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Summary 

 

♦ Mutual information as a dependence measure 

♦ Mutual information as output entropy 

♦ Minimizing the mutual information 

♦ Examples 

♦ Learning speed 

♦ Conclusions 
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What is MISEP?   How does it perform nonlinear I CA/BSS? 
 

 

MISEP is an extension of INFOMAX to nonlinear ICA/BSS 

But How? 

 

� We wish to use mutual information (MI) as the dependence measure to be minimized. 

� INFOMAX minimizes the mutual information, but 

� it is limited to linear ICA, 

� it needs a priori knowledge of the sources' distributions (at least approximately). 

� We shall extend INFOMAX in two directions: 

� Extending it to nonlinear ICA. 

� Using adaptive estimation of the components' distributions. 

� This results in an extension of INFOMAX, that we call MISEP. 
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Setti ng 

 

 

s – source vector 

o – observation vector 

y – vector of estimated components 

F – mixture (linear or nonlinear) 

G – ICA system (linear or nonlinear) 
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Mutual information as a dependence measure 

 

 

io  - observations 

iy  - estimated components 

 

Mutual information: 
 

� ∑ −=
i

i HYHI )()()( YY      –      sum of marginal entropies minus joint entropy 

� )(YI  is also the Kullback-Leibler divergence between ∏
i

iY Yp
i

)(  and the true distribution )(YYp . 

� )( yI  is non-negative, and is zero only if the iY  are independent from one another. It is a good 
measure of the dependence of the iY . 
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Expressing the mutual information as output entropy 

 

 

� The mutual information is hard to minimize directly. But… 

� If the transformations iψ  are invertible, the mutual information is not affected: )()( YZ II = . 

� If iψ  is the cumulative probabilit y function of iY , then iZ  is uniformly distributed in ]1,0[ , and 
0)( =iZH . 

)()()()()( ZZZY HHZHII
i

i −=−== ∑  

� Maximizing the output entropy is equivalent to minimizing )(YI . 
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How do we find the cumulative functions? 

 

 

 

♦ INFOMAX (Bell & Sejnowski, 95) – Cumulative functions known a priori (at least 

approximately). 
 

♦ MISEP – Estimate the CPFs adaptively, by maximum entropy. 
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Estimating the cumulative functions (continued) 
 

 

∑ −=
i

i HZHI )()()( ZY                      ∑ −=
i

i IZHH )()()( YZ  

� If the distributions of the iY  components were kept fixed, maximizing the )(ZH  would be 

equivalent to maximizing each of the marginal entropies… 

� … but at the end of training (at convergence) the iY  are fixed! 

� If each of the outputs iZ  is bounded in ]1,0[ , it will become uniform in that interval, and each iψ  
will be the CPF of iY  as desired. 

�

iψ  will have to be constrained to be an increasing function.
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Estimating the cumulative functions (continued) 

 

 

By maximizing the output entropy we will : 

♦ adapt the output MLPs to yield the CPFs of the iY ; 

♦ minimize the mutual information )(YI . 

 

The output MLPs are restricted to yield monotonically increasing functions, bounded to ]1,0[ . 
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Maximizing the output entropy 

 

JOZ detlog)()( += HH  

with  
O
Z

J
∂
∂=    (Jacobian of the transformation). 

 

)(OH  is fixed. We need to maximize Jdetlog . 

But how do we do that? 
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Network that computes J: 

 

 

The upper part of the figure is the separating network. The lower part computes the Jacobian. 

The lower part is essentially a linearized version of the upper part. Its input is the identity matrix. 
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Maximization of the entropy (continued) 

 

	 We have to backpropagate through the lower network (and through the shaded arrows, into the 
upper network). 

	 Input to the backpropagation network: 

T)(
detlog 1−=

∂
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Examples 

1. L inear ICA 

Two supergaussians 
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Scatter  plots 

Original mixture Just the 100 training points 

Estimated cumulative functions 
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A supergaussian and a subgaussian 
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Nonlinear I CA, two supergaussians 
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A supergaussian and a subgaussian 
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Two subgaussians 
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A local minimum of the mutual information 
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Nonlinear mixture of two speech signals 

(listen  to the demo) 

 

Mixture: 

2
122

2
211

)(

)(

saso

saso

+=

+=
 

 

Signal to interference ratios: 

Mixture: 9.1 dB 

Separated: 16.9 dB 

Improvement: 7.8 dB 
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Problem 

Learning is often slower than one would expect 
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Separation after 350 epochs. Improves very slowly over the next 600 epochs 

 

Why can't the system "spread" the high-density region into the low-density one?  

 

Possible cause: The units of the MLP are non-local. Moving a unit to improve a part of the space 

would harm some other part of the space. 
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Solution 

Use local units (e.g. Radial Basis Function units) 

 

 

 

 

Nonlinear ICA block 

 

Z The direct connections yield a linear mapping, which is then modified by the RBF units. 

[ The RBF units' centers are trained by K-means. Radiuses are computed by a simple heuristic. 

[ Only the output weights are trained by the gradient of the objective function. 

RBF units 

o  y 
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Results 
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 MLP RBF 

 

Two  supergaussians Supergaussian & subgaussian Number of 
epochs MLP RBF MLP RBF 

Mean 500 68 610 233 

St. deviation 152 10 266 87 
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But more recent results 

(which didn't make it into this paper) 

\ The speed advantage of RBFs may be due more to initialization than to locality. 

\ MLPs with hidden units initialized "crisscrossing" the whole observation space have shown 
learning speeds comparable to those of RBFs. 

\ MLPs don't usually need explicit regularization, but RBFs do – and the amount of regularization 
has to be adjusted by hand in each case. 

\ Download the most recent preprint (see last page). 
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Conclusions 

 

• Extension of INFOMAX 

• ICA performed by minimizing the mutual information of the extracted components. 

• Estimation of the independent components and of their distributions performed by a single 

network, with a single objective function. 

• Can handle a wide variety of components' distributions. 

• Able to perform linear and nonlinear ICA and nonlinear source separation. 

• Networks of local units yield better performance 

] But this may have more to do with a good initialization than with the local units 
(see preprint of new paper submitted to Signal Processing) 
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A related issue 

Is nonlinear source separation really possible? 

^ Purely blind nonlinear source separation is an ill -posed problem. 

It has an infinite number of solutions, not trivially related to one another. 

^ But we often solve ill -posed problems (e.g. the training of multiplayer perceptrons). 

^ What we need is some extra information, that is often available (e.g. smoothness). 

^ We can then use regularization to find an essentially unique solution. 

^ In our MLP-based examples, the regularization inherent to the MLP suff iced. 

^ In the RBF-based examples we needed explicit regularization – weight decay. 

^ But in all our test cases we were able to perform nonlinear source separation. 
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Chr istian Jutten's counter-example 

(NIPS 2002 workshop) 

 

   Identity mapping (uniform)         Twisted mapping (still uniform) 

    

This is the smoothest possible mapping   This is less smooth… 

 

A smoothing regularizer would select the first mapping, and not the second one. 
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Most recent and most comprehensive prepr int 

 

Luis B. Almeida, "MISEP – Linear and Nonlinear ICA Based on Mutual Information", submitted to 

Signal Processing, special issue on ICA. 

 

Download at http://neural.inesc-id.pt/~lba/papers/AlmeidaSigProc2003.pdf 

 

Probably also already available at the COGPRINTS archive, http://cogprints.ecs.soton.ac.uk/ 

(search for 'MISEP' in the title) 

 

 

MATLAB – compatible toolkit  

http://neural.inesc-id.pt/~lba/ica/mitoolbox.html 


