As stated above, we are interested in problems where it is
not feasible to explicitly form matrix A; this might suggest
that it is not easy, or even feasible, to compute the inverse
in (24). However, as shown next, in a number of problems
of interest, this inverse can be computed very efficiently.
Problems such as non-cyclic deconvolution, for which the term(
AHA + µ I

)
is not invertible will be addressed in a future

paper.

1) Deconvolution with Analysis Prior: In this case we
have A = B (see (1), (2), and (5)), where B is the matrix
representation of a circular convolution. This is the simplest
case, since the inverse

(
BHB + µ I

)−1 can be computed
in the Fourier domain. Although this is an elementary and
well-known fact, we include the derivation for the sake of
completeness. Assuming that the convolution is periodic (other
boundary conditions can be addressed with minor changes), B
is a block-circulant matrix with circulant blocks which can be
factorized as

B = UHDU, (26)

where U is the matrix that represents the 2D discrete Fourier
transform (DFT), UH = U−1 is its inverse (U is unitary, i.e.,
UUH = UHU = I), and D is a diagonal matrix containing
the DFT coefficients of the convolution operator represented
by B. Thus,

(
BHB + µ I

)−1
=

(
UHD∗DU + µUHU

)−1
(27)

= UH
(|D|2 + µ I

)−1
U, (28)

where (·)∗ denotes complex conjugate and |D|2 the squared
absolute values of the entries of the diagonal matrix D. Since
|D|2 +µ I is diagonal, its inversion has linear cost O(n). The
products by U and UH can be carried out with O(n log n) cost
using the FFT algorithm. The expression in (28) is a Wiener
filter in the frequency domain.

2) Deconvolution with Frame-Based Synthesis Prior:
In this case, we have a problem of the form (1), i.e.,
A = BW, thus the inversion that needs to be performed is(
WHBHBW + µ I

)−1. Assuming that B represents a (pe-
riodic) convolution, this inversion may be sidestepped under
the assumption that matrix W corresponds to a normalized
tight frame (a Parseval frame), i.e., WWH = I. Applying
the Sherman-Morrison-Woodbury (SMW) matrix inversion
formula yields
(
WHBHBW + µ I

)−1

=
1

µ
(I−WH BH

(
BBH + µ I

)−1

B
︸ ︷︷ ︸

F

W).

Let’s focus on the term F ≡ BH
(
BBH + µ I

)−1
B; using

the factorization (26), we have

F = UHD∗ (|D|2 + µ I
)−1

DU. (29)

Since all the matrices in D∗ (|D|2 + µ I
)−1

D are diagonal,
this expression can be computed with O(n) cost, while the
products by U and UH can be computed with O(n log n) cost
using the FFT. Consequently, products by matrix F (defined
in (29)) have O(n log n) cost.

Defining rk =
(
AHy + µx′k

)
=

(
WHBHy + µx′k

)
,

allows writing (24) compactly as

xk+1 =
1
µ

(
rk −WT FW rk

)
. (30)

Notice that multiplication by F corresponds to applying a
filter in the Fourier domain. Finally, notice also that the term
BHWHy can be precomputed, as it does not change during
the algorithm.

The leading cost of each application of (30) will be either
O(n log n) or the cost of the products by WH and W. For
most tight frames used in image processing, these products
correspond to direct and inverse transforms for which fast al-
gorithms exist. For example, when WH and W are the inverse
and direct translation-invariant wavelet transforms, these prod-
ucts can be computed using the undecimated wavelet transform
with O(n log n) total cost [32]. Curvelets also constitute a
Parseval frame for which fast O(n log n) implementations
of the forward and inverse transform exist [7]. Yet another
example of a redundant Parseval frame is the complex wavelet
transform, which has O(n) computational cost [31], [41]. In
conclusion, for a large class of choices of W, each iteration
of the SALSA algorithm has O(n log n) cost.

3) Missing Pixels (Image Inpainting): In the analysis prior
case (TV-based), we have A = B, where the observation
matrix B models the loss of some image pixels. Matrix B
is thus an m × n binary matrix, with m < n, which can be
obtained by taking a subset of rows of an identity matrix. Due
to its particular structure, this matrix satisfies BBT = I. Using
this fact together with the SMW formula leads to

(
BT B + µI

)−1
=

1
µ

(
I− 1

1 + µ
BT B

)
. (31)

Since BT B is equal to an identity matrix with some zeros
in the diagonal (corresponding to the positions of the missing
observations), the matrix in (31) is diagonal with elements ei-
ther equal to 1/(µ+1) or 1/µ. Consequently, (24) corresponds
simply to multiplying (BHy + µx′k) by this diagonal matrix,
which is an O(n) operation.

