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Spectral–Spatial Hyperspectral Image Segmentation
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Abstract—This paper introduces a new supervised segmen-
tation algorithm for remotely sensed hyperspectral image data
which integrates the spectral and spatial information in a Bayesian
framework. A multinomial logistic regression (MLR) algorithm is
first used to learn the posterior probability distributions from the
spectral information, using a subspace projection method to bet-
ter characterize noise and highly mixed pixels. Then, contextual
information is included using a multilevel logistic Markov–Gibbs
Markov random field prior. Finally, a maximum a posteriori
segmentation is efficiently computed by the α-Expansion min-
cut-based integer optimization algorithm. The proposed segmen-
tation approach is experimentally evaluated using both simulated
and real hyperspectral data sets, exhibiting state-of-the-art per-
formance when compared with recently introduced hyperspec-
tral image classification methods. The integration of subspace
projection methods with the MLR algorithm, combined with the
use of spatial–contextual information, represents an innovative
contribution in the literature. This approach is shown to provide
accurate characterization of hyperspectral imagery in both the
spectral and the spatial domain.

Index Terms—Hyperspectral image segmentation, Markov ran-
dom field (MRF), multinomial logistic regression (MLR), subspace
projection method.

I. INTRODUCTION

SUPERVISED classification (and segmentation) of high-
dimensional data sets such as remotely sensed hyperspec-

tral images is a difficult endeavor [1]. Obstacles, such as the
Hughes phenomenon [2], appear as the data dimensionality
increases. This is because the number of training samples
used for the learning stage of the classifier is generally very
limited compared with the number of available spectral bands.
In order to circumvent this problem, several feature selection
[3] and extraction [4] methods have been combined with ma-
chine learning techniques that are able to perform accurately in
the presence of limited training sets, including support vector
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machines (SVMs) [5], [6] or multinomial logistic regression
(MLR)-based classifiers [7], [8].

Due to sensor design considerations, the wealth of spectral
information in hyperspectral data is often not complemented by
extremely fine spatial resolution. This (and other phenomena,
such as the presence of mixtures of components at different
scales) leads to the problem of mixed pixels, which represent
a challenge for accurate hyperspectral image classification [9].
In order to address this issue, subspace projection methods [10]
have been shown to be a powerful class of statistical pattern
classification algorithms [11]. These methods can handle the
high dimensionality of an input data set by bringing it to
the right subspace without losing the original information that
allows for the separation of classes.

In this context, subspace projection methods can provide
competitive advantages by separating classes which are very
similar in spectral sense, thus addressing the limitations in
the classification process due to the presence of highly mixed
pixels. The idea of applying subspace projection methods to
improve classification relies on the basic assumption that the
samples within each class can approximately lie in a lower
dimensional subspace. Thus, each class may be represented
by a subspace spanned by a set of basis vectors, while the
classification criterion for a new input sample would be the
distance from the class subspace [12]–[14]. Recently, several
subspace projection methods have been specifically designed
for improving hyperspectral data characterization [3], [15]–
[17], obtaining successful results. Another recent trend is to
combine spectral and spatial–contextual information [8], [9],
[18]–[22]. In some of these works, Markov random fields
(MRFs) have obtained great success in characterizing spatial
information in remotely sensed data sets [23], [24]. MRFs ex-
ploit the continuity, in probability sense, of neighboring labels.
The basic assumption is that, in a hyperspectral image, it is
very likely that two neighboring pixels will have the class same
label.

In this paper, we propose a new Bayesian approach to hy-
perspectral image segmentation which combines spectral and
spatial information. The algorithm implements the following
two main steps: 1) learning, where the posterior probability dis-
tributions are modeled by an MLR combined with a subspace
projection method, and 2) segmentation, which infers an image
of class labels from a posterior distribution built on the learned
subspace classifier and on a multilevel logistic (MLL) prior on
the image of labels. The final output of the algorithm is based
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on a maximum a posteriori (MAP) segmentation process which
is computed via an efficient min-cut-based integer optimization
technique. The main novelty of our proposed work is the
integration of a subspace projection method with the MLR
which is further combined with spatial–contextual information,
which will be shown to provide a good characterization of
content of hyperspectral imagery in both the spectral and the
spatial domain. The proposed Bayesian method exhibits good
discriminatory capability when dealing with ill-posed prob-
lems, i.e., limited training samples versus high dimensionality
of the input data. In addition to this, we emphasize that the
proposed approach provides class posterior probabilities which
are crucial to the complete posterior probabilities, such that the
final MAP segmentation can benefit from the inclusion of both
the spectral and the spatial information available in the original
hyperspectral data. As will be shown by our experimental
results, the accuracies achieved by our approach are compet-
itive or superior to those provided by many other state-of-
the-art supervised classifiers for hyperspectral image analysis.
Furthermore, an important innovative contribution of this work
with regard to our previous work in [8] and [22] is that the
proposed method applies a subspace projection method instead
of considering the full spectral information as an input to the
MLR model, thus being able to circumvent some limitations
in the techniques described in [8] and [22] due to the high
dimensionality of the input data and the presence of highly
mixed pixels, which are now tackled simultaneously by our
newly proposed approach.

The remainder of this paper is organized as follows.
Section II formulates the problem. Section III describes the
proposed approach. Section IV reports segmentation results
based on simulated and real hyperspectral data sets in compar-
ison with other state-of-the-art supervised classifiers. Finally,
Section V concludes with some remarks and hints at plausible
future research lines.

II. PROBLEM FORMULATION

Before describing our proposed approach, let us first define
some of the notations that will be used throughout this paper:

S ≡ {1, . . . , n} Set of integers index-
ing the n pixels of an
image.

K ≡ {1, . . . ,K} Set of K classes.
x = (x1, . . . ,xn) ∈ R

d×n Image in which the pix-
els are d-dimensional
vectors.

y = (y1, . . . , yn) ∈ Ln Image of labels.
D(k)

l(k) ≡ {(y1,x1), . . . , (yl(k) ,xl(k))} Set of labeled sam-
ples for class k with
size l(k).

x
(k)

l(k) ≡ {x1, . . . ,xl(k)} Set of feature vectors

in D(k)

l(k) .

Dl ≡ {D(1)

l(1)
, . . . ,D(K)

l(K)} Set of labeled samples
with size l =∑K

k=1 l
(k).

