
MI-Based Linear and Nonlinear ICA Toolbox

Manual

1. Introduction

This manual presents a MATLAB toolbox for linear and nonlinear Independent

Component Analysis (ICA) and Blind Source Separation (BSS), based on the

minimization of the Mutual Information (MI) of the extracted components. The

manual covers the use of the toolbox. The description of the separation method can be

found in references [1-3].

2. General description

The toolbox implements linear or nonlinear ICA, based on a training set of

observations x.
1
 The separation is performed by a Multilayer Perceptron (MLP). In

the case of linear separation, the MLP has a single layer of linear units, and thus

simply performs a product by a matrix. In the case of nonlinear separation the MLP

has additional hidden sigmoidal units, and thus performs a nonlinear operation.

During the optimization (training) of the separation network, auxiliary MLPs are

used. See Fig. 1 for the structure of the network during training, and references [1-3]

for the description of the training method.

Fig. 1 – Structure of the network used by the toolbox.

3. Toolbox files and variables

The files contained in the toolbox are the following:

a) Main script files (intended to be called by the user)

netpar.m set toolbox parameters

generate.m generate artificial mixture, for test purposes

netinit.m initialize the system for training

train.m train the separation system

processdata.m process test data with the trained system

1
 In this manual, bold lowercase characters denote vectors and bold uppercase letters denote matrices;

Courier text denotes MATLAB commands, outputs, variables, etc.

b) Internal script files (intended for internal use by the toolbox)

arrinit.m initialize various arrays for training

back.m backpropagate

compdist.m compute the estimated CPF of the components

compgrad.m compute the gradient of the cost function

costderiv.m compute the cost function and its derivatives

doepoch.m perform a training epoch

forward.m propagate forward (compute network's outputs)

plotdata.m perform various plots during training

reportresults.m report training progress

testcost.m test whether the cost function has improved

wadapt.m adapt weights during training

The main variables and arrays used by the toolbox, which the user may need to

access, are the following:

ninputs number of components of the observations

ntrain number of training patterns

nepochs number of desired training epochs

trpattern training patterns (array of size ninputs x ntrain,

 one pattern per column)

separpattern result of separation of trpattern (array, same

size and structure as trpattern)

mixeddata test data to be "separated" by the trained network (array,

ninputs x <any number of columns>, one pattern per

column).

separdata result of separation of mixeddata (array, same size

 and structure as mixeddata)

The following sections describe in more detail the basic operation of the toolbox and

functions of the main commands.

4. Installation

To install the toolbox simply unzip the contents of the MIToolbox.zip file to a

directory of your choice.

5. Basic toolbox operation

5.1. Initializing and training the system

To use the toolbox, you should first give, within MATLAB, the commands

 cd <directory where the toolbox files reside>

 clear all

and then the command

 netpar

to initialize the toolbox parameters. Among other things, this command sets the

following values (see below and Section 3 for an explanation of their function):

ninputs = 2

ntrain = 1000

nepochs = 500

Next you need to place the training data in the trpattern array. This array should

contain one pattern per column, with as many columns as training patterns. You

should also set ninputs to the number of components of each training pattern

(number of observed mixture components) and ntrain to the number of training

patterns. You'll probably want to edit the file netpar.m to reflect the values that you

normally use.

If you just want to test the toolbox with automatically generated data, instead of

setting trpattern as described above, simply give the command

 generate

This will place in trpattern a nonlinear mixture of two supergaussian random

sources, with ntrain patterns.

Once trpattern, ninputs and ntrain are set, it is necessary to initialize the

MLPs. This is performed by giving the command

 netinit

The network can now be trained, by giving the command

 train

Training will begin. For every training epoch, one line will be output, showing the

value of the cost function, the improvement in the cost function relative to the lowest

cost found in previous epochs and the number of the epoch. Note that the cost

function is minus the cost function indicated in [1-3] and is minimized, instead of

being maximized. This is due to historical reasons, because this toolbox evolved from

a supervised MLP training package in which the cost function was minimized.

