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Fast Morphological Image Processing Open-Source
Extensions for GPU Processing With CUDA

Matthew J. Thurley and Victor Danell

Abstract—GPU architectures offer a significant opportunity for
faster morphological image processing, and the NVIDIA CUDA
architecture offers a relatively inexpensive and powerful frame-
work for performing these operations. However, the generic mor-
phological erosion and dilation operation in the CUDA NPP li-
brary is relatively naive, and performance scales expensively with
increasing structuring element size. The objective of this work is to
produce a freely available GPU capability for morphological oper-
ations so that fast GPU processing can be readily available to those
in the morphological image processing community. Open-source
extensions to CUDA (hereafter referred to as LTU-CUDA) have
been produced for erosion and dilation using a number of struc-
turing elements for both 8 bit and 32 bit images. Support for 32
bit image data is a specific objective of the work in order to facili-
tate fast processing of image data from 3D range sensors with high
depth precision. Furthermore, the implementation specifically al-
lows scalability of image size and structuring element size for pro-
cessing of large image sets. Images up to 4096 by 4096 pixels with
32 bit precision were tested. This scalability has been achieved by
forgoing the use of shared memory in CUDAmultiprocessors. The
vHGW algorithm for erosion and dilation independent of struc-
turing element size has been implemented for horizontal, vertical,
and 45 degree line structuring elements with significant perfor-
mance improvements over NPP. However, memory handling lim-
itations hinder performance in the vertical line case providing re-
sults not independent of structuring element size and posing an
interesting challenge for further optimisation. This performance
limitation is mitigated for larger structuring elements using an op-
timised transpose function, which is not default in NPP, and ap-
plying the horizontal structuring element. LTU-CUDA is an on-
going project and the code is freely available at https://github.com/
VictorD/LTU-CUDA.

Index Terms—Morphological image processing, erosion, dila-
tion, GPU, NVIDIA, CUDA.

I. INTRODUCTION

A. Background

M ORPHOLOGICAL image processing is powerful
non-linear image analysis tool for the analysis of

spatial structure based on pre-defined spatial structures known
as structuring elements. The fundamental operations of mor-
phological image processing, erosion and dilation, have in

Manuscript received February 06, 2012; revisedMay 15, 2012; acceptedMay
29, 2012. Date of publication June 14, 2012; date of current version October
12, 2012. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Daya Sagar Behara.
The authors are with the Department of Computer Science, Electrical, and

Space Engineering, Luleå University of Technology, Luleå 97187, Sweden
(e-mail: matthew.thurley@ltu.se; victor.danell@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JSTSP.2012.2204857

the most general case, time complexity for image
pixels and rectangular structuring elements of size . Faster
computation can be achieved using both structuring element
decomposition [1, p. 12–13] (or refer to any textbook on
morphological image processing) if an approximation of the
structuring element is satisfactory, and a number of advanced
algorithms such as the van Herk/Gil-Werman (vHGW) algo-
rithm [2], [3] for constant time (with respect to structuring
elemetn size) erosion and dilation of rectangular and octagonal
structuring elements, or Gil and Kimmel [4].
Application to parallel architectures such as a GPU offers

further potential for faster processing, however GPU imple-
mentations based on traditional or other sub-optimal
time complexity algorithms can still perform worse than ef-
ficient CPU implementations as image size and structuring
element size increases [5]. Domanski et al. [6] provide a short
description of a GPU implementation of the vHGW algorithm
[2], [3] demonstrating constant time computation at a signifi-
cant gain over CPU implementation. However, Domanski et al.
[6] use shared memory limiting the size of structuring elements,
and the code was not available due to restrictions from their
employer.
The objective of this work is to produce a freely available

GPU capability for fast morphological operations so that fast
GPU processing can be readily available to those in the mor-
phological image processing community.
A non-exhaustive survey of image processing libraries iden-

tified the following existing libraries;
CUDA is a device architecture developed by NVIDIA that

allows general parallel computation to be performed on their
CUDA enabled GPU graphics cards. NVIDIA provides the NPP
library at no cost that contains fundamental morphological op-
erations. However, at the time of writing NPP supports erosion
and dilation using a flat, rectangular shaped structuring
element, complexity, for images with 8 bit depth. NPP
provides a solid generic implementation and is maintained by
NVIDIA. Therefore it offers a good platform upon which to pro-
vide more optimised and open-source extensions. On request
NVIDIA provided part of the source code for their generic ero-
sion and dilation.
Alternate open-source libraries, OpenCV_GPU [7] for

