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Introduction
• Hyperspectral image classification

• Integration of spatial and spectral information

• Subsapce-based methods

• Data set
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Hyperspectral image
• Hyperspectral sensors provide rich spectral information for distinguishing different 

land cover types such as water, soil and vegetation.
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Classification problem
• Given a set of observations (i.e., pixel vectors in a hyperspectral image), the goal of 

classification is to assign a distinct class label to every pixel in the image.
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Water
Grass
Asphalt
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Classification problem
• Given a set of observations (i.e., pixel vectors in a hyperspectral image), the goal of 

classification is to assign a distinct class label to every pixel in the image.

Analyst
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nsupervised Classification
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Supervised Classification
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Classification problem
• Given a set of observations (i.e., pixel vectors in a hyperspectral image), the goal of 

classification is to assign a distinct class label to every pixel in the image.

Algorithm
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Introduction
• Hyperspectral image classification

• Integration of spatial and spectral information

• Subsapce-based methods

• Data set
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The importance of spatial information
• When dealing with hyperspectral images with high spatial resolution, the use of spatial 

features increases the discrimination of the thematic classes.

• Spectral-spatial classification can lead to significantly more accurate results:

True color image Spectral classification Spectral-spatial classification
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The importance of spatial information
• When dealing with hyperspectral images with high spatial resolution, the use of spatial 

features increases the discrimination of the thematic classes.

• Spectral-spatial classification can lead to significantly more accurate results:

Algorithm

     

     

Spatial 
Preprocessing
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The importance of spatial information
• When dealing with hyperspectral images with high spatial resolution, the use of spatial 

features increases the discrimination of the thematic classes.

• Spectral-spatial classification can lead to significantly more accurate results:

Algorithm

     

     

Extracting 
Spatial 

Features
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The importance of spatial information
• When dealing with hyperspectral images with high spatial resolution, the use of spatial 

features increases the discrimination of the thematic classes.

• Spectral-spatial classification can lead to significantly more accurate results:

Algorithm

     

     

Spatial 
Postprocessing
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Introduction
• Hyperspectral image classification

• Integration of spatial and spectral information

• Subsapce-based methods

• Data set
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Subspace based methods
• It has been proved that the original spectral features in a hyperspectral image contain 

high redundancy and there is a high correlation between adjacent bands.

Hyperspectral data may effectively live in a lower-dimensional subspace

1. Reducing the dimensionality of hyperspectral data by projecting it to a precise 
subspace without losing the original spectral information.

2. Increasing the separability of the classes which are very similar in spectral sense.

3. Handling the effects of noise and the presence of heavily mixed pixels in a 
hyperspectral image.
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J. Li, J. Bioucas-Dias, and A. Plaza, “Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov 
random fields,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 3, pp. 809–823, 2012.
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Introduction
• Hyperspectral image classification

• Integration of spatial and spectral information

• Subsapce-based methods

• Data set
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ROSIS Pavia University data

False color composition Reference dataTraining data

• Comprises 610x340 pixels and 103 spectral bands between 0.43 and 0.86 microns.

• Spatial resolution of 1.3 meters, with 3921 training samples and 42776 test samples.

Introduction



18

Introduction

New Probabilistic Classification Techniques for Hyperspectral Images Ph.D. Thesis – Mahdi Khodadadzadeh July 2015

Outline
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2. Combining local and global probabilities

3. MLRsub algorithm based on class-indexed subspaces
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Combining local and global probabilities
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Combining local and global probabilities

M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-Dias and X. Li, “Spectral-Spatial Classification of Hyperspectral Data Using Local and 
Global Probabilities for Mixed Pixel Characterization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 10, pp. 6298-6314, October 2014.