In the synthesis prior case, we have A = BW, where
B is the binary sub-sampling matrix defined in the previous
paragraph. Using the SMW formula yet again, and the fact
that BBT = I, we have

(
WHBHBW + µ I

)−1

=
1

µ
I− µ

1 + µ
WHBT BW. (32)

As noted in the previous paragraph, BT B is equal to an
identity matrix with zeros in the diagonal (corresponding to
the positions of the missing observations), i.e., it is a binary
mask. Thus, the multiplication by WHBHBW corresponds
to synthesizing the image, multiplying it by this mask, and
computing the representation coefficients of the result. In
conclusion, the cost of (24) is again that of the products by
W and WH , usually O(n log n).

4) Partial Fourier Observations: MRI Reconstruction.: The
final case considered is that of partial Fourier observations,
which is used to model magnetic resonance image (MRI)
acquisition [33], and has been the focus of much recent interest



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010 7

due to its connection to compressed sensing [8], [9], [16]. In
the TV-regularized case, the observation matrix has the form
A = BU, where B is an m× n binary matrix, with m < n,
similar to the one in the missing pixels case (it is formed by
a subset of rows of an identity matrix), and U is the DFT
matrix. This case is similar to (32), with U and UH instead
of W and WH , respectively. The cost of (24) is again that
of the products by U and UH , i.e., O(n log n) if we use the
FFT.

In the synthesis case, the observation matrix has the form
A = BUW. Clearly, the case is again similar to (32), but
with UW and WHUH instead of W and WH , respectively.
Again, the cost of (24) is O(n log n), if the FFT is used to
compute the products by U and UH and fast frame transforms
are used for the products by W and WH .

IV. EXPERIMENTS

In this section, we report results of experiments aimed at
comparing the speed of SALSA with that of the current state
of the art methods (all of which are freely available online):
TwIST2 [5], SpaRSA3 [45], and FISTA4 [4]. We consider three
standard and often studied imaging inverse problems: image
deconvolution (using both wavelet and TV-based regulariza-
tion); image restoration from missing samples (inpainting);
image reconstruction from partial Fourier observations, which
(as mentioned above) has been the focus of much recent
interest due to its connection with compressed sensing and the
fact that it models MRI acquisition [33]. All the experiments
were performed using MATLAB, on a computer equipped
with an Intel Pentium-IV 3.0GHz processor, with 1.5GB of
RAM, and running Windows XP. To compare the speed of the
algorithms, in a way that is as independent as possible from the
different stopping criteria, we first run FISTA and then SALSA
and the other algorithms until they reach the same value of the
objective function. The value of µ for fastest convergence was
found to differ (though not very much) in each case, but a good
rule of thumb, adopted in all the experiments, is µ = τ/10.
The number of calls to the operators B,BH , the number
of iterations, computation times, and improvement in SNR
(ISNR) tabulated for each experiment are the average values
over 10 instances of each experiment. The average ISNR was
computed as 10 log10(

∑
k ‖x−yk‖2∑
k ‖x−x̂k‖2 ), where x is the original

image, yk is the observed image at the kth iteration, and x̂k is
the corresponding estimated image. The plots of the objective
functions, for each experiment, were with a logarithmic x-axis
which was started at 0.01 seconds, for the purpose of display.

A. Image Deblurring with wavelets

We consider five benchmark deblurring problems [22], sum-
marized in Table I, all on the well-known Cameraman image,
with size 256 × 256 pixels. The regularizer is φ(β) = ‖β‖1,
thus Ψτφ is an element-wise soft threshold. The blur operator
B is applied via the FFT. The regularization parameter τ is

2Available at http://www.lx.it.pt/∼bioucas/code/TwIST v1.zip
3Available at http://www.lx.it.pt/∼mtf/SpaRSA/
4Available at http://iew3.technion.ac.il/∼becka/papers/wavelet FISTA.zip

TABLE I
DETAILS OF THE IMAGE DECONVOLUTION EXPERIMENTS.

