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ABSTRACT

The paper addresses the joint estimation of backscatter and extinction coe�cients from range/time noisy data

under a nonlinear stochastic �ltering setup. This problem is representative of many remote sensing applications

such as weather radar and elastic-backscatter lidar. A Bayesian perspective is adopted. Thus, in addition to the

observation mechanism, relating in a probabilistic sense the observed data with the parameters to be estimated, a

prior probability density function has to be speci�ed. We adopt as prior a causal �rst order auto-regressive (AR)

Gauss-Markov random �eld (GMRF). By using a reduced order state-space representation of the prior, we derive a

nonlinear stochastic �lter that recursively computes the backscatter and extinction coe�cients at each site. A set of

experiments based on simulated data illustrates the potential of the proposed approach.
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1. INTRODUCTION

An important class of remote sensing applications aims at the measurement of the backscatter and/or extinction

coe�cients in the space volume being scanned. Relevant examples are weather radar1,2 and elastic-backscatter lidar,3

.4,5

A wave propagating in a randommedia su�ers attenuation and scattering. Under the �rst order multiple scattering

approach,6 the multiple scattering among scatters is negligible. The mean power received by the transducer is, under

this hypothesis, given by

P (z) =
C

z2
�(z) exp

�
�2

Z
z

0

�(x) dx

�
; (1)

where P (z) (W) is the mean power received from range z (km), C (W km3) is a system dependent constant,

and � (km�1 sr�1) and � (km�1) are the backscatter and extinction coe�cients (herein sometimes termed clutter

parameters).

Signals acquired by remote sensing systems are not mean values; instead, they are random variables whose mean

values are given by (1). Therefore, any inversion scheme aimed at the computation of the clutter parameters has to do

so based on noisy and nonlinear observations. Moreover, the clutter is typically nonhomogeneous and nonstationary

leading to time varying parameters � and �. This characteristic introduces additional complexity in the signal/image

processing scheme, since the size of data available to determine each pair (�; �) is limited.



1.1. Classical Approaches

Relevant techniques for the inversion of clutter parameters are the Klett's method,3 the slope and exponential �tting

methods (see,7 4), and the extended Kalman �ltering approach.8

The Klett method assumes that to the mean power P (z) (more precisely S(z) = log(P (z)z2)) is available and

that the constitutive relation between clutter parameters is known and is of the form �(z) = B0�(z)
b, where B0 and

b are constants. Under this circumstances, Klett derived the exact solution for the attenuation coe�cient �(z).

The major weakness of the Klett's method is that it is a deterministic approach that relies on the mean power

P . Typically, only a noisy version of P is available, leading to numerically unstable solutions. This problem is

attenuated by adopting a backward integration scheme that computes the extinction coe�cient based on its guess

at the farthest range of the inversion.

The exponential �tting technique applies to homogeneous clutter, i.e., the backscatter and extinction coe�cients

are assumed constant; the clutter parameters estimates are found by minimizing the the least square error between

the observed data and P given by (1). The slope method is also a least-square �tting technique, but applied to

S(z) = log(P (z)z2). The estimates provided by the exponential �tting technique, despite being computationally

more demanding (its is a nonlinear �tting problem), are better than those given by the slope method.7

For homogeneous clutter, the slope and exponential �tting methods are robust in the sense that they do not

assume any prior constitutive relation and deal with noisy data. They have therefore advantage over the Klett's

approach. However, the homogeneous assumption severely limits the application scope of this methodologies.

Work8 proposes an extended Kalman �lter that in each step estimates a vector of clutter parameters associated to

a given range interval. The state vector equation is a �rst order auto-regressive vector process; basically, it imposes, in

a probabilistic sense, smoothness between two consecutive time estimates at a given range. The smoothness between

components within the state vector is established by imposing nonzero correlation among these components.

The approach proposed in8 embodies the better features of the klett's and of the least square �tting procedures:

it does not assume homogeneous clutter, it deals with the noisy observations, and, by imposing correlation on the

clutter parameters, it allows to include prior information about the constitutive relation in a probabilistic sense.