CUDA, GPUCV [8], and etothepi-CUDA-Image-Processing
[9] were inadequate. OpenCV appeared no faster when run-
ning in GPU mode and became unstable when eroding with
non-square structuring elements. GPUCV stated only support
for square structuring elements on the GPU with all others pro-
cessed using the CPU, and etothepi-CUDA-Image-Processing

1932-4553/$31.00 © 2012 IEEE



850 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 7, NOVEMBER 2012

appeared to be in an unreliable, and unmaintained state when
tested.
TheMATLAB [10] image processing toolbox is not a parallel

implementation but it forms a useful comparison for this work
as it provides detailed morphological image processing capabil-
ities and implements optimised algorithms. MATLAB uses the
van Herk algorithm [2], [11] for fast erosion and dilation, and
implements structuring element decomposition for faster com-
putation [12].
Halcon [13] is a commercial machine vision and software

development library. Halcon was easy to use and was signifi-
cantly faster than MATLAB for a 4096 4096 image using an
11 11 structuring element. Larger structuring elements caused
Halcon’s performance to significantly decrease revealing a non-
constant time implementation with respect to structuring ele-
ment size. So while faster than MATLAB in the tested cases,
Halcon did not exhibit the same constant time optimised al-
gorithms from MATLAB that we wish to compare against so
Halcon is not considered in our assessment.
For our research, a high performance parallel implementation

(in this case GPU based) requires the following capabilities;
• free software as in freedom to further develop and extend
the code, and free price,

• optimised erosion and dilation algorithms that can provide
performance equivalent to vHGW,

• capacity to processes floating point images and provide
floating point structuring elements,

• capacity to process large images with between one and four
million pixels, and larger in the future.

The last two requirements stem from the need to process 3D
surface profile data from single or multiple range sensors [14],
[15] with 16 bit depth or larger resolution per data set.

B. Contribution

This paper presents a freely available implementation of fast
morphological erosion and dilation based on CUDA/NPP using
the vHGW algorithm [2], [3], [6] implemented in a way that al-
lows scalability of image size and structuring element size, and
8 and 32 bit depth data handling. Testing highlights an important
limitation and performance bound based not on the number of
cores, but on CUDA global memory handling for vertically ori-
ented structuring elements. This vertical structuring element lim-
itation can be mitigated for larger structuring elements using an
optimised transpose[16],which isnot thedefault implementation
in NPP, and then applying the horizontal structuring element.
Erosion and dilation are implemented for a base set of struc-

turing elements from which larger structuring elements can be
constructed via structuring element decomposition. Comparison
is provided against CUDA’s NPP library generic structuring el-
ement implementation and against MATLAB’s image
processing toolbox [10]. A test framework using MATLAB is
provided in LTU-CUDA.
Although MATLAB is not known as a particularly fast

implementation environment for programming it demonstrates
vHGW constant time performance as the structuring element
size increases. Therefore performance results from MATLAB
provide a useful relative comparison.

TABLE I
VHGW ALGORITHM

II. IMPLEMENTATION

A. CUDA Parallel vHGW

The implementation begins with the vHGW algorithm for a
dilation with a 1D horizontal structuring elements of size

implemented for the GPU [2], [3], [6]. Erosion follows
the same process using minimum arrays. Table I outlines the
vHGW algorithm.
Domanski et al. [6] implement this with shared memory

arrays for the max arrays , and 2 threads per window
, one for each max array. They show the result of a dila-
tion using a square structuring element of various sizes up
to 63 63, showing constant time computation regardless of
structuring element size on an image of 1024 1024. It is not
exactly clear how the vertical structuring element component
of this dilation was implemented, but Domanski et al. describe
two alternatives. Firstly, a modified horizontal dilation that
writes the results out into a transposed result image so that a
subsequent horizontal dilation will generate the square dilation
result, and secondly that individual horizontal and vertical
structuring element kernels would provide better potential to
performed coalesced (grouped) memory accesses. It is not clear
which method was implemented in their result but it seems the
former was likely.
LTU-CUDA uses the following implementation details for

vHGW;
• Separate code for horizontal, vertical, and diagonal
degree structuring elements

• A single thread calculates the max values for the two max
arrays

• No shared memory is used as this limits the utilization of
CUDA’s multiprocessors as image and structuring element
size increases.

