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ABSTRACT

A new method to perform blind image deblurring is proposed.
Very few assumptions are made on the blurring filter and on the orig-
inal image: the blurring filter is assumed to have limited support and
the original image is assumed to be a sharp natural image. A new
prior is used, which gives higher probability to images with sharp
edges. The estimation of both the deblurred image and the blurring
filter is made in a progressive way, first taking into account the main
features of the image, and then proceeding to smaller details.

The results obtained with synthetically blurred images are good,
even when the blur operator is rather ill-conditioned and the blurred
image is noisy. The method also yields improvements in real-life
photographs with focus and motion blurs.

Index Terms— Blind image deconvolution, Image enhancement,
Image restoration, Image edge analysis, Sparse distributions

1. INTRODUCTION

Image deblurring consists of attempting to recover an image which
has been degraded by a linear shift-invariant filtering operation, pos-
sibly with noise. This has applications in fields such as astronomy
[1], remote sensing [2] and biomedical imaging [3], as well as in
everyday life, for the enhancement of blurred photos.

Part of the previous work on image deconvolution has been done
in the non-blind setting, in which the blur operator is exactly known.
Although that is not a valid assumption in many real-life situations,
the problem is still hard, because the blur operator typically is very
ill-conditioned. Several approaches to this problem, using prior in-
formation on the estimated image, can be found in [4, 5, 6].

In blind image deconvolution (BID), both the image and the blur
operator are unknown. The problem is ill-posed, having an infinite
number of solutions. Furthermore, as above, the blur operator often
is rather ill-conditioned. For an overview of BID see [7].

To the authors’ knowledge, there is no previous general solution
for blind deblurring without making relatively strong assumptions
on the blurring operator and/or on the image. A common approach
is to restrict the problem to some blur model, such as motion blur
or focus blur [8, 9]. Among recent works on BID we emphasize
[10, 11, 12, 13]. Both [10] and [11] require extra data for a pre-
liminary training. [12] attempts to encompass less restrictive blurs
through a fuzzy technique, which is applied under the output of blur
models known a priori. A non-iterative, fast method with proof of
convergence is presented in [13]. This method assumes the blur to
be zero-phase and depends on a good initial estimate of the blur.
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Fig. 1. Schematic representation of the deblurring method. Block F
extracts edge intensities.

The approach that we propose in this paper makes very few as-
sumptions on the blurring filter: only that it has a support of size no
larger than a given value and that it generally has a low-pass charac-
ter. We use maximum a posteriori approach with a new prior which
favors images with sharp edges. This leads to a regularizer which
generalizes the well known total variation (in its discrete form) [14].

Directly estimating the image using the new prior doesn’t easily
lead to good solutions. We guide the optimization to a good solution
by first concentrating on the main features of the image, and progres-
sively dealing with smaller details. This leads to quite good results,
even for blur operators that are rather ill-conditioned.

This paper is structured as follows: Section 2 describes the pro-
posed method and introduces the new regularizer. Results are pre-
sented in Section 3. Section 4 concludes.

2. DEBLURRING METHOD

The image degradation can be formulated as

y = Hx + n, (1)

where H is a square matrix corresponding to the linear blurring op-
erator, and y, x and n are column vectors that represent, respectively,
the degraded image, the original image and additive noise, all vec-
torized in lexicographic order.

The method that we propose can be explained with the aid of
Fig. 1, where x is the estimated deblurred image, H the estimated
blur filter and ŷ a reconstructed approximation to the blurred image.
Block F represents an edge extractor: for each pixel of the image
x, it computes the intensity of a possible edge passing through that
pixel. The estimation of both x and H is performed through the
minimization of the objective function

C(x,H) = ‖y − Hx‖2
2 + λR(F (x)), (2)

where λ in (2) is a regularization parameter and R(F (x)) is a regu-
larizing term which favors solutions in which the deblurred image x
has a sparse response to the edge extractor F . More details on F , on
the prior and on the regularizer R are given in Sections 2.1 and 2.2.

The blurring filter H is restricted to a limited support. The learn-
ing is guided to the desired solution by starting with a large regular-
ization parameter λ, which is then progressively reduced, and by



Initialization:
1 – Set H to the identity operator.
2 – Set x equal to y.
3 – Set λ and the prior’s sparsity to the initial values of the corresponding

sequences.
Optimization loop:
4 – Find new x estimate: x = argminx C(x, H) (H fixed).
5 – Find new H estimate: H = argminH C(x, H) (x fixed).
6 – Set λ and the prior’s sparsity to the next values in sequence.
7 – If λ ≥ λmin go back to 4; otherwise stop.