In our opinion the drawbacks of the extended Kalman �ltering approach proposed in8 are the robustness of

estimates with respect to state space noise correlation matrix and its complexity, in the computational sense. For

example, if the clutter parameters are to be estimated within a a range size of 5Km with a resolution of 20m, the

implementation of the EKF involves operations with matrices of size 500� 500.

1.2. Proposed Approach

Assume that the observed data and the clutter parameters are arranged into 2D �elds (images); data along rows is

associated to the echo of a given time pulse (time coordinate), whereas data along columns is associated to a given

range (range coordinate).

We propose a stochastic nonlinear �ltering (NLF) solution to clutter parameter estimation. Being a stochastic

�ltering approach, it relies on the observed data probability density function (p.d.f.), given the parameters, and the

space-state equation:

1. Observed data images are described through the respective p.d.f. of the observed data given the clutter

parameters. In this work we consider only the Gaussian p.d.f., which models, for example, large aperture lidar

applications.9 The methodology is however easily adapted to other statistics, such as the exponential and

Gamma, covering a large range of scenarios in weather radar and lidar.

2. The space-state equation is taken as the reduced order model (ROM)10 description of a causal �rst order auto-

regressive (AR) Gauss-Markov random Field (GMRF). For this to be possible we use as state variables the

backscatter coe�cient and the along-path integrated extinction coe�cient (integrated extinction).

We stress that stochastic �ltering is a Bayesian approach where the state space equation plays the role of prior.

The type of prior knowledge that we intend to describe is that of smoothness between neighboring parameters. This

is attained by properly choosing the regression parameters of the AR model.

The NLF solution we propose is a recursive scheme that propagates from one site to the next site, in a lexico-

graphical order, the probability of the clutter parameters conditioned to past observed data (the so-called �ltering

density).



1.3. Paper Overview

The paper is organized as follows: the next section introduces formally the clutter parameter estimation and present

the observation mechanism, the prior model, and the ROM representation. Section 3 elaborates on the NLF algorithm

and on its implementation, and Section 4 presents simulation results.

2. PROBLEM FORMULATION

Consider a pulsed remote sensing system operating at a �xed pulse rate. Let Z = f(i; j) j i = 1; : : : ;M; j = 1; : : : ; Ng

a set of sites, where j refers to the range zj = z0+ j� (z0 and � are known constants) and i refers to the i-th pulse,

also termed time i. De�ne also the lexicographical order n = j + (i � 1)N , associated to the index set Z

De�ne yi;j, �i;j , and �i;j as, respectively, the observed signal, the backscatter coe�cient, and the extinction

coe�cient, all at site (i; j). De�ne also the integrated extinction 
i;j as


i;j �

Z
zj

0

�i(r) dr; (2)

where �i(r) denotes the extinction coe�cient at range r and time i.

Hereinafter we use both the bidimensional indexes and the correspondent lexicographical order indi�erently. For

example, we can write yi;j or yn. Note that the two forms are equivalent since the mapping from bidimensional to

unidimensional indexes is one to one.

Observation Model

According to the rationale presented in the Introduction, the p.d.f. of the observed data given the clutter parameters

has di�erent structures, even for the same remote sensing technique. In the case of lidar, the signal yn at the output

of an incoherent receiver, has mean value and variance (see, e.g.,9)

y
n

= Pn + vd (3)

�2
yn

=
P 2
n

m
+ k(Pn + vd) + �2

th
; (4)

where Pn is the mean echo power given by

Pn =
C

z2
n

�n exp(�2
n);

m is the speckle count, and vd, P
2
n
=m, k(Pn + vd), and �2

th
are variances of the dark current noise, of the speckle

noise, of the shot noise, and of the thermal noise, respectively.

In this work we take P 2
n
=m � k(Pn + vd), meaning that speckle noise is negligible, and assume that p.d.f. of

yn is Gaussian. This scenario accurately models large aperture lidars with high speckle count �gure, where the shot

noise is predominant.

