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ABSTRACT

Lidar receivers perform time and/or space averaging to decrease the variance of the optical power estimates. In this

paper we study an Avalanche PhotoDiode (APD) based receiver. The number samples to reach a given minimum

variance depends on the receiver transfer function. Herein, we review the linear receiver and derive the number

of samples for the logarithmic pre-ampli�er. Comparing the two receivers, we show that the signal variance for

the logarithmic case is degraded by a factor that vanishes as the receiver aperture increases. These results can be

readily applied to the problem of estimating log-power returns in the context of Di�erential Absorption lidar (DIAL)

systems. As an application example, we study two di�erent log-power estimators and compare their performance.
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1. INTRODUCTION

The goal of lidar inversion is to retrieve the extinction and the backscatter coe�cients from the return optical power.2

This procedure is hampered by noise of di�erent sources such as speckle noise, signal induced and dark current shot

noise, and electronic thermal noise.6 Time and/or space averaging is an ever present procedure to decrease the

variance of power estimates to an acceptable level. The idea underlying time and/or space averaging is that the

random media being sampled is stationary and homogeneous. This assumptions are meaningful only for a limited

time interval and space volume. Therefore, it is very important to select the minimum number of space and/or time

samples leading to the maximum acceptable variance.

The statistics of linear APD based receivers have already been studied (see e.g.,6 10). However, to our knowledge,

the logarithmic pre-ampli�er case has not yet been addressed.

We begin by briey reviewing the linear scenario, and then we consider the logarithmic receiver. The logarithmic

nonlinearity modi�es the APD output Poisson statistics in a non-trivial way. However, depending on the size of

the receiver aperture compared to the correlation length of the backscattered signal, we take one of the following

approaches:

(a) Small aperture: for powers where, typically, the logarithmic ampli�er operates, the APD output shot noise is

small compared to the speckle noise. Therefore, we can neglect the shot noise term and compute the mean and

variance of the pre-ampli�er output by using the gamma statistics of the input signal4;

(b) Large aperture: as the speckle count m increases, the signal variance due to speckle decreases and may become

of the order of the signal induced shot noise. On the other hand, for high speckle count (m > 10) the gamma

distribution can be approximated with a Gaussian one. Furthermore, if the intensity of the Poisson process is

high, i.e., the signal strength is more than 50 photons over the APD receiver integration time (inverse of the

thermal noise equivalent bandwidth), the process at the pre-ampli�er input can also be assumed Gaussian.5
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By taking advantage of these approximations we derive, in a manageable way, the second order statistical charac-

terization of the output signal. Based on these statistics, we propose a mean optical power estimator and compute

its bias and variance. Furthermore, we present results for the so-called number of independent samples, for a given

signal-to-noise ratio (SNR) of the input power estimator.

These results can be applied to the problem of estimating the logarithm of the backscattered optical power signal

in DIAL systems. The properties of log-power estimators in the presence of speckle and electronic thermal noises

were addressed by Rye,3 in the context of direct detection systems. However, the e�ect of shot noise was neglected

and the moments of the estimators were computed in a non-closed form. The statistical characterization herein

derived of the logarithmic receiver takes into account shot noise and leads to closed forms for the mean and variance

of the proposed log-power estimators.

The layout of this paper is as follows: In Section 2 we review the estimation problem and the second order

statistical charaterization of the APD output; Section 3 describes the linear receiver in the presence of speckle and

shot noises. Next, in Section 4 we address the logarithmic pre-ampli�er, breaking the problem in two di�erent limits,

depending on the size of the receiver aperture; and in Section 5 we examine the behaviour of two log-power estimators

as a small application example in the context of DIAL systems.