 Problem of mixed pixels

Pure pixel
(water)

Mixed pixel
(soil + rocks)

Mixed pixel
(vegetation + soil)

(Globally)MLRsub

MLRsub (Locally)

 Multiple classifier system



20
14

Combining local and global probabilities
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MLRsub 
global 

probabilities
MLRsub

Original 
hyperspectral 

image

Class 
combinations 

map

MLRsub 
local 

probabilities

MLRsub

SVM class 
probability 
estimates

Probabilistic SVM

Parameter λ controls the 
relative weight between the 
global and local probabilities

Combining local and global probabilities

Fusion Final 
classification
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Class combinations map
• Based on the probabilistic SVM results, a subset of the M most reliable class labels is 

chosen for each pixel as the set of class combination for that pixel, where M ≤  k 
being k the total number of classes.

Combining local and global probabilities

SVM Classification Map Class Combinations Map
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Class combinations map
• Based on the probabilistic SVM results, a subset of the M most reliable class labels is 

chosen for each pixel as the set of class combination for that pixel, where M ≤  k 
being k the total number of classes.

Combining local and global probabilities
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Class combinations map
• Based on the probabilistic SVM results, a subset of the M most reliable class labels is 

chosen for each pixel as the set of class combination for that pixel, where M ≤  k 
being k the total number of classes.

Combining local and global probabilities

SVM Classification Map Class Combinations Map
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Calculation of the probabilities
• MLRsub algorithm uses to learn the posterior probability distributions locally for the 

M classes selected in the previous step and globally for all classes.

Combining local and global probabilities

SVM Classification Map Class Combinations Map

A

B
C

{A,B}

{A,C}
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Combining local and global probabilities

SVM Classification Map Class Combinations Map

A

B
C

{A,B}

{A,C}
{B,C}

Calculation of the probabilities
• MLRsub algorithm uses to learn the posterior probability distributions locally for the 

M classes selected in the previous step and globally for all classes.

Overall classification accuracies as a function of parameter M

Classification Accuracy
M

2 3 4 5 6 7 8

Overall 82.61 78.95 76.07 74.38 72.73 71.94 71.24

Average 83.79 80.31 77.67 76.38 75.25 74.66 74.23



26
19New Probabilistic Classification Techniques for Hyperspectral Images Ph.D. Thesis – Mahdi Khodadadzadeh July 2015

Combining local and global probabilities

Experimental results

MLRsub(global)
OA=70.61%, AA=73.92%

MLRsub(global+local)
OA=82.61%, AA=83.80%

Ground truth map
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Outline
1. Introduction

2. Combining local and global probabilities

3. MLRsub algorithm based on class-indexed subspaces

4. MLRsub algorithm based on union of subspaces

5. Probabilistic relaxation

6. Fusion of hyperspectral and LiDAR data

7. Conclusions and future research lines
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MLRsub algorithm based on class-indexed subspaces
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Subspace based MLR
• MLRsub method aims to deal with the problems defined by the linear mixing model.

 Handling the nonlinearity of the mixtures By assuming 
dependence between 

the class-indexed 
subspaces
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M. Khodadadzadeh, J. Li, A. Plaza and J. M. Bioucas-Dias, “A Subspace Based Multinomial Logistic Regression for Hyperspectral Image Classification,” IEEE 
Geoscience and Remote Sensing Letters, vol. 11 no. 12, pp. 2105-2109, December 2014.
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Subspace based MLR
• MLRsub method aims to deal with the problems defined by the linear mixing model.

 Handling the nonlinearity of the mixtures By assuming 
dependence between 

the class-indexed 
subspaces
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MLRsub algorithm based on class-indexed subspaces
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Subspace based MLR
• MLRsub method aims to deal with the problems defined by the linear mixing model

 Handling the nonlinearity of the mixtures

 Using the available prior knowledge about classes
By including the 

class prior 
probabilities
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MLRsub algorithm based on class-indexed subspaces
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Subspace based MLR
• MLRsub method aims to deal with the problems defined by the linear mixing model

 Handling the nonlinearity of the mixtures

 Using the available prior knowledge about classes
By including the 

class prior 
probabilities
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Experimental results

MLRsub
OA=70.61%, AA=73.92%

MLRsubmod
OA=78.49%, AA=82.41%

MLRsub algorithm based on class-indexed subspaces

Ground truth map
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Outline
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2. Combining local and global probabilities

3. MLRsub algorithm based on class-indexed subspaces
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MLRsub algorithm based on union of subspaces
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Union of Subspaces
• Modeling high-dimensional data with a union of subspaces is a useful generalization of 

subspace models.