Shared memory usage is an important issue in the imple-
mentation. If one uses multiple threads for a single result as
Domanski et al. [6] it is necessary to have inter-thread com-
munication such as via shared memory to store the max arrays
for the two threads. Shared memory is however limited in size
making it only viable for smaller images and structuring ele-
ments. CUDA enabled GPUs have shared memory per multi-
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processor of 48 KB at CUDA compute capability version 2.0,
and 16 KB prior ([17], Appendix F).
A few CUDA definitions are necessary at this point;
• A CUDA “multiprocessor creates, manages, schedules,
and executes threads in groups of 32 parallel threads called
warps” ([17], Section 4.1)

• A CUDA multiprocessor contains a number of blocks of
threads, with a maximum of 8 blocks of threads in CUDA
compute version 2.x and below ([17], Appendix F).

• Block size should be a multiple of 32 threads (a warp) with
a recommended minimum of 64 [18] (2 warps).

Assuming it is possible and efficient to use only 32 threads
(one warp) we can therefore perform the horizontal Domanski
dilation on an image with 1100 columns per row and a struc-
turing element of size 11 using greater than 32 KB of shared
memory as follows;
• structuring element is a horizontal line of 11 pixels, there-
fore

• each image row is 1100 pixels therefore
windows

• 2 arrays per window using values & 2 threads
• each block using 32 threads
• therefore each block requires K values
of shared memory, which equals 34 KB for 8 bit integer
images, or 136 KB for 32 bit floating point images.

• each multiprocessor has 48 KB of shared memory for a
card supporting CUDA compute capability of 2.0 or better.

Shared memory on the multiprocessor is 71% consumed for
the 8 bit case (with only an 11 pixel structuring element), and
exceeded by a factor of 1.8 for the 32 bit floats. In addition, a
resource allocation that allocates all 48 KB of shared memory
to a single block with 32 threads per block results in only 1
active warp for that multiprocessor. With only 1 active warps
out of a possible 48 warps (CUDA computer version 2.0) ([17],
Appendix F) an occupancy rate (thread usage rate) of the only
2% is achieved for that multiprocessor ([19], CUDAOccupancy
Calculator) significantly limiting potential performance.
Given the stated goal to support large images between one

and four million pixels total, with significantly larger than 8 bit
precision, shared memory usage for the vHGW max arrays is
not viable with this strategy. Further investigation into how to
gain the benefits of shared memory without limiting scalability
is ongoing.

B. Supported Operations

LTU-CUDA development thus far assumes that given a suf-
ficient base set of structuring elements, structuring element de-
composition can be applied to create other required structuring
elements. The focus is presently on a set of simple structuring el-
ements, withmore complex shapes left to a generic NPP
erosion and dilation. LTU-CUDA provides the following oper-
ations and structuring elements primitives from which a variety
of other shapes can be constructed including squares, rectangles,
diamonds, octagons, and 8-sided approximations to a circular
disc;
• erosion and dilation using 8 bit or 32 bit images
• flat horizontal, vertical, and diagonal degree line
structuring elements (of odd length) using GPU vHGW.

• two 3 by 3 mask structuring elements implemented using
loop free code providing a 10–20% speed improvement
over NPP.
— 5 pixel cross or ‘ ’ symbol,
— 4 pixel hollow cross,

• other structuring elements (non flat, non-filled) are cur-
rently implemented using a generic structuring element
kernel equivalent to the NPP generic algorithm.

C. Development and Testing Conditions

LTU-CUDA has been tested and runs under linux 32 bit
(ubuntu 10.04 LTS) and windows 7 64 bit. MATLAB and the
image processing toolbox are not necessary but if present can be
used to generate comparisons with LTU-CUDA. LTU-CUDA
works with CUDA toolkit 4.0, 4.1 and 4.2. It is important to use
the NPP version that corresponds to the installed CUDA toolkit
or strange behavior will appear without any compiler warnings
or errors. There were a few issues with the default installation
of the toolkit, where a number of inline functions defined
in npps.h had to be prefixed with ‘static’ for compilation to
complete successfully.
MATLAB uses structuring element decomposition for many

area based structuring elements, including the square and
disc structuring elements used in this work. The following
MATLAB functions and structuring element decompositions
were used with LTU-CUDA being tested with the equivalent
decomposition;
• strel(‘line’, angle, length) produces linear struc-
turing elements with angle equal to to create
horizontal, vertical and 45 degree diagonal lines.

• strel(‘square’, side_length) produces a square
structuring element, which is decomposed into two struc-
turing elements, horizontal and vertical lines of length
size_length.