2. BACKGROUND

Fig.1 schematizes a lidar based remote sensing scenario. The transmitter illuminates a random media with a train of

light pulses. The receiver reads the backscattered light and converts it into an electrical signal. The power estimator

should then infer characteristics of the random media. Let x(t) be the optical signal scattered by the random media
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Figure 1. Lidar remote sensing scenario.

due to a train of light pulses. As a light pulse propagates through the line of sight, a number N of samples are

taken within a small range interval (space sampling). This sampling is then repeated for a number M of consecutive

pulses (time sampling). The numbers N and M are limited by the above mentioned homogenity and stationarity

assumptions, respectively. According to this procedure, we de�ne the set of sampling instants as

T � ft 2 R : t = t0 + i�t+ kT;

i = 0; : : : ; N ; k = 0; : : : ;Mg: (1)

where t0 � 2r0=c, �t is the time interval between consecutive range samples, and T is the time interval between

consecutive light pulses. We shall denote the total number of samples by NT .



Fig.2 schematizes a receiver consisting of an APD, a pre-ampli�er, an A/D converter, and an estimator of the

input power. We denote L[y(t)] as the pre-ampli�er gain function. Two cases are studied. Firstly, we briey review

the linear pre-ampli�er based receiver and then we analyze the logarithmic case.

The statistics of the input power signal can be understood if we regard the receiving aperture as consisting of m

independent spatial correlation cells. Within each cell the energy density is approximately constant and statistically

independent of the energy density of the other cells. Since the incident energy density on each cell has a negative

exponential distribution, it follows that the total power signal is approximately gamma distributed.4 We represent

the total power signal and its expected value as P (t) and Ps(t), respectively. The expected power signal is the entity

to be estimated.
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Figure 2. Receiver and power estimator.

Assuming that the quantization interval is small and that the number of samples is greater than 10, then w(t) is

with good approximation Gaussian distributed, i.e., pw(w) = N (�w; �
2
w
),1 ,7 where

�W � Efw(t)g = 1

NT

X
t2T

Efz(t)g (2)

�
2
W � varfw(t)g = E

(
1

NT

X
t2T

[z(t) �Efz(t)g]
)2

: (3)

The equivalent number of independent samples is de�ned as Neq � varfz(t)g=varfw(t)g. This number is equal to

the number of samples NT , provided that the samples, taken at instants t 2 T , are independent. We shall assume

that the sampling rate and the pulse repetition rate are such that these samples are in fact independent.

The statistical characterization of the mean optical power estimator cPs depends on the function F [w(t)], which

in turn is related to the receiver output statistics. For a given value of P , the APD output signal is a �ltered marked

point Poisson process,8 as illustrated in Fig.2, where hr(t � tn;mn) and hd(t� tn;mn) represent the APD impulse

response to the signal and dark current, respectively. The conditional mean and variance of y are

Efy j Pg = Rv(P + Pd) (4)

varfy j Pg = FR2
v

Bq

Ri

(P + Pd) + 4kBTR; (5)



Table 1. Simulation parameters.

Parameter Value

APD quantum e�ciency 50%

APD multiplication gain M 100

APD excess noise factor F 4

APD dark-current NEP Pd 60pW

Pre-ampli�er equivalent bandwidth B 40 MHz

where Rv = RMRi is the APD voltage responsivity, Ri =
�
q��

hc

�
is the APD current responsivity without multi-

plication for the laser wavelength �, M is the APD avalanche gain, F = M
x stands for the excess noise factor, R

is the receiver's equivalent resistance, Pd is the dark current noise equivalent power, T is the detector equivalent

temperature, and B is the receiver signal bandwidth. The symbols q, h, k and c represent the electron charge,

Planck's constant, Boltzmann's constant and speed of light, respectively. In order to have a more compact notation,

the explicit dependence on t was dropped. Note that (5) does not contain the speckle noise contribution since it is

conditioned to P .