With the aforementioned definitions in place, the goal of
classification is to assign a label yi ∈ K to each pixel vector xi,
with i ∈ S . This process results in an image of class labels y,
and we will call this assignment labeling. In turn, the goal of
segmentation is to partition the set S such that the pixels in each
subset Sk, with S = ∪kSk, share some common property, e.g.,
they represent the same type of land cover. Notice that, given
a labeling y, the collection Sk = {i ∈ S|yi = k} for k ∈ K is
a partition of S . On the other hand, given the segmentation Sk

for k ∈ K, the image {yi|yi = k, if i ∈ Sk, i ∈ S} is a labeling.
As a result, there is a one-to-one relationship between labelings
and segmentations. Without loss of generality, in this paper, we
use the term classification when the spatial information in the
original scene is not used in the labeling process. Similarly, we
use the term segmentation when the spatial information in the
original scene is used to produce such labeling.

In a Bayesian framework, the labeling process is usually
conducted by maximizing the posterior distribution1 as follows:

p(y|x) ∝ p(x|y)p(y) (1)

where p(x|y) is the likelihood function (i.e., the probability of
the feature image given the labels) and p(y) is the prior over
the image of labels. Assuming conditional independence of the
features given the labels, i.e., p(x|y) =

∏i=n
i=1 p(xi|yi), then the

posterior may be written as a function of y as follows:

p(y|x) = 1

p(x)
p(x|y)p(y)

=
1

p(x)

i=n∏
i=1

p(xi|yi)p(y)

=α(x)

i=n∏
i=1

p(yi|xi)

p(yi)
p(y) (2)

where α(x) ≡
∏i=n

i=1 p(xi)/p(x) is a factor not depending
on y. In the proposed approach, we assume the classes are
equally likely, i.e., p(yi = k) = 1/K for any k ∈ K. However,
any other distribution can be accommodated, as long as the
marginal of p(y) is compatible with the assumed distribution.
Therefore, the MAP segmentation is given by

ŷ = arg max
y∈Kn

{
n∑

i=1

(log p(yi|xi) + log p(y)

}
. (3)

Following the Bayesian framework described earlier, we
have developed a new algorithm which naturally integrates the
spectral and the spatial information contained in the original hy-
perspectral image data. In our proposed algorithm, the spectral
information is represented by class densities p(yi|xi), which
are learned by a subspace projection-based MLR algorithm.
On the other hand, the spatial prior p(y) is given by an MRF-
based MLL prior which encourages neighboring pixels to have
the same label. The MAP segmentation ŷ is computed via the

1To keep the notation simple, we use p(·) to denote both continuous densities
and discrete distributions of random variables. The meaning should be clear
from the context.
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α-Expansion algorithm [25], a min-cut-based tool to efficiently
solve integer optimization problems. Additional details are
given in the following section.

III. PROPOSED APPROACH

This section is organized as follows. First, we propose a
new spectral classifier which uses an MLR-based model com-
bined with a subspace projection method. Second, we incorpo-
rate spatial information in the spectral classifier by resorting
to an MRF-based isotropic MLL prior. Then, we describe
an efficient min-cut optimization technique (α-Expansion
algorithm) intended for computing a MAP segmentation.
Finally, we integrate the individual modules described previ-
ously into a supervised Bayesian spatial–spectral segmentation
framework.

A. Subspace Projection-Based MLR Classifier: MLRsub

One of the main problems in hyperspectral image classifica-
tion is the presence of mixed pixels, which can be an important
source of inaccuracies in the data interpretation process. Two
models have been widely used in the literature for charac-
terizing mixed pixels: linear and nonlinear [26]. The linear
mixture model assumes that the spectral response of a mixed
pixel can be explained as a linear combination of a set of pure
spectral signatures (also called endmembers) weighted by their
corresponding abundance fractions [27]. This model assumes
minimal secondary reflections and/or multiple scattering effects
in the data, as opposed to nonlinear unmixing which assumes
that the endmembers form an intimate mixture inside the re-
spective pixel. In the latter case, incident radiation interacts
with more than one component and is affected by multiple scat-
tering effects [28]. Nonlinear unmixing generally requires prior
knowledge about the object geometry and physical properties
of the observed objects [29], which may be very difficult to
obtain in practice. In this paper, we focus exclusively on the
linear mixture model, due to its computational tractability and
flexibility in different applications.

Under the linear mixture model assumption, for any i ∈ S ,
we have

xi = mγi + ni (4)

where m ≡ [m(1), . . . ,m(K)] denotes a mixing matrix com-
posed by the spectral endmembers, ni denotes the noise, and
γi = [γ

(1)
i , . . . , γ

(K)
i ]T denotes the fractional abundances of

the endmembers in the mixed pixel xi. Since the distribution
p(γi) is unknown, we cannot compute p(xi|yi = k) using a
generative model. It happens, however, that the linear term mγi

in (4) lives in class-dependent subspaces. This is a consequence
of the linearity of this term and of the fact that the set of materi-
als corresponding to any two different classes are very likely to
be different. An important advantage of the proposed approach
is the inclusion of a subspace projection method which takes
advantage of the fact that, in general, hyperspectral data live in
a much lower dimensional subspace compared with the feature
dimensionality. Therefore, if the size of the training set for

Fig. 1. Illustration of the advantages that can be gained by using
subspace projection under the linear mixture model assumption, where
{m(1),m(2),m(3)} denote the spectral endmembers, to reduce the impact
of mixed pixels in the classification process.

a certain class is very small, our proposed approach can still
provide good performance in such ill-posed problems, provided
that the method is able to obtain a good estimate of the subspace
in which the considered class lives. Fig. 1 shows the advantages
that can be gained by using subspace projection under the linear
mixture model assumption. As shown by Fig. 1, hyperspectral
data generally live in class-independent subspaces given by the
spectral endmembers. Subsequently, the projection into such
subspaces allows us to specifically avoid spectral confusion due
to mixed pixels, thus reducing their impact in the subsequent
classification process.

