
Image separation routines

1. Introduction

This manual presents a set of MATLAB routines for linear and nonlinear image

separation, based on the MISEP method [1-4]. More specifically, these routines were

used to produce the results published in [4]. The set of routines is a modified version

of the MISEP Toolbox, available at

http:// www.lx.it.pt/~lbalmeida/ica/mitoolbox.html,

and has a few additional routines for performing auxiliary functions.

Note: These routines are supplied only as a means to test the separation methods

described in [4]. Although the author may occasionally be able to help users, no

support is given. The routines contain code for implementing several options that are

not covered in this manual (e.g. use of weight decay for regularization).

2. General description

The separation routines implement linear or nonlinear ICA, based on a training set of

observations of mixture images. The separation is performed by a Multilayer

Perceptron (MLP). In the case of linear separation, the MLP has a single layer of

linear units, and thus simply performs a product by a matrix. In the case of nonlinear

separation, the MLP has additional sigmoidal hidden units, and thus performs a

nonlinear operation.

Figure 1 shows the structure of the network during training. See references [1-3] for

the description of the training method. The separation MLP is block F. The separated

components are 1y and 2y . During the optimization (training) of the separation

network, auxiliary MLPs (denoted i in the figure) are used.

Figure 1. Structure of the separation network.

3. Files and variables

The files contained in the distribution are the following:

a) Main script files (intended to be called by the user)

netparlin.m set parameters for training the linear separator

 used in [4]

netparnonlin.m set parameters for training the nonlinear

 separator used in [4]

selectdata.m randomly select data from mixture images, to

 form a training set

netinit.m initialize MLPs for training

train.m train the MLPs

processimg.m process mixture images with the trained MLP

saveweights.m save learned weights of the MLPs to a file

loadweights.m load learned weights of the MLPs from a file

intadjust.m find an optimally intensity-adjusted image, for

 the computation of quality measure Q2 (see [4])

kraskovmi.m estimate the mutual information, from samples

 of two jointly distributed random variables

b) Internal script files (intended for internal use by the toolbox)

arrinit.m initialize various arrays for training

back.m backpropagate

compdist.m compute the estimated CDF of the components,

 for plotting

compgrad.m compute the gradient of the cost function

costderiv.m compute the cost function and its derivatives

doepoch.m perform a training epoch

forward.m propagate forward (compute network's outputs)

normalize.m normalize the obs array to [0,1]

plotdata.m produce plots during training

reportresults.m report training progress

testcost.m test whether the cost function has improved, and

 act accordingly

wadapt.m adapt weights during training

The main variables and arrays that the user may need to access are the following:

ntrain number of training patterns

nepochs number of training epochs to be performed

outputonlyepochs number of training epochs during which only the 

 MLPs are adapted

linearonlyepochs number of training epochs during which the separation

 MLP (F) is constrained to be linear

symepochs number of training epochs during which the separation

 MLP (F) is constrained to be symmetrical

obs mixture observations (images); obs(:,:,1) should

 contain the first mixture image and obs(:,:,2)

 the second mixture image

trpattern training patterns (array of size 2 * ntrain, with one

 pattern per column); this array is created from the

 mixture observations (obs) by selectdata.m

separimg separated images, produced by processimg.m (array,

 with the same size and structure as obs)

The following sections describe in more detail the basic operation of the routines.

4. Installation

To install the toolbox simply unzip the contents of the zip file to a directory of your

choice.

5. Basic operation of the routines

5.1. Initializing and training the separation system

To use the separation routines you should first clear the MATLAB environment:

 clear all

Then you need to place the mixture images in the obs array. This will normally be

done by a pair of commands like

 obs = imread('mixture1.bmp');

 obs(:,:,2) = imread('mixture2.bmp’);

Next, change to the directory where you've placed the separation routines:

 cd <directory where you've placed the routines>

Then, to initialize parameters, give one of the commands

 netparlin

or

 netparnonlin

depending on whether you want to perform linear or nonlinear separation. You may

also use your own initialization scripts, with your own parameter values, by editing

netparlin.m or netparnonlin.m (see Section 6.1).

Among other things, the initialization scripts set the following parameters (see Section

3 for an explanation of their function):

ntrain

nepochs

outputonlyepochs

linearonlyepochs

symepochs

Next you need to randomly select pairs of mixture pixels to form the training set. For

this, give the command

 selectdata

The randomly selected patterns will be placed in the trpattern array. The number

of training patterns that are selected is given by ntrain.

Then it is necessary to initialize the MLPs. This is performed by giving the command

 netinit

The network can now be trained, by giving the command

 train

Training will begin. For every training epoch, one line of output will be produced,

showing the value of the cost function, the improvement in the cost function relative

to the lowest cost found in previous epochs, and the number of the epoch. The cost

function that is used is minus the objective function that is mentioned in [1-4], i.e. it is

given by





ntrain

ntrain 1

detlog
1

k

k
J

Since the cost function is minus the objective function, it is minimized, and not

maximized. This is due to historical reasons, since this package evolved from a

supervised MLP training package in which the cost function was minimized.

In the first epoch, a very large improvement will be reported. This large value is a

result of the internal cost function control procedure, and is not a sign of malfunction.

From time to time, negative improvements may be reported, possibly during several

consecutive epochs. This is taken care of by the internal cost function control

procedure, and also is not a sign of malfunction. In such cases, positive improvements

should reappear after a few epochs.