3. LINEAR PRE-AMPLIFIER

For this type of pre-ampli�er, the output voltage signal is z = ay and, consequently, Efzg = aEfyg. Taking into

account that P is gamma distributed, i.e.,

pP (P ) =

�
m

Ps

�m
(P )m�1

�(m)
exp

�
�mP
Ps

�
; (6)

where �(x) is the gamma function, and departing from the conditional mean and variance of y, (4) and (5), we have

�y � EfEfy j Pgg = Rv(Ps + Pd); (7)

�
2
y � Efvarfy j Pgg+ varfEfy j Pgg = R2

v

�
P

2
s

m
+ F

Bq

Ri

(Ps + Pd)

�
: (8)

From (2) and (7) we �nd the dependence of the mean �w on Ps which suggests the power estimatorcPs = F (w) =
w

aRv

� Pd: (9)

The mean and variance of cPs are
EfcPsg = Ps (10)

varfcPsg = 1

NT

�
P

2
s

m
+ F

Bq

Ri

(Ps + Pd)

�
; (11)

where the electronic thermal noise was neglected since we assume the avalanche gain is high.

De�ne SNR for the estimator as (SNR)
cPs
� E

2fcPsg

varfcPsg
. From (10) and (11) the number of samples that satis�es a

given SNR is

NT = (SNR)
cPs

�
1

m
+ F

Bq

Ri

�
1

Ps
+
Pd

P 2
s

��
: (12)

Fig.3 shows the behaviour of the number of samples NT for (SNR)
cPs

= 10 and for (SNR)
cPs

= 100, using the system

parameters listed in Table 1 and a speckle count m = 1. Note that as the power increases all the terms of (12) vanish

except for the speckle noise one.

4. LOGARITHMIC PRE-AMPLIFIER

The output of the logarithmic pre-ampli�er is z = z0 log (ay + b). It is shown in1 that if �y & 10b=a, then b can be

dropped for any practical purposes. We assume that the receiver operates under this condition.

As we have already mentioned, we consider two approximations: (a) small receiver aperture; (b) large receiver

aperture.
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Figure 3. Number of independent samples for the linear pre-ampli�er receiver.

4.1. Small Aperture

Assume that the input signal is su�ciently high (e.g., above 0:5 nW for m=1 and the system parameters listed in

Table 1, which is in agreement with the typical log operation conditions) such that speckle noise is much higher than

shot noise. We can, therefore, neglect the second term on the right hand side of (8). In this case, the pre-ampli�er

output can be approximated by z = z0 log[aMRRiP ]. Since P is gamma distributed given by (6), it follows that

�z � Efzg = z0 [log (aRvPs=m) + (log e) (m)] ; (13)

�
2
z � varfzg = z

2
0(log e)

2
 
(1)(m) (14)

where  (x) = �0(x)=�(x) is the so-called digamma function and  (n)(x) denotes its nth derivative.

Expression (13) induces the functional relationship

cPs = F (w) =
me

� (m)

aRv

10w=z0: (15)

Since w is Gaussian distributed, cPs is lognormal with mean

EfcPsg = me
� (m)

aRv

10�w=z010ln 10�
2
w
=2z20 = Pse

 
(1)(m)=2NT ; (16)

and variance

varfcPsg = m
2
e
�2 (m)

(aRv)2
102�w=z010ln 10�

2
w
=z

2
0

h
10ln 10�

2
w
=z

2
0 � 1

i
= P

2
s
e
 
(1)(m)=NT

h
e
 
(1)(m)=NT � 1

i
: (17)

For a number of samples (NT > 10), �2w is small so that we can make a �rst order approximation on the exponential

factor. Then, (16) and (17) become with good approximation

EfcPsg � Ps +
 
(1)(m)Ps

2NT
� Ps (18)

varfcPsg �  
(1)(m)

NT

�
1 +

 
(1)(m)

NT

�
P

2
s �

 
(1)(m)P 2

s

NT
: (19)

Note that this estimator has a small bias that is always lower that 0:1Ps since  
(1)(m) < 2 and NT > 10. This leads

to the minimum number of samples for a given SNR

NT = (SNR)
cPs
 
(1)(m): (20)