With this in mind, we may then write the observation mech-
anism for class k as

x
(k)
i = U(k)z

(k)
i + n

(k)
i (5)

where n
(k)
i is the noise of class k, U(k) = {u(k)

1 , . . . ,u
(k)

r(k)}
is a set of r(k)-dimensional orthonormal basis vectors for
the subspace associated with class k, and z

(k)
i is, apart from

the noise n
(k)
i , the coordinates of x

(k)
i with respect to the

basis U(k).
We assume that the class-independent random vectors n

(k)
i

and z
(k)
i are Gaussian distributed with zero mean and diago-

nal covariance matrices, i.e., n(k)
i ∼ N (0, σ(k)2I) and z

(k)
i ∼

N (0, α(k)I). We are aware that, statistically, these assumptions
are very strong and that they rarely hold in real data. However,
they allow us to preserve the subspace-based structure of our
model and yield a robust discriminative model. Hence, we have
decided to preserve these assumptions in our implementation.
In addition to this, we also emphasize that, accordingly, nor-
malization of the input data is not needed in order for the pro-
posed model to perform properly. Based on the aforementioned
assumptions, we have the following generative model:

p(xi|yi = k) ∼ N
(
0, α(k)U(k)U(k)T + σ(k)2I

)
. (6)
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Under the present setup, the generative model in (6) can be
computed as follows:

p(xi|yi = k)

∝exp

{
−1

2
xT
i

(
α(k)U(k)U(k)T+σ(k)2I

)−1

xi

}
=exp

{
−1

2
xT
i

(
I

σ(k)2
−U(k)

σ(k)2

×
(

I

α(k)
+
U(k)TU(k)

σ(k)2

)−1
U(k)T

σ(k)2

⎞⎠xi

⎫⎬⎭
=exp

{
− 1

2σ(k)2
xT
i

(
1− α(k)

α(k)+σ(k)2
U(k)U(k)T

)
xi

}
=exp

{
−1

2

xT
i x

σ(k)2
+

1

2σ(k)2

α(k)

α(k)+σ(k)2

∥∥∥xT
i U

(k)
∥∥∥2} . (7)

Let ω
(k)
1 ≡ −(1/2σ(k)2), ω

(k)
2 ≡ (1/2σ(k)2)(α(k)/(α(k) +

σ(k)2)), ω(k) ≡ [ω
(k)
1 ω

(k)
2 ]T, and ω ≡ [ω(1)T , . . . ,ω(K)T ]T.

With these definitions in mind, we can compute the posterior
class density p(yi|xi) as follows:

p(yi=k|xi,ω)=
p(xi|yi=k,ω)p(yi=k)∑K
k=1 p(xi|yi=k,ω)p(yi=k)

=
exp

(
ω(k)Tφ(k)(xi)

)
p(yi=k)∑K

k=1 exp
(
ω(k)Tφ(k)(xi)

)
p(yi=k)

(8)

where φ(k)(xi) = [‖xi‖2, ‖xT
i U

(k)‖2]T. Assuming equiprob-
able classes, i.e., p(yi = k) = 1/K, the problem in (8) turns to

p(yi = k|xi,ω) =
exp

(
ω(k)φ(k)(xi)

)
∑K

k=1 exp
(
ω(k)φ(k)(xi)

) (9)

which is exactly an MLR [7].
1) Learning the Class-Independent Subspace: Let R(k) =

〈x(k)

l(k)x
(k)T

l(k) 〉 denote the sample correlation matrix associated
with class k determined from the training set. By computing
the eigendecomposition of R(k), we have

R(k) = E(k)Λ(k)E(k)T (10)

where E(k) = {e(k)1 , . . . , e
(k)
d } is the eigenvector matrix and

Λ = diag(λ(k)
1 , . . . , λ

(k)
d ) is the eigenvalue matrix with de-

creasing magnitude, i.e., λ(k)
1 ≥ · · · ≥ λ

(k)
d . Moreover, for i ∈

S , vector xi can be represented as a sum of two mutually
orthogonal vectors xi = x̂i + x̃i, where x̂i is the projection of
vector xi on the r(k)-dimensional subspace spanned by the first
r(k) eigenvalues, i.e., λ(k)

1 , . . . , λ
(k)

r(k) , and x̃i is the projection on
the orthogonal subspace spanned by the remaining eigenvalues.

We take U(k) = {e(k)1 , . . . , e
(k)

r(k)} as an estimate of the class-
independent r(k)-dimensional subspace with r(k) < d and

r(k) = min

⎧⎨⎩r(k) :

r(k)∑
i=1

λ
(k)
i ≥

d∑
i=1

λ
(k)
i × τ

⎫⎬⎭ (11)

where 0 ≤ τ ≤ 1 is a threshold parameter controlling the
loss of spectral information after projecting the data into the
subspace.

2) Learning the MLR Regressors: In order to cope with
difficulties in learning the regression vector ω associated with
bad or ill conditioning of the underlying inverse problem, we
adopt a quadratic prior on ω so that

p(ω) ∝ e−β/2‖ω‖2 (12)

where β ≥ 0 is a regularization parameter controlling weight of
the prior.

In the present problem, learning the class densities amounts
to estimating the logistic regressors ω. Inspired by previous
works [7], [8], [18], [22], [30], we compute ω by calculating
the MAP estimate

ω̂ = argmax
ω

	(ω) + log p(ω) (13)

where 	(ω) is the log-likelihood function given by

	(ω) ≡ log
l∏

i=1

p(yi|xi,ω). (14)

The optimization problem in (13) is concave, although the
term 	(ω) is nonquadratic. This term can be approximated by
a quadratic lower bound given by [7]; for any k ∈ K and the
regressors ωt at iteration t, we have

	
(
ω(k)

)
≥ 	

(
ω

(k)
t

)
+
(
ω(k) − ω

(k)
t

)T

g
(
ω

(k)
t

)
+
1

2

(
ω(k) − ω

(k)
t

)T

B(k)
(
ω(k) − ω

(k)
t

)
(15)

with

B(k) ≡ −(1/2)
[
I− 11T/(K + 1)

]
⊗

l∑
i=1

φ(k)(xi)φ
(k)(xi)

T

(16)

where 1 denotes a column vector of ones and g(ω
(k)
t ) is

the gradient of 	(·) at ω(k)
t . Based on the lower bound (15),

we implement an instance of the minorization–maximization
(MM) algorithm [31], which consists in replacing, in each
iteration, the objective function 	(ω) with the lower bound (15)
and then in maximizing it. It should be noted that the well-
known expectation–maximization (EM) algorithm [32] is, in
fact, an MM algorithm and that not all MM algorithms are EM
instances. The aforementioned procedure then leads to

ω̂
(k)
t+1 = argmax

ω(k)
ω(k)T

(
g
(
ω̂

(k)
t

)
−B(k)ω̂

(k)
t

)
+
1

2
ω(k)T

(
B(k) − βI

)
ω(k). (17)
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Now, the optimization problem in (17) is quadratic and easy to
solve, leading to the following update function:

ω̂
(k)
t+1=

1

2

(
B(k) − βI

)−1(
B(k)ω̂

(k)
t − g

(
ω̂

(k)
t

))
,

for k ∈ K. (18)

We note that matrix (B(k) − βI)−1 is negative definite and,
thus, nonsingular. Furthermore, it is fixed along the algorithm
iterations; thus, it can be precomputed. With this in mind, it
is now possible to perform an exact MAP-based MLR under
a quadratic prior. The pseudocode for the subspace projection-
based MLR algorithm, referred to hereinafter as MLRsub, is
shown in Algorithm 1. In the algorithm description, iters
denotes the maximum number of iterations. The overall com-
plexity of Algorithm 1 is dominated by the computation of the
correlation matrix, which has complexity O(ld2) (recall that l
is the number of labeled samples and d is the dimensionality of
the feature vectors).

Algorithm 1 MLRsub

Input: ω0, Dl, β, τ , iters
Output: ω, U ≡ {U(1), . . . ,U(k)}
for k = 1 to K do

U(k) ≡ U(X (k)

l(k) , τ) (∗ U computes the subspace ac-
cording to (10)∗)

B(k) ≡ B(U(k),Dl) (∗ B computes the system
matrix B according to (16)∗)

end for
t := 1
while t ≤ iters or stopping criterion is not satisfied do

for k := 1 to K do
g(ω

(k)
t−1) ≡ ∇	(ω

(k)
t−1)

ω
(k)
t = solution{B(k),g(ω

(k)
t−1),U

(k), β}
end for

end while

B. MRF-Based MLL Spatial Prior

In order to improve the classification performance achieved
by using the spectral information alone, in this paper, we
integrate the contextual information with spectral information
by using an isotropic MLL prior to modeling the image of class
labels y. This approach exploits the fact that, in segmenting
real-world images, it is very likely that spatially neighboring
pixels belong to the same class. This prior, which belongs to the
MRF class, encourages piecewise smooth segmentations and
promotes solutions in which adjacent pixels are likely to belong
to the same class. The MLL prior constitutes a generalization
of the Ising model [33] and has been widely used in image
segmentation problems [34].

According to the Hammersly–Clifford theorem [35], the
density associated with an MRF is a Gibbs’ distribution [33].

Therefore, the prior model for segmentation has the following
structure:

p(y) =
1

Z
e

(
−
∑
c∈C

Vc(y)

)
(19)

where Z is a normalizing constant for the density, the sum in
the exponent is over the so-called prior potentials Vc(y) for the
set of cliques2 C over the image, and

−Vc(y) =

⎧⎨⎩
υyi

, if |c| = 1 (single clique)
μc, if |c| > 1 and ∀i,j∈cyi = yj
−μc, if |c| > 1 and ∃i,j∈cyi �= yj

(20)

where μc is a nonnegative constant. The potential function in
(20) encourages neighbors to have the same label. The intro-
duced MLL prior offers a great deal of flexibility by allowing
variations of the set of cliques and the parameters υyi

and μc.
For example, the model generates texturelike regions if μc

depends on c and bloblike regions otherwise [34]. In this paper,
we take υyi

= cte and μc = (1/2)μ > 0. Thus, (19) can be
rewritten as follows:

p(y) =
1

Z
e

μ
∑

(i,j)∈C

δ(yi−yj)

(21)

where δ(y) is the unit impulse function.3 This choice gives
no preference to any direction concerning. A straightforward
computation of p(yi), i.e., the marginal of p(y) with respect to
yi, leads to p(yi) being constant and, thus, equiprobable, which
is therefore compatible with the assumption made in (2) and (8).
Notice that the pairwise interaction terms δ(yi − yj) attach
higher probability to equal neighboring labels than the other
way around. In this way, the MLL prior promotes piecewise
smooth segmentations, where parameter μ controls the level of
smoothness.

C. MAP Estimate via Graph Cuts

Let us assume that the posterior class densities p(yi|xi)
are estimated using (8). Let us also assume that the MLL
prior p(y) is estimated using (21). According to (3), the MAP
segmentation is finally given by

ŷ = arg min
y∈Kn

⎧⎨⎩∑
i∈S

− log p(yi|xi, ω̂)− μ
∑
i∼j

δ(yi − yj)

⎫⎬⎭ .

(22)

This is a combinatorial optimization problem involving unary
and pairwise interaction terms, which is very difficult to com-
pute. Several new algorithms such as graph cuts [25], [36],
[37], loopy belief propagation [38], [39], and tree-reweighted
message passing [40] have been proposed in the literature in
order to tackle this optimization problem. In this paper, we
resort to the α-Expansion graph-cut-based algorithm [25], [41].

2A clique is a single term or either a set of pixels that are neighbors of one
another.

3That is, δ(0) = 1 and δ(y) = 0 for y �= 0.
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Fig. 2. Block diagram summarizing the most relevant steps of the proposed MLRsubMLL algorithm.

This method yields good approximations to the MAP segmenta-
tion and is quite efficient from a computational viewpoint, with
practical computational complexity O(n) [25].

D. Supervised Segmentation Algorithm: MLRsubMLL

To conclude the description of our proposed method,
Algorithm 2 provides a pseudocode for our newly developed
supervised segmentation algorithm based on a subspace MLR
classifier with MRF-based MLL prior. This algorithm, called
MLRsubMLL hereinafter, integrates all the different modules
described in this section. Specifically, line 3 in Algorithm 2
learns the logistic regressors using MLRsub, which is applied to
the full hyperspectral image. Here, the quadratic regularization
parameter β ≥ 0 is used to tackle ill-conditioned problems.
Line 4 in Algorithm 2 computes the probabilities based on
the outcome of MLRsub. Line 5 in Algorithm 2 efficiently
computes the MAP segmentation by applying the α-Expansion
graph-cut-based algorithm, where the neighborhood pa-
rameter μ determines the strength of the spatial prior. For
illustrative purposes, Fig. 2 summarizes the most relevant steps
of the newly proposed segmentation algorithm using a block
diagram.