Given that the mean value y
n
and the variance �2

yn
are both functions of (�n; 
n), via Pn, the observation model

is given by

p(ynj�n; 
n) = N [y
n
(�n; 
n); �y2n(�n; 
n)]; (5)

with N (�; �2) standing for a Gaussian p.d.f. of mean � and variance �2, and

y
n

= Pn + vd (6)

�2
yn

= k(Pn + vd) + �2
th
: (7)

An equivalent way of presenting the observation model is writing yn as

yn = y
n
+ vn; (8)

where vn is an independent and identically distributed (i.i.d) zero mean Gaussian random sequence of variance �y2n .



Prior Model

We model the clutter parameters as a causal �rst order AR-GMRF,11 12 given by

�i;j = �11�i;j�1 + �12�i�1;j + w�(i;j) (9)


i;j = 
i;j�1 + �21�i;j�1 + �22�i�1;j + w
(i;j); (10)

where w�(i;j) and w
(i;j) are sequences of i.i.d. zero-mean Gaussian random variables of variance �2
�
and �2



, respec-

tively, and �i;j � 0, with �
�11 + �12 = 1

�21 + �22 =
�
B0
:

(11)

In (9) and (10), when i = 1 and/or j = 1, some boundary conditions have to assumed, since indexes i; j � 1 and/or

i � 1; j take values outside of the index set Z. Herein we adopt the free boundary condition which amounts to reduce

the AR support near the boundary, in order to not include sites outside Z.

Regression (9) gives the next backscatter coe�cient �i;j as a weighted mean of the past (in a lexicographical order

sense) neighbors �i;j�1 and �i�1;j plus a random component. Therefore, the proposed AR prior enforces smoothness

in a statistical sense, whose strength is controlled by �2
�
.

Regression (10) accounts for the integral relation (2). In fact, if we have

�21�i;j�1 + �22�i�1;j + w
(i;j) = ��i;j; (12)

with � = zi � zi�1 then equation (10) would be, apart from sampling errors, a recursive implementation of the

integral relation (2). Assuming a constitutive relation �n = B0�n (power-law with b = 1), then equation (12) is

satis�ed for

�21 =
�

B0

�11 (13)

�22 =
�

B0

�12 (14)

w
(i;j) =
�

B0

w�(i;j): (15)

According to (15), the random variables w
(i;j) and w�(i;j) would be totally correlated. This is a strong assumption

that we relax a little by allowing correlation factors � � 1. In this way, model mismatches can be, to some extent,

absorbed by noise term w
(i;j).

State Space Formulation

In the recursive stochastic �ltering setup, the prior has necessarily a state space description. AR models (9) and (10)

admit a state-space description, but its state vector would include a complete row of parameters �n and 
n.
12 To

avoid this huge state vector, we adopt a reduced order model (ROM) proposed in,10 where the state vector contains

only the components whose indexes are in the support of the AR model.

The state vector is therefore [�n; �n�N ; 
n; 
n�N ]
T , and the ROM state space formulation of (9) and (10), given

by 2
664

�n+1
�n+1�N

n+1

n+1�N

3
775

| {z }
xn+1

=

2
664

�11 �12 0 0

0 0 0 0

�21 �22 1 0

0 0 0 0

3
775

| {z }
An

2
664

�n
�n�N

n

n�N

3
775

| {z }
xn

+

2
664

0

�n+1�N
0


n+1�N

3
775

| {z }
un+1

+

2
664

!�(n)
0

!
(n)
0

3
775

| {z }
wn+1

; (16)

with the covariance matrix of wn given by

Qn � E[wnw
T

n
] =

2
664

�2
�

0 ����
 0

0 0 0 0

��
�� 0 �2



0

0 0 0 0

3
775 : (17)



As a consequence of the free boundary condition, matrixAi;j, for f(1; j); (i; 1); i = 1; : : : ;M j = 1; : : : ; Ng, takes

the values

A1;j =

2
664

1 0 0 0

0 0 0 0

�=B0 0 1 0

0 0 0 0

3
775 ; Ai;1 =

2
664

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

3
775 : (18)

Notice that vector un+1 in (16) plays the rule of a deterministic input. This is, in fact, what happens in the

ROM: past state vector components not in the AR support are treated as deterministic inputs.