Table 1. Deblurring method

Fig. 2. The edge detection filters in the four orientations that were
used.

starting with a less sparse prior, which is then made sparser. For
efficiency reasons, optimizations relative to x and H are performed
in alternation. An outline of the method is shown in Table 1. We
assume that we have chosen a decreasing sequence of values for λ
and a non-decreasing sequence of values for the prior’s sparsity.

In the beginning of the optimization, with a large λ, only the
main features survive in the estimated image. It makes sense to start
by considering only these features. In fact, while the estimate of
H is poor, an image estimate with little regularization would con-
tain many wrong high frequencies, and only the stronger and largest
features would remain approximately intact. By using a strong regu-
larization we force the process to only consider these features, elimi-
nating the wrong high frequencies. As the optimization proceeds and
the estimate of the blurring filter becomes better, smaller and fainter
features can progressively be used for the estimation. By progres-
sively lowering λ during the optimization, we guide the method to
progressively consider smaller features, leading it to a good solution.
An early image estimate, with a large λ, is shown in Fig. 3 b).

A very sparse prior doesn’t easily allow edges to move. If, ini-
tially, the estimated position of an edge is slightly offset relative to
the correct position, it will be hard for the edge to move to the right
position during the optimization. For this reason, we often start the
optimization process with a prior that is less sparse than the one used
in the final phases of the optimization.

2.1. Edge detector

The edge detector uses a set of edge detection filters, which are ro-
tated versions of a basic filter (Fig. 2). Filter rotation is performed
by rotating the basic filter’s point spread function, using bicubic in-
terpolation. For each pixel, the edge detector computes the outputs
of the filters for all orientations under consideration, gθ , where θ
denotes the filter’s orientation. The detector’s output is given by

f =

��
θ∈Θ

g2
θ , (3)

where Θ is the set of orientations under consideration.

2.2. Image prior

Edges, in natural images, are known to be sparse. They are sparser
in sharp images than in blurred ones, because, in the latter, edges

are “spread” over a larger width. Therefore, a sparse prior on edges
will favor sharp images over blurred ones. The prior that we use as-
sumes that edge intensities at different pixels are independent from
one another (which obviously is a large simplification, but still leads
to good results). The edge intensity at each pixel is assumed to fol-
low a sparse prior with density

p(f) ∝ e−k(f+ε)q

, (4)

where k adjusts for the scale of edge intensities and q controls the
prior’s sparsity; ε allows us to obtain finite lateral derivatives at f =
0 (with 0 < q < 1), making the prior closer to actual observed
distributions and also making the optimization easier.

Assuming, for the noise n in (1), a Gaussian prior with zero
mean and variance σ2, the likelihood of the estimated pair (image +
filter) is given by

p(x,H |y) ∝ e
− 1

2σ2 ‖Hx−y‖22
�

i

e−k(fi+ε)q

, (5)

where i is an index running through all pixels. The log-likelihood is,
apart from an irrelevant constant,

L(x,H |y) = − 1

2σ2
‖Hx − y‖2

2 − k
�

i

(fi + ε)q. (6)

Maximizing this is equivalent to minimizing the cost function

C(x, H) = ‖Hx − y‖2
2 + λ

�
i

(fi + ε)q, (7)

where λ = 2kσ2. This cost function is of the form given in (2).
We recognize, in this equation, the data connection term,

‖Hx − y‖2
2, and the regularizer,

�
i(fi + ε)q. The latter has the

well known total variation regularizer (in its discrete form) as a spe-
cial case, which is obtained by using just two filters which compute
horizontal and vertical differences, and setting ε = 0 and q = 1.

As was said above, we decrease λ during the optimization. There-
fore, except for the last phase of the optimization, λ is not given by
2kσ2. And in fact, even during that last phase, λ still is not given
by that expression because the noise n, besides allowing for possible
noise in the blurred image, also allows for a mismatch between the
estimated filter H and the true one. This mismatch leads to a dif-
ference between the reconstructed blurred image and the actual one,
this difference being treated by the method as noise.

3. EXPERIMENTS

In this section we present several practical examples illustrating the
performance of the proposed method. The first four experiments
involve synthetic blurs and the last two involve actual blurred photos.