In the first epoch, a very large improvement will be reported, both in the initial

training and if you've resumed training (see below for how to resume training). This

large value is a result of the internal cost function control procedure, and is not a sign

of malfunction. From time to time, negative improvements may be reported, possibly

during several consecutive epochs. This is taken care of by the internal cost function

control procedure, and also is not a sign of malfunction. In such cases, positive

improvements should reappear after a few epochs.

Every five epochs, a plot will be made. You should resize the plotting window so that

the two leftmost plots are square. The leftmost plot shows a scatter plot of the current

estimated components 1y and 2y (1y – horizontal axis, 2y – vertical axis). The center

plot shows a scatter plot of the outputs of the i MLPs (i.e. of 1z and 2z). If ICA is

successful, the distribution in this scatter plot should become approximately uniform

within a square. The rightmost plots show the functions 1 and 2 , i.e. the estimated

Cumulative Probability Functions (CPFs) of 1y and 2y (1 – top, 2 – bottom).

After the number of training epochs specified in nepochs, training will stop. You can

resume training for a further nepochs, if you wish, by giving the train command

again.

You can also interrupt training at any time, by pressing Ctrl-C. The state of the

network will be preserved, and can be used for resuming training or for processing

test data.
2

5.2. Processing data with the trained system

To process data after training the system, first place the data to be processed in an

array called mixeddata (the data should be formatted one pattern per column, with a

number of columns equal to the number of patterns to be processed). Then give the

command processdata. The results of processing will be placed in the array

separdata, which will be of the same size as mixeddata.

6. Changing settings

There is a number of parameters and other settings that you can change to suit the

system to your needs.

6.1. Changing parameters

All parameters are set in the file netpar.m. You may change parameters by editing

this file and then giving the command

 netpar

The parameters that you may, most probably, want to change are:

ninputs number of sources and of observations per pattern.

noutputs should be equal to ninputs.

nhidden number of units in the hidden layer of the separating MLP, per

 component.

nextra number of hidden units in each of the  MLPs.

ntrain number of training patterns.

nepochs number of epochs performed by each train command.

ndisp number of epochs per output plot.

initialepochs number of initial epochs, during which only the 

 MLPs are adapted (the F MLP remains fixed during these

 epochs).

2
 In my current version of MATLAB, for the training to resume after being interrupted by Ctrl-C, it is

necessary to first close the figure that was created by the program. The program will open a new

figure when it is resumed. This problem seems to result from a bug in MATLAB.

6.2. Modifying the output

The output generated during training can be changed by editing two files. The output

printed after each epoch is created by the script reportresults.m, and the plots are

generated by the script plotdata.m.

You may eliminate the printed and/or plotted output by replacing these files with

blank ones. Further control of the output is possible by editing these files, but that is

beyond the scope of this manual because it would involve a detailed explanation of

the functions performed by the various internal variables of the toolbox. Some ways

to change the output plots are described in the comments of plotdata.m.

7. License

This toolbox is copyright of Luis B. Almeida. Free permission is given for its use,

solely for nonprofit research purposes. Any other use is prohibited, unless a specific

license is obtained from the copyright owner.

8. References

[1] L. B. Almeida, “MISEP – an ICA method for linear and nonlinear mixtures,

based on mutual information”, in Proc. 2002 Int. Joint Conf. on Neural Networks,

Honolulu, Hawaii, 2002,
 http://www.lx.it.pt/~lbalmeida/papers/AlmeidaIJCNN02.pdf

[2] L. B. Almeida, “MISEP – linear and nonlinear ICA based on mutual

information”, Journal of Machine Learning Research, Vol. 4, December 2003,

pp. 1297-1318,
 http://www.jmlr.org/papers/volume4/almeida03a/almeida03a.pdf

[3] L. B. Almeida, “Linear and Nonlinear ICA Based on Mutual Information – the

MISEP Method”, Signal Processing, Vol. 84, No. 2, February 2004, pp. 231-245,
http://www.lx.it.pt/~lbalmeida/papers/AlmeidaSigProc03.pdf