Algorithm 2 MLRsubMLL

1: Input: x, Dl, β, τ , μ
2: Output: ŷ
3: {ω̂,U} = MLRsub{Dl, β, τ}
4: P̂ := p̂(x, ω̂,U) (∗ P̂ collects the probabilities in (9)∗)
5: ŷ := α− Expansion(P̂, μ, neighborhood)

The overall complexity of the proposed MLRsubMLL al-
gorithm is dominated by the MLRsub algorithm inferring the
regressors, which has computational complexity O(ld2), and
also by the α-Expansion algorithm used to determine the MAP
segmentation, which has practical complexity O(n). In conclu-
sion, if ld2 > n (e.g., the problem is high dimensional, with a
large number of training samples), then the overall complexity
is dominated by the subspace-based learning step. Otherwise, if
ld2 < n (e.g., the problem is given by a large number of pixels),
then the overall complexity is dominated by the α-Expansion
algorithm.

IV. EXPERIMENTAL RESULTS

This section uses both simulated and real hyperspectral data
sets to illustrate the effectiveness of the proposed MLRsubMLL

segmentation algorithm in different analysis scenarios. The
main goal of using simulated data sets is to assess the per-
formance of the algorithm in a fully controlled environment,
whereas the main goal of using real data sets is to compare
the algorithm with other state-of-the-art analysis techniques
using widely used hyperspectral scenes. The remainder of this
section is organized as follows. Section IV-A first explains
the parameter settings adopted in our experimental evaluation.
Section IV-B then evaluates the proposed MLRsubMLL al-
gorithm by using simulated data sets, whereas Section IV-C
evaluates the proposed segmentation algorithm using real hy-
perspectral images.

A. Parameter Settings

Before describing our results with simulated and real hyper-
spectral data sets, it is first important to discuss the parameter
settings adopted in our experiments. In our tests, we assume
l(k) � l/K for k ∈ K. For small classes, if the total number of
labeled samples per class k in the ground-truth image, for ex-
ample, L(k), is smaller than l/K, we take l(k) = L(k)/2. In this
case, we use more labeled samples to represent large classes. It
should be noted that, in all experiments, the labeled sets Dl are
randomly selected from the available labeled samples and that
the remaining samples are used for validation. Each value of
overall accuracy [OA (in percent)] is obtained after conducting
ten Monte Carlo runs with respect to the labeled samples
Dl. The labeled samples for each Monte Carlo simulation are
obtained by resampling the available labeled samples. Prior to
the experiments, we infer the setting of the quadratic parameter
β. In practice, β is relevant to the condition number of B(k) for
k ∈ K. In this paper, we set β = e−10 for all experiments.

B. Experiments With Simulated Hyperspectral Data

In our experiments, we have generated a simulated hy-
perspectral scene as follows. First, we generate an image of
features using a linear mixture model

xi =
K∑

k=1

m(k)γ
(k)
i + ni (23)

with K = 10. Here, m(k) for k ∈ K are spectral signatures ob-
tained from the U.S. Geological Survey (USGS) digital spectral
library,4 and xi is a simulated mixed pixel. An MLL distribution
with smoothness parameter μ = 2 is used to generate the spatial
information, and the total size of the simulated image is of

4The USGS library of spectral signatures is available online: http://speclab.
cr.usgs.gov.
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Fig. 3. Classification and segmentation maps obtained after applying the proposed method to a simulated hyperspectral scene with σ = 0.8 and γ = 0.7 by
using τ = 0.9, l = 288, and μ = 2. (a) Ground-truth class labels. (b) Classification result (OA = 49.09%). (c) Segmentation result (OA = 94.34%).

120 × 120 pixels. Zero-mean Gaussian noise with covariance
σ2I, i.e., ni ∼ N (0, σ2I) is finally added to our simple simu-
lated hyperspectral scene. For illustrative purposes, the image
of class labels y is shown in Fig. 3(a). Assume that xi has
class label yi = kk; then, we define γ

(kk)
i as the abundance

of the objective class and γ
(k)
i (for k ∈ K and k �= kk) as the

abundance of the remaining signatures which contribute to the
mixed pixel, where γ

(k)
i values are generated according to a

simple uniform distribution in the proposed problem. In order
to simplify notations, we take γ

(kk)
i = γ,

∑
k∈K,k �=ki

γ
(k)
i =

1− γ, and we use the same γ for all pixels.
We have conducted five different experiments with the sim-

ulated hyperspectral image described earlier. These experi-
ments have been carefully designed in order to analyze several
relevant aspects of our proposed MLRsubMLL segmentation
algorithm in a fully controlled environment.

1) In our first experiment, we evaluate the impact of the
presence of mixed pixels on the segmentation output.

2) In our second experiment, we analyze the impact of the
parameter τ (controlling the amount of spectral informa-
tion retained after subspace projection) on the segmenta-
tion output.

3) In our third experiment, we evaluate the impact of the
training set size on the segmentation output.

4) In our fourth experiment, we analyze the impact of the
smoothness parameter μ on the segmentation output.

5) In our fifth experiment, we evaluate the impact of noise
on the segmentation output.

In all these experiments, we will use the optimal value of
classification accuracy (OAopt) as a reference to evaluate the
goodness of our reported OA scores. Here, OAopt ≡ 100(1−
Pe)%, where Pe is defined as follows [42]:

Pe = p(yi �= ŷi) (24)

where yi and ŷi are the true label and the MAP estimate,
respectively, i.e.,

ŷi = argmax
yi

p(yi|xi).

For a multiclass problem, we use the following error bound as
an alternative since (24) is difficult to compute:

erfc

(
distmin

2σ

)
≤ Pe ≤

K − 1

2
erfc

(
distmin

2σ

)
(25)

Fig. 4. OA results as a function of the abundance of the objective class: γ, with
τ = 0.9, μ = 2, and l = 288 for a problem with mixed pixels and σ = 0.8.
Dash–dot lines with circles denote the segmentation results obtained by the
MLRsubMLL algorithm; dashed lines with asterisks denote the classification
results obtained by the MLRsub algorithm.

where erfc(·) denotes the complementary error function and
distmin denotes the minimum distance between any point of
mean vectors, i.e., distmin = mini�=j ‖mi −mj‖ for any i, j ∈
K. This is the so-called union bound [12], which is widely
used in multiclass problems. However, union bound is not
a good measurement to present the difficulty because of the
mixtures. Nevertheless, it is worth noting that as γ decreases,
the difficulty increases, i.e., OAopt decreases. Thus, in this
paper, we use the union bound, while γ = 1, to define the
difficulty of our problem.