Experiment blur kernel σ2

1 9× 9 uniform 0.562

2A Gaussian 2
2B Gaussian 8
3A hij = 1/(1 + i2 + j2) 2
3B hij = 1/(1 + i2 + j2) 8

hand tuned in each case for best improvement in SNR, so that
the comparison is carried out in the regime that is relevant in
practice.

In the first set of experiments, W is a redundant Haar
wavelet frame with four levels. The average number of calls to
the operators B,BH , the number of iterations, the computation
times, and the ISNR achieved by each of the algorithms are
presented in Table II. In the second set of experiments, W
is an orthogonal Haar wavelet basis; the results are reported
in Table III. To visually illustrate the relative speed of the
algorithms, Figures 1 and 2 plot the evolution of the objective
function (see Eq. (1)), versus time, in experiments 1, 2B, and
3A, for redundant and orthogonal wavelets, respectively.

B. Image Deblurring with Total Variation

The same five image deconvolution problems listed in Ta-
ble I were also addressed using total variation (TV) regulariza-
tion (more specifically, the isotropic discrete total variation, as
defined in [10]). The corresponding Moreau proximal mapping
is computed using 5 iterations of Chambolle’s algorithm [10].

The average number of calls to the operators B,BH , the
number of iterations, computation times, and the ISNR values
obtained by SALSA, TwIST, SpaRSA, and FISTA are listed
in Table IV. The evolutions of the objective functions (for
experiments 1, 2B, and 3A) are plotted in Figure 3.

We can conclude from Tables II, III, and IV that, in image
deconvolution problems, both with wavelet-based and TV-
based regularization, SALSA is clearly faster by at least
an order of magnitude of the computation time, under our
experimental conditions. If an approximate solution is needed,
in some problems such as experiment 3A for deconvolution
with orthogonal wavelets, it may be possible to get a solution
using TwIST or FISTA, quicker than SALSA.

C. MRI Image Reconstruction

We consider the problem of reconstructing the 128 × 128
Shepp-Logan phantom (shown in Figure 4(a)) from a limited
number of radial lines (22, in our experiments, as shown in
Figure 4(b)) of its 2D discrete Fourier transform. The projec-
tions are also corrupted with circular complex Gaussian noise,
with variance σ2 = 0.5 × 10−3. We use TV regularization
(as described in Subsection IV-B), with the corresponding
Moreau proximal mapping implemented by 40 iterations of
Chambolle’s algorithm [10].

Table V shows the CPU times, numbers of products by
B or BH , numbers of iterations, and MSE values, while
Figure 5 plots the evolution of the objective function over
time. Figure 4(c) shows the estimate obtained using SALSA
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TABLE II
IMAGE DEBLURRING WITH REDUNDANT WAVELETS: COMPUTATIONAL COSTS AND ISNR VALUES.

ALGORITHMS: F=FISTA, T=TWIST, SP = SPARSA, S = SALSA.

Ex Calls to B, BH Iterations CPU time (seconds) ISNR (dB)
F T Sp S F T Sp S F T Sp S F T Sp S

1 1208 256 1064 94 402 123 531 46 240.40 56.09 195.50 22.65 5.46 7.66 7.59 7.73
2A 1067 210 1040 50 355 101 519 24 213.70 46.03 192.50 11.96 3.25 4.26 4.43 4.37
2B 134 62 43 8 44 28 20 3 26.80 13.26 8.21 1.57 3.56 3.49 3.34 3.58
3A 161 74 55 10 53 34 26 4 32.24 16.05 10.44 2.08 6.61 6.19 6.09 6.63
3B 134 53 41 12 44 24 19 5 26.82 11.13 7.849 2.56 4.45 4.22 4.49 4.51

TABLE III
IMAGE DEBLURRING WITH ORTHOGONAL WAVELETS: COMPUTATIONAL COSTS AND ISNR VALUES.

ALGORITHMS: F=FISTA, T=TWIST, SP = SPARSA, S = SALSA.

Ex Calls to B, BH Iterations CPU time (seconds) ISNR (dB)
F T Sp S F T Sp S F T Sp S F T Sp S

1 1367 151 199 14 455 70 98 6 71.10 8.05 10.18 0.74 5.98 6.65 6.53 6.71
2A 1268 98 98 10 422 43 48 4 64.60 5.15 5.02 0.49 0.62 4.08 4.09 4.10
2B 176 66 57 8 58 29 27 3 8.88 3.41 2.96 0.37 1.65 2.37 2.97 2.87
3A 470 47 43 10 156 19 20 4 23.89 2.42 2.28 0.48 4.42 5.13 5.17 5.33
3B 87 35 29 8 29 14 13 3 4.41 1.74 1.57 0.37 3.23 3.68 3.82 3.79

TABLE IV
TV-BASED IMAGE DEBLURRING: COMPUTATIONAL COSTS AND ISNR VALUES.

