Faster Training in Nonlinear ICA using MISEP

(with a simple introduction to nonlinear ICA and to MISEP)
Luis B. Almeida - IST and INESC-ID, Lisbon, Portugal
luis.almeida@inesc-id.pt

Summary

- Mutual information as a dependence measure
- Mutual information as output entropy
- Minimizing the mutual information
- Examples
- Learning speed
- Conclusions

What is MISEP? How does it perform nonlinear ICA/BSS?

MISEP is an extension of INFOMAX to nonlinear ICA/BSS

But How?

- We wish to use mutual information (MI) as the dependence measure to be minimized.
- INFOMAX minimizes the mutual information, but
* it is limited to linear ICA,
* it needs a priori knowledge of the sources' distributions (at least approximately).
- We shall extend INFOMAX in two directions:
* Extending it to nonlinear ICA.
* Using adaptive estimation of the components' distributions.
- This results in an extension of INFOMAX, that we call MISEP.

Setting

\boldsymbol{s} - source vector
\boldsymbol{o} - observation vector
\boldsymbol{y} - vector of estimated components

Mutual information as a dependence measure

$o_{i}-$ observations
$y_{i}-$ estimated components

Mutual information:

- $I(\boldsymbol{Y})=\sum_{i} H\left(Y_{i}\right)-H(\boldsymbol{Y}) \quad-\quad$ sum of marginal entropies minus joint entropy
- $I(\boldsymbol{Y})$ is also the Kullback-Leibler divergence between $\prod_{i} p_{Y_{i}}\left(Y_{i}\right)$ and the true distribution $p_{\boldsymbol{Y}}(\boldsymbol{Y})$.
- $I(\boldsymbol{y})$ is non-negative, and is zero only if the Y_{i} are independent from one another. It is a good measure of the dependence of the Y_{i}.

Expressing the mutual information as output entropy

- The mutual information is hard to minimize directly. But...
- If the transformations ψ_{i} are invertible, the mutual information is not affected: $I(\boldsymbol{Z})=I(\boldsymbol{Y})$.
- If ψ_{i} is the cumulative probability function of Y_{i}, then Z_{i} is uniformly distributed in [0,1], and $H\left(Z_{i}\right)=0$.

$$
I(\boldsymbol{Y})=I(\boldsymbol{Z})=\sum_{i} H\left(Z_{i}\right)-H(\boldsymbol{Z})=-H(\boldsymbol{Z})
$$

- Maximizing the output entropy is equivalent to minimizing $I(\boldsymbol{Y})$.

How do we find the cumulative functions?

- INFOMAX (Bell \& Sejnowski, 95) - Cumulative functions known a priori (at least approximately).
- MISEP - Estimate the CPFs adaptively, by maximum entropy.

Estimating the cumulative functions (continued)

$$
I(\boldsymbol{Y})=\sum_{i} H\left(Z_{i}\right)-H(\boldsymbol{Z}) \quad H(\boldsymbol{Z})=\sum_{i} H\left(Z_{i}\right)-I(\boldsymbol{Y})
$$

- If the distributions of the Y_{i} components were kept fixed, maximizing the $H(\boldsymbol{Z})$ would be equivalent to maximizing each of the marginal entropies...
- ... but at the end of training (at convergence) the Y_{i} are fixed!
- If each of the outputs Z_{i} is bounded in [0,1], it will become uniform in that interval, and each ψ_{i} will be the CPF of Y_{i} as desired.
$* \psi_{i}$ will have to be constrained to be an increasing function.

Estimating the cumulative functions (continued)

By maximizing the output entropy we will:

- adapt the output MLPs to yield the CPFs of the Y_{i};
- minimize the mutual information $I(\boldsymbol{Y})$.

The output MLPs are restricted to yield monotonically increasing functions, bounded to $[0,1]$.

Maximizing the output entropy

$$
H(\boldsymbol{Z})=H(\boldsymbol{O})+\langle\log | \operatorname{det} \boldsymbol{J}| \rangle
$$

with $\boldsymbol{J}=\frac{\partial \boldsymbol{Z}}{\partial \boldsymbol{O}}$ (Jacobian of the transformation).
$H(\boldsymbol{O})$ is fixed. We need to maximize $\langle\log | \operatorname{det} \boldsymbol{J}\rangle$.
But how do we do that?