Subspace of 
the whole training set

Subspace of 
a cluster of the training set Subspace of 

a cluster of the training set

Subspace of 
a cluster of the training set

M. Khodadadzadeh, J. Li, A. Plaza and J. M. Bioucas-Dias, “Hyperspectral Image Classification Based on Union of Subspaces,” IEEE Joint Urban Remote 
Sensing Event (JURSE’15), Lausanne, Switzerland, 2015.



35
26New Probabilistic Classification Techniques for Hyperspectral Images Ph.D. Thesis – Mahdi Khodadadzadeh July 2015

• Includes: 1) subspace clustering of training samples set; 2) subspace projection and 
probabilistic classification using MLR algorithm.

Subspace Clustering

Subspace based MLR

Training
Samples

Test
Samples

Output 
Probabilities

Original 
hyperspectral 

image

MLRsub algorithm based on union of subspaces

M. Soltanolkotabi, E. Elhamifar, E. J. Candes et al., “Robust subspace clustering,” The Annals of Statistics, vol. 42, no. 2, pp. 669–699, 2014.
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Union of Subspaces MLR
• Exploiting the union of subspaces in an MLR framework  by including the norms of 

the projection of the spectral vectors onto the subspaces estimated by RSC.
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MLRsub algorithm based on union of subspaces

Experimental results

MLRsubmod
OA=78.49%, AA=82.41%

MLRUsub
OA=80.24%, AA=83.95%

Ground truth map
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Probabilistic relaxation
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Relaxation

Hyperspectral 
Image

Preprocessing Probabilistic 
relaxation

Class probability estimates

Classification method

Probabilistic Classification

• As postprocessing, relaxation-based approaches can be an effective tool to improve 
classification accuracies.

• Methods that use the local relationship among neighboring pixels to correct spectral 
or spatial distortions.

J. Li, M. Khodadadzadeh, A. Plaza, X. Jia and J. M. Bioucas-Dias, “A Discontinuity Preserving Relaxation scheme for Spectral-Spatial Hyperspectral Image 
Classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.

• As preprocessing, spatial smoothing over the hyperspectral data can remove noise and 
enhance spatial texture information.
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Relaxation

Hyperspectral 
Image

Preprocessing Probabilistic 
relaxation

Class probability estimates

Classification method

Probabilistic Classification

• Improves the classification accuracy in smooth image areas.

• Degrades the classification performance in the neighborhood of the class boundaries.

Probabilistic relaxation
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Discontinuity Preserving Relaxation

Hyperspectral 
Image

Preprocessing Probabilistic 
relaxation

Class probability estimates

Classification method

Probabilistic Classification

• Improves the classification accuracy in smooth image areas.

• Degrades the classification performance in the neighborhood of the class boundaries.

Gradient

Probabilistic relaxation



42
32New Probabilistic Classification Techniques for Hyperspectral Images Ph.D. Thesis – Mahdi Khodadadzadeh July 2015

Discontinuity Preserving Relaxation
• We implement a relaxation scheme that is the solution of the following optimization 

problem:
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Probabilistic relaxation

Experimental results

SVM
OA=81.13%,
AA=89.05%

Ground truth map MLRsub
OA=70.61%,
AA=73.92%

MLRsub(gl)
OA=82.61%,
AA=83.80%
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Probabilistic relaxation

Experimental results

SVM-pr
OA=88.09%,
AA=93.24%

Ground truth map MLRsub-pr
OA=91.93%,
AA=88.39%

MLRsub(gl)-pr
OA=95.05%
 AA=92.48%
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Probabilistic relaxation

Experimental results

MLRsubmod
OA=78.49%, AA=82.41%

MLRUsub
OA=80.24%, AA=83.95%

Ground truth map
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Probabilistic relaxation

Experimental results

MLRsubmod-pr
OA=92.67%, AA=91.99%

MLRUsub-pr
OA=93.47%, AA=93.14%

Ground truth map
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Fusion of hyperspectral and LiDAR data
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Hyperspectral and LiDAR
• Light detection and ranging (LiDAR) provide detailed information on the elevation of 

the Earth’s surface and objects on the landscape.