1) Experiment 1—Impact of the Presence of Mixed Pixels:
In this experiment, we first consider a problem with σ = 0.8
by using τ = 0.9, μ = 2, and γ ∈ [0.5 1.0]. In this context, the
optimal value of classification accuracy is given by OAopt ≤
71.04% with γ = 1. It should be noted that the values of
parameters τ and μ in our simulation are probably suboptimal.
However, we have decided to fix them to the specified values
because we have experimentally observed that these settings
lead to good performance in the considered analysis scenario.
Fig. 4 shows the obtained OA results as a function of γ
(which determines the degree of spectral purity in the simulated
pixels). In order to show the good capability of the proposed
MLRsubMLL in the task of dealing with limited training sets,
only 288 labeled samples (2% of the available samples, evenly
distributed among classes) are used as the training set. Notice
the good performance achieved by the proposed MLRsubMLL
algorithm with the classes dominated by mixed pixels. In those
classes, the segmentation results provided by MLRsubMLL
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Fig. 5. OA results (as a function of τ ) with μ = 2 for a problem with σ = 0.8
and γ = 0.7.

significantly outperform the classification results obtained by
the MLRsub using only the spectral information. For illustrative
purposes, Fig. 3(b) and (c) shows the respective classification
and segmentation maps obtained for the problem with σ = 0.8
and γ = 0.7, using τ = 0.9, μ = 2, and l = 288. Moreover,
Fig. 4 shows that the performances of both MLRsubMLL and
MLRsub increase as the abundance of the objective classes
increase. This is expected since the problem is easier to solve
as the presence of mixed pixels is decreased. In the following
experiments, we will consider γ = 0.7 which leads to a difficult
segmentation problem, as shown in Fig. 4.

2) Experiment 2—Impact of Parameter τ : In our second
experiment, we analyze the impact of the threshold parameter
τ intended to control the loss of spectral information after
projecting the original hyperspectral data into a subspace. This
parameter is directly related with the number of components
retained after the projection and with the amount of information
comprised by the retained components. To address this issue,
we analyze the performance of the proposed methods for dif-
ferent values of τ in a problem with σ = 0.8 (OAopt ≤ 71.04%
with γ = 1) and γ = 0.7 by using μ = 2. Fig. 5 shows the
OAs obtained by the proposed MLRsub and MLRsubMLL
algorithms as a function of τ , where 288 labeled samples
are again used as the (limited) training set. Notice the good
performance achieved by the proposed MLRsubMLL segmen-
tation algorithm, which yielded much better OA results than
OAopt (≤ 71.04%) in cases with τ ≥ 0.65. Furthermore, both
classification and segmentation results increase as τ increases.
This is reasonable since the amount of spectral information
that is retained after the projection of the original data into
the subspace is increased as τ increases. This also indicates
that the proposed methods can perform well in the presence
of limited training sets, even after the dimensionality of the
subspace is increased. The robustness of the proposed methods
in the presence of very limited training sets is analyzed in more
detail in the following experiment.

3) Experiment 3—Impact of the Training Set Size: In our
third simulated image experiment, we analyze the impact of
the training set size on the segmentation performance. Fig. 6(a)
and (b) shows the OA and standard deviation (std) results,
respectively, obtained by our proposed methods as a function of
the number of labeled samples (l) used in the training process
with τ = 0.9 and μ = 2. Again, these parameter settings may

be suboptimal but lead to very good results in our experiments.
Notice the quality of the segmentation results obtained by our
proposed MLRsubMLL algorithm, which shows high robust-
ness even with very limited training set sizes. As the number
of labeled samples increases, the OA increases and the standard
deviation decreases. This is expected since an increase of the
number of labeled samples should decrease in the uncertainty
when estimating the subspace for each class.

On the other hand, we have experimentally observed that the
OA and the standard deviation results converge to very high and
very low values, respectively, for a certain number of labeled
samples. In our particular case, the use of 350 labeled samples
resulted in an OA of 97.76% with std = 0.37. This indicates
that robust generalization can be achieved by the combination
of subspace-based MLR regressors and spatial–contextual in-
formation. From this experiment, we can conclude that our
proposed algorithm converges to almost identical results once
the class-independent subspaces are well estimated using a
sufficient number of labeled training samples, where the term
sufficient in our experiments means a low percentage of labeled
samples. This is because, as already mentioned, the classes
normally live in a very low dimensional subspace. Despite the
encouraging results obtained thus far with the conducted simu-
lations, a more detailed investigation of two additional aspects,
i.e., the relevance of the smoothness parameter μ on spatial
characterization and the overall performance of our proposed
approaches in the presence of different noise levels, should
be conducted. This will be done in the next two experiments
performed with our simulated hyperspectral scene.

4) Experiment 4—Impact of Parameter μ: In this experi-
ment, we conduct an evaluation of the impact of the smoothness
parameter μ on the obtained segmentation results. In practice,
we use the cross-validation sampling method [43] to estimate
μ by using available training samples. Fig. 7 plots the obtained
OA results as a function of μ, with τ = 0.9 and l = 288 (2%
of the available samples per class evenly distributed among
classes). From Fig. 7, we can conclude that the segmentation
performance indeed depends on the setting of μ. However, even
with a suboptimal parameter setting 1.5 ≤ μ ≤ 4, the proposed
MLRsubMLL algorithm leads to good segmentation results for
the considered problem. This indicates that the algorithm is not
very sensitive to the setting of parameter μ since all values of
this parameter in a certain range of interest ultimately lead to
high values of the OA for the considered problem.

It should be noted that, in all experiments conducted thus far,
the noise standard deviation considered in the simulations was
σ = 0.8 (a reasonable parameter setting according to our tests).
However, a remaining aspect to be analyzed is the sensitivity of
the proposed method to different noise levels.

5) Experiment 5—Impact of Noise: In our last experiment
with simulated data, we evaluate the impact of noise on the
proposed segmentation algorithm by using only l = 288 la-
beled samples (2% of the available samples per class evenly
distributed among classes) as in previous experiments. Fig. 8
shows the OA results as a function of the noise standard devia-
tion σ for two different problems: (a) γ = 1 and (b) γ = 0.7. As
shown in Fig. 8, the performance of the proposed MLRsubMLL
algorithm decreases as σ increases, but the increase in the OAs
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Fig. 6. Classification and segmentation results obtained for a problem with σ = 0.8 and γ = 0.7 by using τ = 0.9 and μ = 2. (a) OA results as a function of
the number of labeled samples. (b) Standard deviation results as a function of the number of labeled samples.