3. STOCHASTIC FILTERING SOLUTION

In the previous section we derived the observation equation (8) and proposed, as prior for the clutter parameters,

the ROM representation (16) of the AR-GMRF (9) and (10). In summary, we have

xn+1 = Axn + un+1 +wn+1 (19)

yn = h(xn) + vn; (20)

where h(xn) = y given by (6) and vn is an i.i.d. zero mean Gaussian sequence of variance �2
yn

given by (7).

Stochastic recursive �ltering is a Bayesian estimation technique that, based on the state space model (19) and (20),

recursively propagates the p.d.f. p(xnjYn) (the so-called �ltering density), where Yn � (yn; yn�1; : : : ; y1). When

both the state equation and the observation equation are linear, the state and observation noises are Gaussian, and

the initial �ltering density p(x0) is Gaussian, the Kalman-Bucy linear �lter yields the solution.13 When any of these

conditions is not satis�ed, the problem falls into the general setup of stochastic nonlinear �ltering,14 ,13 ,15 ,16 .17

In general, the stochastic nonlinear �lters exhibit high computational complexity, what is contrast with the low

complexity of the the Kalman-Bucy �lter. This fact underlies the extended Kalman-Bucy �lter (EKF), that is a

Kalman-Bucy �lter applied to a linearized version of the a nonlinear problem. The EKF although not being optimal,

is frequently a good tradeo� between complexity and quality of estimates.

In the problem we are addressing, the observation equation (20) is a nonlinear function of the sate vector xn.

Accordingly, the �ltering problem is nonlinear. In the remaining part of this section we develop the nonlinear �lter

for the problem at hand.

3.1. Nonlinear Filter

A stochastic nonlinear recursive �lter propagates, in a recursive fashion, the �ltering density p(xnjYn). It worth to

note that, from a Bayesian point of view, the �ltering density, given the observations, carries all information about

xn, the entity to be estimated.

The recursive propagation of the �ltering density implements the following steps (for a detailed explanation see,

e.g.,16):

1. Prediction

p(xn+1jYn) =

Z
R4

p(xn+1jxn)p(xnjYn) dxn (21)

2. Filtering

p(xn+1jYn+1) / p(yn+1jxn+1)p(xn+1jYn); (22)

where p(xn+1jxn) and p(yn+1jxn+1) are the so-called convolution kernel and observation factor, respectively.

According to (19), and recalling that wn is a zero mean Gaussian vector, the convolution kernel is given by

p(xn+1jxn) = N (xn+1 �Axn � un+1;Qn+1); (23)

where N (m;C), stands for a multidimensional Gaussian p.d.f of mean m, and covariance matrix C.



The prediction step given by (21) is a convolution type operation. In fact, de�ning x0
n
= Axn and assuming that

jAj 6= 0, then the prediction step is written as

p(xn+1jYn) = jAj�1

Z
R4

N (xn+1 � un+1 � x0
n
;Qn+1)p(A

�1x0
n
jYn) dx

0

n
(24)

= N (xn+1 � un+1;Qn+1) � p
0(x0

n+1jYn); (25)

where

p0(xjYn) � p(A�1xjYn): (26)

The simplicity of Kalman-Bucy �lter comes from the fact that the convolution and the product of Gaussian

p.d.f.'s (prediction and �ltering steps) yields Gaussian shapes.16 Therefore, the prediction and �ltering steps are

given by simple linear operation over mean vectors and the covariance matrices (the �rst two moments).

In nonlinear �ltering, at least one of the p.d.f. involved is not Gaussian, and, therefore, a second order represen-

tation can be far from optimal. Among the di�erent techniques that have been proposed to implement, we refer to

the following:

1. development in Taylor series the nonlinearities in the neighborhood of the actual estimate, and assumption of

Gaussian initial condition.13 A �rst order development leads to the so-called EKF

2. representation of the posterior density as elements of a �nite subspace generated by Hermite polinomials,18

Fourier series, Gaussian functions,19 and B-splines20

3. sampling of the posterior density (point mass �lter).21

Herein we adopt the point mass �lter. Basically, this technique consists in computing numerically the the

prediction and �ltering steps (21) and (22), respectively. The point mass �lter is, almost surely, the more complex

implementation technique of those mentioned above. It assures, however, a neglegible error if the sampling spatial

frequency high enough. On the other hand, the results provided by the point mass �lter constitutes a useful

benchmark to be used in comparisons with any other implementation of the NLF.