Every five epochs, a plot will be made. You should resize the plotting window so that

the two leftmost plots are square. The leftmost plot shows a scatter plot of the current

estimated components, designated as 1y and 2y in [1-4] and in Fig. 1 (1y : horizontal

axis; 2y : vertical axis). The center plot shows a scatter plot of the outputs of the 

MLPs (these outputs are referred to as 1z and 2z in [1-4] and in Fig. 1). If ICA is

successful, the distribution in this scatter plot should become approximately uniform

in a square. The rightmost plots show the i functions, which are the estimated

Cumulative Distribution Functions (CDFs) of 1y and 2y (1 : top; 2 : bottom).

These CDFs are rescaled from the interval [0,1] to [-1,1].

After performing the number of training epochs specified in nepochs, training will

stop. You can resume training for a further nepochs, if you wish, by giving the

train command again.

You can also interrupt training at any time, by pressing Ctrl-C. The state of the

network will be preserved, and can be used for resuming training or for processing

data.
1

5.2. Processing images with the trained system

To process the mixture images contained in obs after training the system, give the

command

 processimg

The separated images will be placed in separimg(:,:,1) and separimg(:,:,2),

respectively.

5.3 Auxiliary routines

saveweights and loadweights

These routines respectively save and load the MLPs' weights to/from a file, in '.mat'

format. Before using them you should set the variable filename to the name of the

file to be used, e.g.

 filename = 'test2weights.mat'

Besides saving/loading the weights, these routines also save/load the variables

nhidden and nextra, so that the MLPs' structures remain consistent.

kraskovmi

This routine computes the mutual information estimate)1(I , described in [5]. Its

calling format is

 mi = kraskovmi(x1,x2,k);

where x1 and x2 are row vectors containing samples of the two random variables

forming the joint distribution whose mutual information is to be estimated, and k is

the nearest-neighbor order used in the estimation algorithm (see [5] for details). The

recommended value of k is between 2 and 4.

The samples in x1 and x2 should correspond to one another, i.e. x1(1,1) to

x2(1,1), x1(1,2) to x2(1,2), etc., so that they represent the joint distribution

whose mutual information is to be estimated.

intadjust

This routine finds an image with optimally adjusted intensities, for computing the

quality measure 2Q (see [4]). The calling format is

 adjustedimage = intadjust(sourceimage,refimage);

where sourceimage is the image to be adjusted (usually the result of a separation)

and refimage is the image which serves as reference for intensity adjustment

1
 Since I changed to MATLAB 7, it occasionally crashes with a runtime error if I press Ctrl-C when a

script is running. This seems to be a bug of MATLAB 7, and not of the processing routines.

(usually a source image). The output is the result of applying the optimal monotonic

intensity transformation)(f to sourceimage (see [4] for details). The arguments

sourceimage and refimage should be of the same size.

imalign

This routine performs the image alignment as described in the paper. See the initial

comments in the code for a description of inputs and outputs. Note that the routine

does not perform the increase of resolution of the images, needed for an accurate

alignment, nor the decrease in resolution after the alignment. You should perform that

yourself before and after calling the routine.

6. Changing settings

There is a number of parameters and other settings that you can change, to suit the

system to your needs.

6.1. Changing parameters

All parameters are set in the files netparXXX.m. You may change parameters by

editing one of these files or by creating new ones based on them.

The parameters that you may, most probably, want to change are:

nhidden number of units in the hidden layer of the separating

 MLP, for each component. The total number of hidden

 units is the double of nhidden, since there are two

 components

nextra number of hidden units in each of the  MPLs.

ntrain number of training patterns

nepochs number of training epochs per training run

outputonlyepochs number of training epochs during which only the 

 MLPs are adapted

linearonlyepochs number of training epochs during which the separation

 MLP (F) is constrained to be linear

symepochs number of training epochs during which the separation

 MLP (F) is constrained to be symmetrical

6.2. Modifying the output produced during training

The output generated during training can be changed by editing two files. The output

printed after each epoch is created by the script reportresults.m, and the plots are

generated by the script plotdata.m.

You may eliminate the printed and/or plotted output by replacing these files with

blank ones. Further control of the output is possible by editing these files, but that is

beyond the scope of this manual, because it would involve a detailed explanation of

the various internal variables used by the routines.

7. License

The routines supplied here are copyright of Luis B. Almeida. Free permission is given

for their use, solely for nonprofit research purposes. All other uses are prohibited,

except if a specific license is obtained from the copyright owner.

8. References

[1] L. B. Almeida, “MISEP – an ICA method for linear and nonlinear mixtures,

based on mutual information”, in Proc. 2002 Int. Joint Conf. on Neural Networks,

Honolulu, Hawaii, 2002,
 http://www.lx.it.pt/~lbalmeida/papers/AlmeidaIJCNN02.pdf

[2] L. B. Almeida, “MISEP – linear and nonlinear ICA based on mutual

information”, Journal of Machine Learning Research, Vol. 4, December 2003,

pp. 1297-1318,
 http://www.jmlr.org/papers/volume4/almeida03a/almeida03a.pdf

[3] L. B. Almeida, “Linear and Nonlinear ICA Based on Mutual Information – the

MISEP Method”, Signal Processing, Vol. 84, No. 2, February 2004, pp. 231-245,
http://www.lx.it.pt/~lbalmeida/papers/AlmeidaSigProc03.pdf

[4] L. B. Almeida, "Separating a Real-Life Nonlinear Image Mixture", Journal of

Machine Learning Research, vol. 6, pp. 1199–1232, 2005,
 http://www.lx.it.pt/~lbalmeida/papers/AlmeidaJMLR05.pdf

[5] A. Kraskov, H. Stögbauer and P. Grassberger, "Estimating Mutual Information",

Physical Review E, vol. 69, pp. 066138, 2004,
 http://arxiv.org/pdf/cond-mat/0305641