Fig. 7. OA results as a function of the smoothness parameter μ for a problem
with σ = 0.8 and γ = 0.7 with τ = 0.9 and l = 288.

obtained with regard to the MLRsub classification are always
remarkable. From Fig. 8, we can also conclude that the results
achieved by our proposed segmentation algorithm are superior
to the OAopt result. Specifically, for the problem with σ =
1.5, the MLRsubMLL obtained a segmentation OA of 58.12%
with γ = 0.7 [see Fig. 8(b)], which is 15.34% higher than the
optimal value (OAopt ≤ 42.78% with γ = 1) in Fig. 8(a).

Summarizing, the experimental results conducted with sim-
ulated data sets indicate that the proposed MLRsubMLL al-
gorithm achieves adequate performance in highly mixed and
noisy environments and with limited training sets, exhibiting
robustness for a wide range of parameter settings that simplify
the choice of such parameters by the end user. In other words,
although the performance of the algorithm has been shown to
be dependent on the setting of parameters τ and μ, suboptimal
settings of these parameters are easy to obtain and lead to
good characterization results in different simulation environ-
ments. Although the experimental evaluation conducted with
simulated data sets provided very encouraging results, further
analyses with real hyperspectral scenes and comparisons with
other state-of-the-art methods are highly desirable in order to
fully substantiate the proposed method.

C. Experiments With Real Hyperspectral Data

In order to evaluate the proposed MLRsubMLL algorithm
in real analysis scenarios, we use two widely used hyperspec-

tral data sets collected by AVIRIS and the Reflective Optics
System Spectrographic Imaging System (ROSIS), respectively,
operated by the German Aerospace Agency (DLR). For the
purpose of comparison, we use other state-of-the-art super-
vised classifiers such as linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), logistic discriminant
analysis (LogDA), and SVMs [12], [44], [45], which are well-
established techniques in the machine learning community [6],
[46]–[48]. For these methods, we project the original hyper-
spectral data sets into a subspace by using the hyperspectral
signal identification by minimum error (HySime) method [49]
which was observed to perform better than standard eigenvector
calculation considered for the other tested methods; hence,
we decided to report the best obtained results for each con-
sidered method. In all cases, the loss of spectral information
after projecting the data into the subspace was controlled by
parameter τ .

Furthermore, in order to have a fair comparison with our
segmentation method (which includes spatial–contextual infor-
mation), in this paper, we have also expanded the considered
discriminant analysis approaches (LDA, QDA, and LogDA)
with the MLL spatial prior to obtain segmentation methods
(referred to hereinafter as LDAMLL, QDAMLL, and Log-
DAMLL) that can be compared with our proposed algorithm.
In all experiments, we empirically set τ = 0.999 and μ = 2.
Although suboptimal, we have experimentally tested that these
settings lead to good characterization results with all the con-
sidered data sets, a fact that reveals that the proposed approach
can perform accurately using a variety of hyperspectral scenes
collected by different instruments. Regarding parameter τ , we
have also experimentally analyzed its influence in the final
segmentation and observed that high-quality segmentations can
be already obtained for values of τ > 0.75 as it was already the
case in our simulated image experiments. Hence, we conclude
that the impact of this parameter on the final segmentation is
not very significant.

1) Experiment 1—AVIRIS Indian Pines Data Set: In our first
experiment, we use the well-known AVIRIS Indian Pines data
set to analyze the performance of the proposed algorithm in
comparison with other methods. The scene contains 145 ×
145 pixels and 202 spectral bands. The ground-truth data
contains 16 mutually exclusive classes and a total of 10 366
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Fig. 8. OA results achieved (for two different values of γ) as a function of the noise standard deviation σ with τ = 0.9, μ = 2, and l = 288. (a) γ = 1.
(b) γ = 0.7.

TABLE I
OVERALL, AVERAGE, AND INDIVIDUAL CLASS ACCURACIES (IN PERCENT) AND κ STATISTIC OBTAINED FOR THE AVIRIS INDIAN

PINES DATA SET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE

labeled pixels. This image is a classical benchmark to validate
the accuracy of hyperspectral image analysis algorithms and
constitutes a challenging problem due to the significant pres-
ence of mixed pixels in all available classes and also because of
the unbalanced number of available labeled pixels per class.

In order to test the performance of the proposed algorithms
with limited training sets, a total size of l = 1036 (which
represents 10% of the available labeled samples evenly dis-
tributed among classes) is used for training purposes, where the
remaining 90% of the samples were used for validation. Table I
illustrates the OA, average accuracy (AA), kappa statistic coef-
ficient (κ), and individual class accuracy (in percent) results
achieved by the proposed algorithms after ten Monte Carlo
runs. By adopting an MLL spatial prior, the segmentation algo-
rithms significantly improved the classification results obtained
by the considered classification algorithms. For instance, the
MLRsubMLL obtained an OA of 93.66%, 19.51% larger than

that obtained by the MLLsub algorithm, whereas the QDAMLL
obtained an OA of 90.02%, which is 10.18% higher than the
result obtained by the QDA algorithm. It is remarkable that
the MLRsub algorithm did not provide the best classification
results in our experiments (it only outperformed the classifica-
tion results provided by LDA). However, the inclusion of the
MLL prior improved more significantly the results obtained by
MLRsub than those obtained by the other discriminant anal-
ysis methods. This is because the proposed MLRsub method
(enhanced with the inclusion of a subspace projection method)
leads to very reliable class posterior probabilities for each class
after reducing the negative effects caused by noise and mixed
pixels. As a result, the obtained class posterior probabilities
play essential roles in the complete posterior probabilities such
that the final MAP segmentation can greatly benefit from
the inclusion of both the spectral and the spatial information
available in the data.
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Fig. 9. Classification/segmentation maps obtained by the different tested methods for the AVIRIS Indian Pines scene (overall accuracies are reported in
parentheses).

For illustrative purposes, Fig. 9 shows the ground truth
and some of the classification/segmentation results obtained
by the different tested methods for the AVIRIS Indian Pines
scene. For each method, we randomly selected one of the maps
obtained after conducting ten Monte Carlo runs. As shown by
Fig. 9, the SVM produced the best classification map while the
MLRsubMLL produced the best segmentation map. An imme-
diate issue resulting from experiments in Fig. 9 is whether the
use of spatial–contextual information could result in an increase
in the SVM classification results. In order to analyze this issue
in more detail, in the following experiment, we will consider
a recently developed SVM-based classifier which combines
spatial and spectral information [19]. Furthermore, we will also
consider a segmentation method based on the watershed trans-
form [21]. The results for these methods were only available to
us in the framework of experiments previously conducted with

the ROSIS University of Pavia data set [9], [21] and hence could
not be included in the AVIRIS Indian Pines image experiments.