We have used, in the experiments, the method described above,
outlined in Table 1. The support of the blurring filter estimate was
limited to a square of size s × s pixels (the specific values of s are
given ahead for each case). In step 5 of the method, where we esti-
mate the blurring filter, we used a safety margin of width 3 around
that square. This means that the filter’s support was limited to a size
(s + 6) × (s + 6) and that, at the end of step 5, the filter estimate
was truncated to the central square of size s × s. This safety margin
was used because we found that there were some undesirable border
effects in the filter estimate, in the initial phases of the optimization.

The sequences of values of λ and q were set, for all experi-
ments, at 2, 0.6, 0.2, 0.06, · · · , 2 ×10−7 and 0.8, 0.8, 0.6, 0.6, 0.6,



0.6, 0.4, 0.4, · · · , 0.4, respectively (a total of 15 values each). In
the tests that involved noise (artificial or natural) these sequences
were truncated, so that the final value of λ was larger. Parameter
ε was set to 0.002. Pixel intensities were represented on a scale
of 0 (black) to 1 (white). All images had a size of 256 ×256 pix-
els. The edge detection filters that we used are shown in Fig. 2.
They correspond to the basic filter with point spread function (PSF)

Fθ=0 =

�
1 2 2 1
-1 -2 -2 -1

�
/12, with rotations of 45o.

The results of the first four experiments are shown in Figs. 3 and
4. In the printed version of the paper the images are small, but in the
electronic version one can zoom in on the images to see finer details.
In the first experiment the blur PSF was a uniform square of size
9×9. In the second one it corresponded to a simulated motion blur of
length 9 pixels, in a direction at 45o with the horizontal. In the third
one it was a simulated defocus blur (a uniform circle of diameter 11
pixels). The size of the support of the estimated filter (s, above) was
15, 15 and 17, respectively. The fourth experiment was similar to the
third, but Gaussian noise with σ = 0.01 (SNR of 25dB) was added
to the blurred image. In this case, the sequence of values of λ was
truncated at 0.0006, followed by a last iteration with λ = 0.0004.
This last value was found, by visual inspection, to provide the best
trade-off between sharpness and noise in the deblurred image.

The last two experiments, whose results are shown in Fig. 5,
involved actual photographs, intentionally taken with a focus and a
motion blur, respectively. The sequence of values of λ was truncated
at 0.0002. In the case of the motion blur, a further iteration with λ =
0.0001 was performed. Again, these values were experimentally
found. The filter size s was set to 15 in both cases.

These results show that, in synthetic blurs with no noise, the es-
timates of the original image and of the blurring filter were rather
good. Even in the noisy case, the recovered image was significantly
sharper than the blurred one and didn’t have too much noise, al-
though the filter estimate was rather noisy. In the case of the pho-
tographs, the recovered images had somewhat a synthetic look and
presented some artifacts, but they were significantly sharper and had
more details than the blurred ones. The somewhat lower quality of
the results with photos probably means that the blurs didn’t exactly
follow the model (1), perhaps due to nonlinearities in the camera’s
processing and to the JPEG encoding of the photos.

The optimization of the deblurred image x was performed by
gradient descent with adaptive step sizes (150 iterations for each
value of λ). The filter H was optimized by conjugate gradients (100
iterations for each value of λ). On an Intel Core 2 Duo system run-
ning at 2 GHz, programmed in Matlab and running only on one of
the chip’s processors, the optimization took about 30 seconds for
each value of λ (7.5 minutes for the 15 values).

4. CONCLUSIONS AND FUTURE WORK

A new method for blind image deblurring was proposed. The only
strict assumption of the method is that the blurring filter has limited
support, no larger than a given size. A new prior is used, which tends
to enforce the sharpness of edges, by making them sparse. Edges are
found by means of a new detector, which uses several rotated ver-
sions of a basic edge-detection filter. The learning is guided to a
reasonable solution by first concentrating on the main features of the
image, and progressively taking into account smaller details. Exper-
imental results, both on synthetic blurs and on actual blurred pho-
tographs, show the good performance of the method.

The prior that was introduced in this paper will probably be use-
ful in other image restoration problems as well. Quite probably, it

Fig. 3. Results of synthetic experiments. a) Original image. b)
Estimate for the first λ value, for the square blur. Next rows: left,
square blur; right, motion blur. Second row: Blurred images. Third
row: Deblurred images. Fourth row: Filter estimates.

will also be possible to improve the prior itself. We also plan to ex-
plore efficient techniques, such as majoration-minimization, to im-
prove the optimization speed of the method.
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