• strel(‘disc’, radius) produces an 8-sided approxi-
mation of a circular disc decomposed into a combination
of horizontal, vertical and degree linear structuring
elements.

As we use structuring element decomposition for MATLAB
and LTU-CUDA it is only reasonable to apply structuring ele-
ment decomposition for NPP where this would improve perfor-
mance. NPP uses a generic arbitrary rectangular grid structuring
element mask. Therefore we expect that this will be efficient
in terms of the mask size for a horizontal line and vertical line
structuring elements. However for a diagonal line of length
this would require a square structuring element of size .
Using structuring element decomposition it is possible to per-
form repeated operations with a 3 by 3 structuring element that
contains a 3 pixel diagonal line. Iterating times would pro-
duce a line of length . The following structuring
element decompositions were used to achieve the fastest results
for NPP;
1) Diagonal line of length represented by
iterations of a 3 by 3 structuring element mask containing
a 3 pixel diagonal line. Only odd length diagonal lines were
created.

2) Disc structuring element approximated using degree
diagonal lines and NPP’s generic structuring element for
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Fig. 1. Timing results for a horizontal line structuring element on a
2048 1024 image. LTU-CUDA uses the GPU vHGW horizontal line SE.
Logarithmic vertical axis.

Fig. 2. Timing results for a vertical line structuring element on a 2048 1024
image. LTU-CUDA uses the GPU vHGW vertical line SE. Logarithmic vertical
axis.

horizontal and vertical structuring elements. The diagonal
lines are further decomposed as described here in item 1).

III. RESULTS

The presented results were produced using morphological
erosion on a NVIDIA GTX 470 with 448 CUDA cores running
NVIDIA driver 270.41.19, AMD Athlon II X4 620 CPU run-
ning at 3067 MHz, and with MATLAB version 7.10.0 R2010a.
Performance results were generated under linux 32 bit (ubuntu

Fig. 3. Timing results for a vertical line structuring element on a 1472 1472
image. LTU-CUDA uses the GPU vHGW vertical line SE calculated using an
optimised Transpose [16], then a Horizontal line, and finally the same Transpose
(the combination denoted THT). Logarithmic vertical axis.

Fig. 4. Timing results for a square structuring element on a 1472 1472 image.
LTU-CUDA uses the GPU vHGW square SE (vHGW horizontal line dilated by
THT-vertical line). Logarithmic vertical axis.

10.04 LTS). Performance results for NPP and LTU-CUDA in-
clude not only the morphological image processing time, but
also all operations required to replace the functionality provided
by MATLAB including memory allocations and transfers to the
GPU and back.
Table II shows the mean and standard deviation of the in-

creased performance of LTU-CUDA as a multiple of MATLAB
and NPP calculated from the results shown in Figs. 1 to 6.
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Fig. 5. Timing results for a diagonal line SE on a 2048 1024 image.
LTU-CUDA uses a vHGW diagonal line. NPP is demonstrated in two cases;
firstly using a large square structuring element containing the entire diagonal
line, and secondly using structuring element decomposition with a repeated se-
ries of 3 by 3 marks with a 3 pixel diagonal line to improve NPP’s performance.
Logarithmic vertical axis.

Fig. 6. Timing results for an 8-sided approximation of a circular disc struc-
turing element on a 1472 1472 image. The disc is based on structuring element
decomposition using horizontal, vertical and degree diagonal line struc-
turing elements following the strategy employed by MATLAB ([10], strel
(‘disc’, radius)).

Example results are graphed for 2 M pixel images. In most
cases a 2048 by 1024 image size has been used. However, due
to resulting non-constant time performance of the vHGW ver-
tical line structuring element in CUDA, a THT-vertical line
structuring element has also been implemented based on an

TABLE II
PERFORMANCE INCREASE OF LTU-CUDA (MEAN AND STANDARD DEVIATION)
AS A MULTIPLE OF NPP AND MATLAB, INCLUDING CUDA OVERHEADS

FOR MEMORY TRANSFER AND ALLOCATION

optimised transpose [16] and the vHGW horizontal line struc-
turing element. Square 1472 by 1472 images have been used
for all operations that use this THT-vertical structuring element
as this optimised transpose is currently restricted to square im-
ages “whose dimensions are integral multiples of 32. However,
modifications of (the) code required to accommodate matrices
of arbitrary size are straightforward” [16].