Contrarily to the linear aperture, equation (20) does not depend on Ps. This is due to the assumption of low shot

noise. This result can be compared with the linear case in the limit of high input power. For instance, m = 1 yields

an asymptotic number of samples given by (SNR)
cPs

for the linear pre-ampli�er and �
2

6
(SNR)

cPs
for the logarithmic

one. It is clear that the logarithmic nonlinearity increases the signal variance at the receiver output. This is a well

known fact in the context of reectivity radars.9 As the speckle count m increases, the variance due to speckle

decreases and so does the number of samples in both types of receiver. In this case we should look more carefully at

the Poisson statistics at the APD output since speckle noise may decrease to a level comparable to the signal-induced

shot noise. For example, for m = 100 and the system parameters presented in Table 1 this happens for power levels

below 50 nW.

4.2. Large Aperture

In this approximation we will take into account the signal-induced and dark-current shot noises but, still assuming

that the input signal is high, we can approximate the conditional probability density function (p.d.f.) of y, for a

given P with the Gaussian density

pyjP (y j P ) =
1p

2��yjP
exp

"
� (y � �yjP )

2

2�2
yjP

#
; (21)

where, �yjP and �2
yjP are given by (see, (4) and (5))

�yjP = Rv(P + Pd); (22)

and

�
2
yjP = FR2

v

qB

Ri

(P + Pd): (23)

The e�ect of speckle can be simpli�ed in the limit of high speckle count by replacing the gamma distribution of �yjP
with a Gaussian distribution with mean (7) and variance given by the �rst term of (8)

p�yjP (�yjP ) =
1p

2���yjP
exp

"
� (y � �y)2

2�2
�yjP

#
; (24)

where,

�y = Rv(Ps + Pd); (25)

and

�
2
�yjP

= R2
v

P
2
s

m
: (26)

The overall p.d.f. is the convolution of both distributions, yielding a Gaussian p.d.f. py(y) with mean (7) and

variance (8). In this way, the expected value of z is

�z =

Z +1

�1

z0 log(ay)py(y)dy: (27)

A good approximation of Efzg can be obtained if �y � �y by expanding z(y) in a Taylor series around �y up to the

second order term. Making the change of variable u = (y � �y)=
p
2�y, we �nd that

�z =
z0 log ep

�

Z +1

0

"
log (a�y) +

p
2�yu

�y

� 2�2yu
2

�2y

#
exp(�u2)du: (28)

The above integration yields

�z = z0

"
log(a�y)� 1

2

�
�y

�y

�2
#
: (29)



The variance can be computed in a similar way,

�
2
z
= z

2
0(log e)

2

"�
�y

�y

�2

� 1

4

�
�y

�y

�4
#
: (30)

The second term of the right hand side of (29) can be discarded provided that �2
y
� �

2
y
log(a�y). Substitution of (7)

and (8) on the above equations gives

�w = �z � z0 log [aRv(Ps + Pd))] ; (31)

�
2
w
=

1

NT

�
2
z
� z

2
0(log e)

2

NT

P
2
s

m
+ F

qB

Ri

(Ps + Pd)

(Ps + Pd)2
: (32)

This result suggests the following power estimator

cPs = 10w=z0

aRv

� Pd: (33)

Again, using the fact that w is Gaussian, it follows that cPs is lognormal, yielding

EfcPsg = 1

aRv

10�w=z010ln 10�
2
w
=2z20 � Pd � Ps; (34)

varfcPsg = 1

NT

�
EfcPsg+ Pd

�2 h
10ln 10�

2
w
=z

2
0 � 1

i
� 1

NT

�
P

2
s

m
+ F

qB

Ri

(Ps + Pd)

�
; (35)

where we made the assumption that �w � �w and a �rst order approximation of the factor 10ln 10�
2
z
=z

2
0 in (35). This

leads to the expression for the number of samples already obtained in (12) for the linear pre-ampli�er.