Network that computes J :

The upper part of the figure is the separating network. The lower part computes the Jacobian.
The lower part is essentially a linearized version of the upper part. Its input is the identity matrix.

Maximization of the entropy (continued)

- We have to backpropagate through the lower network (and through the shaded arrows, into the upper network).
- Input to the backpropagation network:

$$
\frac{\partial \log |\operatorname{det} \boldsymbol{J}|}{\partial \boldsymbol{J}}=\left(\boldsymbol{J}^{-1}\right)^{T}
$$

Examples

1. Linear ICA

Two supergaussians

Scatter plots

Original

mixture

Just the 100 training points

A supergaussian and a subgaussian

Nonlinear ICA, two supergaussians

A supergaussian and a subgaussian

Two subgaussians

A local minimum of the mutual information

Nonlinear mixture of two speech signals

(listen to the demo)

$$
\begin{gathered}
\text { Mixture: } \\
o_{1}=s_{1}+a\left(s_{2}\right)^{2} \\
o_{2}=s_{2}+a\left(s_{1}\right)^{2}
\end{gathered}
$$

Signal to interference ratios:
Mixture:
9.1 dB

Separated: $\quad 16.9 \mathrm{~dB}$
Improvement: 7.8 dB

Problem

Learning is often slower than one would expect

Separation after 350 epochs. Improves very slowly over the next 600 epochs

Why can't the system "spread" the high-density region into the low-density one?

Possible cause: The units of the MLP are non-local. Moving a unit to improve a part of the space would harm some other part of the space.

Solution

Use local units (e.g. Radial Basis Function units)

Nonlinear ICA block

- The direct connections yield a linear mapping, which is then modified by the RBF units.
- The RBF units' centers are trained by K-means. Radiuses are computed by a simple heuristic.
- Only the output weights are trained by the gradient of the objective function.

Results

MLP

RBF

Number of epochs	Two supergaussians		Supergaussian \& subgaussian MLP			RBF	MLP	RBF
	500	68	610	233				
St. deviation	152	10	266	87				

But more recent results

(which didn't make it into this paper)

- The speed advantage of RBFs may be due more to initialization than to locality.
- MLPs with hidden units initialized "crisscrossing" the whole observation space have shown learning speeds comparable to those of RBFs.
- MLPs don't usually need explicit regularization, but RBFs do - and the amount of regularization has to be adjusted by hand in each case.
- Download the most recent preprint (see last page).

Conclusions

- Extension of INFOMAX
- ICA performed by minimizing the mutual information of the extracted components.
- Estimation of the independent components and of their distributions performed by a single network, with a single objective function.
- Can handle a wide variety of components' distributions.
- Able to perform linear and nonlinear ICA and nonlinear source separation.
- Networks of local units yield better performance
* But this may have more to do with a good initialization than with the local units (see preprint of new paper submitted to Signal Processing)

A related issue

Is nonlinear source separation really possible?

- Purely blind nonlinear source separation is an ill-posed problem. It has an infinite number of solutions, not trivially related to one another.
- But we often solve ill-posed problems (e.g. the training of multiplayer perceptrons).
- What we need is some extra information, that is often available (e.g. smoothness).
- We can then use regularization to find an essentially unique solution.
- In our MLP-based examples, the regularization inherent to the MLP sufficed.
- In the RBF-based examples we needed explicit regularization - weight decay.
- But in all our test cases we were able to perform nonlinear source separation.

Christian Jutten's counter-example

(NIPS 2002 workshop)

Identity mapping (uniform)

This is the smoothest possible mapping

Twisted mapping (still uniform)

This is less smooth...

A smoothing regularizer would select the first mapping, and not the second one.

Most recent and most comprehensive preprint

Luis B. Almeida, "MISEP - Linear and Nonlinear ICA Based on Mutual Information", submitted to Signal Processing, special issue on ICA.

Download at http://neural.inesc-id.pt/~1ba/papers/AlmeidaSigProc2003.pdf

Probably also already available at the COGPRINTS archive, http://cogprints.ecs.soton.ac.uk/ (search for 'MISEP' in the title)

MATLAB - compatible toolkit

http://neural.inesc-id.pt/~lba/ica/mitoolbox.html