IV. DISCUSSION

The results for vHGW horizontal line structuring element in
Fig. 1 show the performance of the vHGW algorithm both in
LTU-CUDA and MATLAB independent of structuring element
size.
The results for the vHGW vertical line structuring element

in Fig. 2 are not as desired and show interesting results for
LTU-CUDA and MATLAB. LTU-CUDA shows a significant
dependency on structuring element size although still signif-
icantly better than NPP, and MATLAB shows a substantially
faster result (nearly 4 times faster) than MATLAB processing
horizontal lines. Both results are related to memory handling.
The LTU-CUDA results in Fig. 2 are memory bound rather

than computationally bound as a result of how the image is laid
out in CUDA global memory.
Further investigation and optimisation to overcome the

CUDA memory bottleneck for vertically oriented operations
is of interest. Transposing the image using the default NPP
transpose was attempted but the overhead of this operation
made the result even slower. However, using an optimised
transpose function a THT-vertical line structuring element
was implemented based on transpose, vHGW horizontal line
structuring element, and transpose. This optimised transpose
implementation is provided by NVIDIA [16] but it is not the
default transpose operation in NPP. The optimised transpose
currently only works with square images that are a multiple of
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32 but as noted earlier, this limit can be overcome and further
development will allow more flexible image dimensions. The
default transpose exchanges horizontal row data with vertically
oriented column data. The optimised transpose [16] views
the image matrix as a series of degree diagonal rows of
data, instead of horizontal rows and vertical columns. Indexing
the data this way allows CUDA to avoid continuous column
ordered memory access in the CUDA global memory which
typically creates a bottleneck.
From Ruetsch and Micikevicius [16] “global memory is di-

vided into a number of partitions of 256-byte width. To use
global memory efficiently, concurrent access to global memory
should be divided evenly amongst partitions. The term parti-
tion camping is used to describe the case when global memory
accesses are directed through a subset of partitions, causing re-
quests to queue up at some partitions while other partitions go
unused”. This is the case with the vHGW vertical line struc-
turing element as memory access “column-wise will typi-
cally access global memory through just a few partitions” [16].
For the MATLAB results in Fig. 2 the results are significantly

faster than the horizontal line case in Fig. 1. Vertical lines are
more optimally arranged for memory handling and faster reads.
This is due to MATLAB’s column-major-order for the layout
of multi-dimensional arrays in linear memory. This means the
elements of each column are laid out in a contiguous block of
memory making it fast to read a column in a single read, but
slower to read a row, as it is a sequence of memory elements
periodically spaced through the memory.
From Figs. 2 and 3 we can observe that it is still faster to use

the memory bounded vertical line vHGW structuring element
for sizes smaller than approximately 90 pixels, and the THT-
vertical line for larger structuring elements.
The square structuring element is decomposed into the

vHGW horizontal and the vHGW THT-vertical line structuring
elements, thus mitigating the memory handling limitation in
the vHGW vertical line case. Fig. 4 shows the performance
results for the square structuring element and we observe the
desired constant time results.
For diagonal lines as shown in Fig. 5, NPP results are shown

both using a large square structuring element containing the en-
tire diagonal line, and the decomposition of the diagonal line
into a series of 3 by 3 masks containing a 3 pixel diagonal line.
The large square structuring element is extremely slow, being
slower than MATLAB once the line exceeds 50 pixels. The de-
composition into multiple 3 by 3 masks is significantly faster,
but still far slower than LTU-CUDA.
Fig. 6 shows the results for the disc structuring element with

an average 14 times speed improvement over NPP.

V. CONCLUSION AND FUTURE WORK

LTU-CUDA is a project to deliver open-source extensions for
GPU enabledmorphological image processing based onCUDA.
It allows 32 bit processing of large scale images and structuring
elements, unlimited by shared memory constraints in the CUDA
architecture. It provides erosion and dilation for a base set of

structuring elements with the horizontal, vertical and de-
gree line structuring element operations based on the vHGW al-
gorithm. The implementation highlights memory handling limi-
tations of CUDA for vertical structuring elements. LTU-CUDA
is available for download at https://github.com/VictorD/LTU-
CUDA.
Further work includes but is not limited to;
• improvements to global memory handling to mitigate per-
formance limitations for vertical structuring elements

• optimised algorithms for non-flat structuring elements
• structuring element discrete lines at arbitrary angles [20]
• implement automatic structuring element decomposition
calculation for disc and octagon

• investigate sharedmemory usage for further improvements
• implement periodic line structuring elements
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