Implementation Aspects

We compute the prediction and �ltering steps according to expressions (25) and (22), respectively.

The prediction is the heaviest step since, according to (25), it is given by a convolution in R4. We note however

that the ROM model deals with the state vector components �n+1�N and 
n+1�N as deterministic. Therefore the

convolution involves only the variables �n and 
n, i.e., it is a R
2 operation.

As the �ltering step given by (22) is a true convolution, its discrete version can be exactly computed by the

2D-fast Fourier transform algoritm over zero padded data. Since we have used rectangular grids of size 128� 128,

the number of 
oating point operations necessary to compute a convolution is 2� 2562 � log2(256
2).

The p.d.f. p0(x0jYn) is obtained from p(xjYn) through the coordinate transformation x = At

�1x0. Given that

only components �n and 
n matter, and referring to state equation (16), then the transformation matrix is

At =

�
a11 0

a21 1

�
: (27)

4. SIMULATION RESULTS

The recursive stochastic NLF derived in the previous section is now applied to simulated data. Fig. 1(a) shows the

assumed normalized pro�le of the extinction coe�cient used in the simulations. It consist of two Gaussian elevations,

modeling nonhomogeneous clutter, with their major axes parallel to the time coordinate. This orientation re
ects

quasi-stationarity of the clutter on the time dimension, a typical situation on pulsed remote sensing systems. Fig.

1(b) shows cross sections of the extinction coe�cient pro�le at T = 40 and T = 120. We assume that the range

varies between z = 0:2 km and z = 5 km and its is sampled at a spatial interval of � = 25m.
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Figure 1. Normalized extinction coe�cient.

Clutter Parameters Model Parameters System Parameters

� (km�1) B0 (sr
�1) b �
 �� � C (Wkm3) SNR(zmin) SNR(zmax)

0.01 0:01� 50 21.2

0.1 5� 10�2 1.0 0:04� B0=��
 0.9 8� 105 60 24.3

0.75 0:1� 70 -16.4

Table 1. Simulation Parameters.

Table 4 summarizes the selected simulation parameters. Each value of the extintion coe�cient 
oor � models

a di�erent attenuation scenario: light attenuation (� = 0:01 km�1
� 0:043 dB/km), moderate attenuation (� =

0:1 km�1
� 0:43 dB/km), and severe attenuation (� = 1 km�1

� 4:3 dB/km).

The power-law parameter B0 = 5 � 10�2 is of the order of the backscatter-to-extinction ratio in optical lidar

applications.

Noise variances �
 and �� are proportional to �, as the extinction coe�cient increments in the nonhomogeneous

region are also proportional to �.

The last two columns of Table 4 refers to the SNR at minimumand maximum ranges. This is the most important

�gure, in what concerns the �lter performance. We have found out that a reasonable performance demands a SNR

greater than 20dB. As in severe attenuation scenario SNR(zmax) = �16:4dB, the clutter parameters can not be

recovered, at least for the complete data range.

Concerning the AR parameters, they are set in all simulations to �11 = 0:1, and �12 = 0:9. This choice is

in accordance with the highly smooth nature of the clutter parameters with respect to the time coordinate: the

smoothness is to imposed with more strength in the time direction.

Light Attenuation

Assume the light attenuation scenario, where (� = 0:01). Fig. 2, parts (a) and (c), plots cross-sections of the

normalized backscattering coe�cient estimate �=�, respectively, at T = 40 and z = 1:45 km. Fig. 2, parts (b)

and (d), plots cross-sections of the normalized extinction coe�cient estimate �=�, respectively, at T = 40 and

z = 1:45 km.

The sample bias and variance of all estimates shown on Fig. 2 are below 2%. This �gures are also valid for the

complete images of clutter parameters.