2) Experiment 2— ROSIS University of Pavia Data Set: The
second real hyperspectral data set that we have considered in
experiments was acquired in 2001 by the ROSIS instrument,
flown over the city of Pavia, Italy. The image scene, with
size of 610 × 340 pixels, is centered at the University of
Pavia. After removing 12 bands due to noise and water ab-
sorption, it comprises 103 spectral channels. Nine ground-truth
classes, with a total of 3921 training samples and 42 776 test
samples, were considered in experiments. Fig. 10(a) shows a
false-color composite of the image, while Fig. 10(b) shows nine
ground-truth classes of interest, which comprise urban features,
as well as soil and vegetation features.

In our first test, we used the entire training set available for
this scene in order to train different classifiers. Table II reports
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Fig. 10. (a) False-color composition of the ROSIS Pavia scene. (b) Ground-
truth map containing nine mutually exclusive land-cover classes.

the obtained values of OA, AA, κ, and individual accuracies.
In this comparison, we included the same set of classifiers
used in the experiments with the AVIRIS Indian Pines image,
along with two additional spectral–spatial classifiers: an SVM-
based classifier trained with extended morphological profiles
(designated in the table by EMP/SVM) [19] and a segmentation
method based on the watershed transform [21]. The results
reported in the table are respectively taken from [9] and [21],
where exactly the same training and test sets aforementioned
were used to produce the reported results, thus allowing a
fair intercomparison of methods. By using the entire training
set, the proposed MLRsubMLL algorithm obtained an OA of
94.10% in the considered analysis scenario. For illustrative
purposes, Fig. 11 shows the classification and segmentation
maps achieved by some of the considered methods.

Additionally, Table III provides a comparison of the pro-
posed MLRsubMLL algorithm with other spatial–spectral
methods such as the well-known extraction and classification
of homogeneous objects algorithm in [1], other SVM- and
MRF-based spectral-spatial segmentation algorithms presented
in [50], and our previous work based on MLR spectral model
and MLL prior in [22] for the ROSIS University of Pavia data
set. The results presented in Table III are obtained using exactly
the same training and test sets. From Table III, we can conclude
that MLRsubMLL obtained the best results in terms of OA
and κ and comparable results with those of the other tested
algorithms in terms of AA. It should be noted that these results
could be improved even more by merging the results obtained
by different methods (i.e., by applying pixelwise majority vot-
ing [51]). Although not explicitly explored in this paper, this
strategy represents a potential improvement that will be the
subject of our future work.

In our second test, we analyze the sensitivity of the consid-
ered methods to different training sets made up of a limited
number of samples. For this purpose, we constructed small
training sets by randomly selecting 20, 30, 40, 60, 80, and

100 labeled samples per class from the original training set.
Fig. 12 shows the obtained OA results by the different methods
as a function of the number of labeled samples per class. By
using only 60 labeled samples per class (l = 540 samples,
which represents around 14% of the entire training set), the
proposed MLRsubMLL obtained an OA of 88.85%. This result
is quite remarkable since, for instance, the OA obtained by
the EMP/SVM algorithm by using the entire training set was
slightly lower (85.22%). When a spatial prior was adopted,
the segmentation algorithms in Fig. 12(b) always achieved
significantly better results than their classification counterparts
in Fig. 12(a), thus indicating the importance of including
spatial–contextual information.

A critical issue here is that, in Fig. 12(a), SVM provided
very good results in comparison with the competitors. However,
in Fig. 12(b), no segmentation results, such as SVM+MLL,
are reported. In this paper, we did not implement SVM+MLL.
This is because, as the SVM is a hard classifier, the class
probabilities estimated by it are not reliable for estimating the
complete MAP segmentation. Nevertheless, it is noticeable that,
in Tables II and III, the proposed MLRsubMLL obtained very
good results while compared with SVM- and EMP or MRF-
based spectral-spatial-based algorithms.

V. CONCLUSION

In this paper, we have developed a new spectral-spatial seg-
mentation approach which combines MLR with a subspace pro-
jection method to better characterize noise and mixed pixels. It
includes contextual information using an MLL Markov–Gibbs
prior. By computing the MAP segmentation with an opti-
mized α-Expansion graph-cut-based algorithm, the proposed
segmentation method provides good accuracies when compared
with other methods. It also exhibits robustness to different
criteria, such as noise, presence of mixed pixels, and limited
availability of training samples without the need for fine-
tuning of input parameters. Although our experimental results
are competitive with those reported for other state-of-the-art
spectral and spectral-spatial classification/segmentation meth-
ods, further work should be focused on conducting additional
experiments with real hyperspectral scenes collected by other
instruments, such as the new generation of spaceborne instru-
ments that are currently under development. Given the similar
spectral and spatial resolutions of these instruments with regard
to the airborne systems adopted in our real experiments, we
anticipate that the proposed robust segmentation techniques can
also perform accurately with the new generation of satellite
instruments. Another important research line deserving future
experimentation focuses on the fusion/aggregation of the results
obtained by different classifiers, i.e., by merging the results
obtained by different methods using pixelwise majority voting.
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TABLE II
OVERALL, AVERAGE, AND INDIVIDUAL CLASS ACCURACIES (IN PERCENT) AND κ STATISTIC OBTAINED FOR THE ROSIS UNIVERSITY OF

PAVIA DATA SET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE

Fig. 11. Classification/segmentation maps obtained by the different tested methods for the ROSIS University of Pavia scene (overall accuracies are reported in
parentheses).

TABLE III
OVERALL AND AVERAGE CLASS ACCURACIES (IN PERCENT) AND κ STATISTIC OBTAINED AFTER COMPARING THE PROPOSED MLRsubMLL

ALGORITHM WITH OTHER SPATIAL–SPECTRAL CLASSIFIERS PRESENTED IN [50] FOR THE ROSIS UNIVERSITY OF PAVIA DATA SET
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Fig. 12. OA results as a function of the number of labeled samples per class for the University of Pavia data set. (a) Classification results. (b) Segmentation
results.
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