ALGORITHMS: F=FISTA, T=TWIST, SP = SPARSA, S = SALSA.

Ex Calls to B, BH Iterations CPU time (seconds) ISNR (dB)
F T Sp S F T Sp S F T Sp S F T Sp S

1 869 69 73 13 289 29 35 6 532.70 61.41 64.95 10.96 7.42 5.16 5.73 8.34
2A 104 51 44 6 34 21 21 2 31.90 26.56 21.73 1.35 3.60 3.68 3.61 4.08
2B 73 41 29 8 24 16 13 3 23.09 23.12 15.19 2.52 2.77 2.66 2.59 3.21
3A 123 32 27 6 41 12 12 2 40.55 17.85 14.01 1.37 5.02 4.57 4.55 6.00
3B 222 18 13 6 74 6 5 2 80.34 10.85 6.83 1.36 1.69 1.57 1.70 3.93

(the others are, naturally, visually indistinguishable). As in
the case of some of the image deconvolution problems, if an
approximate solution is needed, it may be possible to get a
solution using TwIST or FISTA, quicker than SALSA. SALSA
is faster by almost an order of magnitude of the computation
time, under our experimental conditions.

TABLE V
MRI RECONSTRUCTION: COMPARISON OF THE VARIOUS ALGORITHMS.

Alg. Calls to B,BH Iters. CPU time (sec.) MSE
FISTA 1520 506 147.1 3.14e-6
TwIST 1073 477 171.3 9.65e-6
SpaRSA 2157 1077 312.4 1.19e-5
SALSA 101 17 23.38 2.45e-6

D. Image Inpainting

Finally, we consider an image inpainting problem, as ex-
plained in Section III-C. The original image is again the
256× 256 Cameraman, and the observation consists in losing
40% of its pixels, as shown in Figure 6. The observations are
also corrupted with Gaussian noise (with an SNR of 40 dB).
The regularizer is again TV implemented by 20 iterations of
Chambolle’s algorithm.

The image estimate obtained by SALSA is shown in
Figure 6, with the original also shown for comparison. The
estimates obtained using TwIST and FISTA were visually very
similar. For this experiment, SpARSA was unable to reach
the value of the objective function reached by the others,

even after 5000 iterations, and therefore will not be compared
here. Table VI compares the performance of SALSA with
that of TwIST and FISTA and Figure 7 shows the evolution
of the objective function for each of the algorithms. For our
experimental conditions, SALSA is considerably faster than
the alternative algorithms.

TABLE VI
IMAGE INPAINTING: COMPARISON OF THE VARIOUS ALGORITHMS.

Alg. Calls to B,BH Iter. CPU time MSE ISNR
(sec.) MSE (dB)

FISTA 1022 340 263.8 92.01 18.96
TwIST 271 124 112.7 100.92 18.54
SALSA 84 28 20.88 77.61 19.68

V. CONCLUSIONS

We have presented a new algorithm for solving the un-
constrained optimization formulation of regularized image
reconstruction/restoration. The approach, which can be used
with different types of regularization (wavelet-based, total
variation), is based on a variable splitting technique which
yields an equivalent constrained problem. This constrained
problem is then addressed using an augmented Lagrangian
method, more specifically, the alternating direction method of
multipliers (ADMM). The algorithm uses a regularized version
of the Hessian of the `2 data-fidelity term, which can be com-
puted efficiently for several classes of problems. Experiments
on a set of standard image recovery problems (deconvolution,
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Fig. 1. Objective function evolution (redundant wavelets): (a) experiment
1A; (b) experiment 2B; (c) experiment 3A.

MRI reconstruction, inpainting) have shown that the proposed
algorithm (termed SALSA, for split augmented Lagrangian
shrinkage algorithm) is faster than previous state-of-the-art
methods. Current and future work involves using a similar
approach to solve constrained formulations of the forms (3)
and (4), addressing the case where the term

(
AHA + µ I

)
in (24) is not invertible, and using as the MPM for TV
regularization, an iterative algorithm initialized with the result
of the previous outer iteration, and a decreasing stopping
threshold.
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