• Combining information from multiple sources is an effective way to improve 
classification results.

M. Khodadadzadeh, J. Li, S. Prasad and A. Plaza, “Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning,” IEEE Journal 
of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.
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The importance of the fusion
• The information provided by LiDAR can effectively complement the spectral 

information from the hyperspectral data for classification purposes:

 Concrete roof

 Concrete pathway

 Asphalt road

Fusion of hyperspectral and LiDAR data
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Fusion of hyperspectral and LiDAR data

Original 
hyperspectral 

image

LiDAR 
derived 
image

AP(XL)

EMAP(Xh)

Multiple feature 
learning

Final 
classification
Probabilities

Fusion of hyperspectral and LiDAR data

M. Dalla Mura, J. A. Benediktsson, B, Waske and L. Bruzzone, “Morphological attribute profiles for the analysis of very high resolution images,”     IEEE 
Transactions on Geoscience and Remote Sensing, vol. 48, no. 10, pp. 3747-3762, 2010.
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Logarithmic opinion pool (LOGP) rule
• The LOGP is a consensus rule for combining several source-specific posterior 

probabilities with considering weights for controlling the relative influence of each 
data source.

• Using LOGP rule and considering the parameters associated with the classifiers, we 
can calculate the final posterior probabilities as:
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Fusion of hyperspectral and LiDAR data

J. Benediktsson, J. Sveinsson, and P. Swain, “Hybrid consensus theoretic classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 
4, pp. 833–843, Jul. 1997.
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Combination of LOGP and MLRsub
• Using MLRsub to model the posterior probabilities of each feature vector and 

LOGP rule for combining the source-specific posterior probabilities , we can now 
obtain:
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• Combining the regressors and the weight parameters into a new set of regressors:

Fusion of hyperspectral and LiDAR data
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University of Houston data
• Comprises 349x1905 pixels and 144 spectral bands between 0.38 and 1.05 microns.

• Spatial resolution of 2.5 meters, with 2832 training samples and 12197 test samples.

False color 
composition

Reference data

Training data

Fusion of hyperspectral and LiDAR data
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University of Houston data

False color composition

LiDAR derived DSM

• University of Houston data set consists of a hyperspectral image and a LiDAR 
derived DSM, both at the same spatial resolution (2.5m).

Fusion of hyperspectral and LiDAR data
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Classification results

MLRsub using 
Xh

(79.60%)

MLRsub using 
AP(XL)
(58.08%)

MLRsub using 
EMAP(Xh)
(74.53%)

Ground Truth

Fusion of hyperspectral and LiDAR data



56
45New Probabilistic Classification Techniques for Hyperspectral Images Ph.D. Thesis – Mahdi Khodadadzadeh July 2015

Classification results

MLRsub using 
Xh+AP(XL)

(87.91%)

MLRsub using 
Xh+EMAP(Xh)

(84.40%)

MLRsub using 
AP(XL)+EMAP(Xh)

(86.86%)

MLRsub using 
Xh+AP(XL)+EMAP(Xh)

(90.65%)

Fusion of hyperspectral and LiDAR data
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1. Introduction

2. Combining local and global probabilities

3. MLRsub algorithm based on class-indexed subspaces

4. MLRsub algorithm based on union of subspaces

5. Probabilistic relaxation

6. Fusion of hyperspectral and LiDAR data

7. Conclusions and future research lines

Outline
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Subspace Concept 

Probabilistic Relaxation

Conclusions
Conclusions
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Future research lines

• The integration of techniques for spectral unmixing and classification.

• Developing an unified framework based on union of subspaces.

• Computationally efficient implementations of the new techniques developed in this thesis.

Future research lines
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