Moderate Attenuation

We now take (� = 0:1). Fig. 3, parts (a) and (c), displays cross-sections of the normalized backscattering coe�cient

estimate �=�, respectively, at T = 40 and z = 1:45 km. Fig. 3, parts (b) and (d), displays cross-sections of the

normalized extinction coe�cient estimate �=�, respectively, at T = 40 and z = 1:45 km.
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Figure 2. Cross-sections of the normalized backscattering and extinction coe�cients estimates, for light attenuation

(� = 0:01).

The sample bias and variance of estimates plotted on Fig. 3 parts (a), (b), and (c) are below 1%, whereas the

sample bias and variance of extinction coe�cient plotted on part (d) are below 1% and 4, respectively. This �gures

is also valid for the complete images of clutter parameters.

Severe Attenuation

We now take (� = 0:75). Fig. 4, parts (a) and (c), shows cross-sections of the normalized backscattering coe�cient

estimate �=�, respectively, at T = 40 and z = 1:45 km. Fig. 4, parts (b) and (d), shows cross-sections of the

normalized extinction coe�cient estimate �=�, respectively, at T = 40 and z = 1:45 km.

The results ploted in Fig. 4 exhibits a behaviour that we have systematically found: for the clutter parameter

estimates to be meaningful, the SNR must be greater than, roughly, 20dB. In the severe attenuation scenario a SNR

of 20dB is reached at z = 2:2km (see Fig. 5). Notice from Fig. Fig.s 4 parts (a) and (b), that the estimated clutter

parameters are useless for z & 2:2km.

For z . 2:2km, the sample bias of estimates plotted on Fig. 3 parts (a), (b), and (c) and (d) is below 2%,

whereas the sample variance of the same estimates is below 4%. This �gures are also valid for the image region

where SNR�20dB.

The slight degradation of the �lter performance, compared with the light and moderate situations, is due to

a higher value of state equation noise variance. We have used 0:1a0 against 0:03a0 and 0:01a0 in the previous

simulations. The reason underlying this choice is that, despite it leads to a higher variance of the clutter estimates,

it increases the range of meaningful estimates.
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Figure 3. As in Fig. 2, for moderate attenuation (� = 0:1).

Robustness and Comparison with the Klets' Method

The NLF is very robust with respect to its parameters, which are ��, ��, �, �11, and �12. A change of 10 in any of

this parameters do not produce an appreciable change in the correspondent estimates.

Fig. 6 shows the backscatering coe�cient estimates generated by the NLF and the Klett's method, for � =

0:25 km�1 and T = 40. As it would be expected the stochastic approach produces much better results.

5. CONCLUDING REMARKS

A new stochastic nonlinear �ltering technique for radar/lidar inversion of the backscatering and extinction coe�cients

was developed. A Bayesian approach was followed. The prior model adopted for the original image is a �rst-order

auto regressive Gauss-Markov random �eld. A reduced order state-space representation of the prior allowed to tackle

the estimation of the clutter parameters under the stochastic nonlinear �ltering framework. The recursive �lter was

implemented using a two dimensional point mass �lter. The prediction step of each recursion, the more complex

from the computational point of view, was implemented e�ciently, via a two-dimensional fast Fourier transform.

The nonlinear �lter was applied to Gaussian data with the same mean and variance, typical of devices operating

at high intensity shot noise. The �lter yields very good results for signal to noise ratios greater than 20dB. For

signal to noise ratios below this threshold, the results become useless. Concerning robustness the proposed technique

exhibits good properties with respect to the prior parameters: a change of 10% on this parameters did not produce

an noticiable change on the correspondent estimates.

Regarding future work, we foresee two directions:
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Figure 4. As in Fig. 2, for severe attenuation (� = 0:75).
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Figure 5. Signal to noise ratio at T = 40 and (� = 0:75).
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Figure 6. Comparison with the Klett's method for � = 0:25 km�1. Solid lines denotes the NLF estimates whereas

dots denotes the Klett's method estimates.

1. extensive comparison with the extended Kalman-Bucy �lter to �nd out where it pays to use the nonlinear

solution

2. e�cient implementation of the nonlinear �lter, this involving a suitable representation of observation factor.
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