5. ESTIMATION OF LOG-POWER RETURNS IN DIAL SYSTEMS

In DIAL systems it is necessary to estimate the logarithm of the ratio of two optical power signals, in order to retrieve

the concentration of a given component in the atmosphere. This reduces to the problem of estimating the log-power

signal of each measurement channel and then subtracting the result. The properties of such log-power estimators can

be derived in the same manner as in the logarithmic pre-ampli�er case since the underlying statistics are identical.

In this example, the receiver follows the scheme of upper half of Fig.2. We assume that the pre-ampli�er is linear

and propose two estimators schematized in Fig.4: (a) In the �rst case we search for an estimator of the mean optical

power before we estimate the log-power; (b) In the second case, we average over the logarithm of the APD output

signal, in the same manner we did for the log-ampli�er, and then obtain a log-power estimator.

5.1. Averaging the APD Output

Consider the estimator presented in the upper half of Fig.4. In the small aperture approach, the mean optical power

estimator cPs proposed in (9) has a Gaussian distribution with mean (10) and variance given by the �rst term of the

right hand side of (11). We suggest the obvious estimator

bL = log
cPs
P0

; (36)

were P0 is a normalizing constant power. Its mean and variance can be readily computed, recalling the procedure

explained in Section 4.2 for the large aperture receiver, as

EfbLg � log
Ps

P0

; (37)

varfbLg � �
2
cPs

P 2
s

=
1

NTm
; (38)



F[w(t)]

z(t)

Tt T

t

N
z )(

w(t) )(tsP

0P
P )(

log
ts

)(tL

a) Averaging of the APD output

b) Averaging of the logarithm of the APD output

z(t) u(t)

G[w(t)]

)(tL

0z
z )(

log
t

Tt T

t

N
u )(

w(t)

Figure 4. Log-power estimators.

provided that �2
cPs
� �

2
cPs
log (cPs=P0). The large aperture receiver log-power estimator di�ers from this only by

including the shot noise term on its variance

varfbLg � 1

NT

�
1

m
+ F

Bq

Ri

�
1

Ps

+
Pd

P 2
s

��
: (39)

Next we propose another log-power estimator under a di�erent averaging procedure.

5.2. Averaging the Logarithm of the APD Output

In this case we �rst construct the signal u = log (z=z0) from the APD output z (see the lower half of Fig.4). Under

the small aperture assumption, the mean and variance of the sample average w of this signal, using the results of

Section 4.1, become

�w = log
Ps

mP0
+  (m); (40)

�
2
w =

1

NT
 
(1)(m); (41)

since �zjP is gamma distributed. Expression (40) induces the estimator

bL = w + logm�  (m) (42)

with mean and variance given by

EfbLg = log
Ps

P0
; (43)

varfbLg = 1

NT

 
(1)(m): (44)

In the large aperture approach, the Gaussian statistics of the signal z yields the same estimator properties as obtained

in the previous section.



6. CONCLUDING REMARKS

We studied the inuence of the common sources of noise in APD based receivers with a logarithmic pre-ampli�er.

The results were compared to those obtained in the linear case. In addition, taking advantage of this results, we

compared two log-power estimators in the context of DIAL systems.

We considered the following situations:

(a) Speckle noise higher than shot noise

This happens in small aperture receivers having low speckle count values (m � 10). Compared with the linear

case, the proposed mean power estimator exhibits a variance increased by an m dependent factor (�2=6 for

m = 1).

(b) Speckle noise comparable to shot noise

This happens in large aperture receivers having high speckle count values (m > 10). Compared with the linear

case, the proposed mean power estimator performs similarly.

With respect to the proposed log-power estimators, we conclude that:

(a) Small aperture

There is an advantage in averaging the APD output in �rst place since it leads to a smaller variance.

(b) Large aperture

The variance is the same regardless of the averaging and the log operation order.
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