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ABSTRACT 

 

Finding an accurate sparse approximation of a spectral vector 

described by a linear model, when there is available a library of 

possible constituent signals (called endmembers or atoms), is a 

hard combinatorial problem which, as in other areas, has been 

increasingly addressed. This paper studies the efficiency of the 

sparse regression techniques in the spectral unmixing problem by 

conducting a comparison between four different approaches: 

Moore-Penrose Pseudoinverse, Orthogonal Matching Pursuit 

(OMP) [1], Iterative Spectral Mixture Analysis (ISMA) [2] and  

12 ll −  sparse regression techniques, which are of widespread use 

in compressed sensing. We conclude that the 12 ll −  sparse 

regression techniques, implemented here by Iterative 

Shrinkage/Thresholding (TwIST) algorithm [3], yield the state-of-

the-art in the hyperspectral unmixing area. 

 

Index terms – sparse regression, hyperspectral unmixing, 

12 ll −  norm  minimization, convex optimization 

 

1. INTRODUCTION – HYPERSPECTRAL 

MIXING/UNMIXING PROCESSES 

 

The development of the hyperspectral sensors opened new 

horizons in the exploitation of the sub-pixel details. These sensors 

are able to sample the electromagnetic spectrum in tens or 

hundreds of contiguous spectral bands (from the visible to the 

near-infrared region). Often, they have spatial resolutions of tens of 

meters. As a consequence, the efforts of the researchers moved 

forward from improving the spatial resolution toward the 

exploiting of the spectral resolution.  

The relative low spatial resolution of the hyperspectral sensors 

implies the existence of several materials (called endmembers) 

inside the same pixel. These pixels, which contain more than one 

endmember, are called mixed pixels. 

Any material is characterized by a specific spectrum (called 

spectral signature), which is obtained by measuring the reflectance 

of that material for a specific range of wavelengths of the incident 

light. The data acquired by a hyperspectral sensor is a data cube 

(two spatial coordinates and one coordinate corresponding to the 

wavelengths of the incident light) of high dimension, containing 

the values of the measured reflectance of all the pixels for specific 

spectral bands. The measurements are affected by errors, due, on 

one hand, to the electronic noise and, on the other hand, to the 

speed of the sensor flying at high altitudes. The unmixing process 

consists in finding what are the materials inside a mixed pixel, 

their respective spectra and what percentage of the area occupy 

each material inside the pixel (called fractional abundance).  

There are two models used in the unmixing problem: 

- the linear mixing model (LMM): the endmembers 

occupy distinct areas inside the pixel; 

- the nonlinear mixing model (NLMM): the endmembers 

form an intimate mixture inside the pixel. 

In our paper, we adopt the LMM, which is the most used in 

the unmixing problem, as it corresponds to a reasonable balance 

between accuracy and model complexity. The NLMM is far more 

complex and it is used in specific applications, being 

parameterized with scene parameters, quite often very expensive, 

or impossible, to obtain. 

 

2. THE LINEAR MIXING MODEL (LMM) 

 

The LMM assumes that the endmembers are surface distributed 

occupying distinct areas inside each pixel (e.g., checkerboard-type 

scenes). The acquired spectrum from a given pixel is a linear 

combination of the spectra of materials present in the pixel. For 

each pixel, it can be expressed as follows: 
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where ir  is the measured value of the reflectance at band i, q is the 

total number of endmembers present in the pixel, jim ,  is the 

reflectance of the jth endmember at band i, jα  is the fractional 

abundance of the jth endmember, and in  represents the error term 

for the spectral band i (e.g., the noise affecting the measurement 

process). 

The spectral signatures of the endmembers can be collected in 

an L-by-q matrix (L being the number of spectral bands) called the 

mixing matrix. The expression (1) can be written in a compact 

form: 

                                    nMR +⋅= α                                  (2) 

where R is and L-by-1 column vector (the measured spectrum of 

the pixel),  α  is a q-by-1 vector containing the respective 

fractional abundances of the endmembers and n is an L-by-1 vector 

collecting the errors affecting the measurements at each spectral 

band.  

The fractional abundances of the endmembers sum to one and 

can not be negative. These constraints are known as the sum-to-one 

and the non-negativity constraints: 
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                            0≥jα , ∀ j (non-negativity).                 (4) 

We use the LMM in the unmixing problem under a semi-

supervised approach, which consists in searching for the spectral 

signatures of the endmember in a large dictionary called spectral 

library, which contains p (usually Lp << ) members and will be 

denoted by S. At this point, the system (2) can be written as 

follows: 

                                       nfSR +⋅=                                (5) 

where f is an L-by-1 vector containing the fractional abundances of 

the members contained in S.  

The goal of the unmixing process is to find the mixing matrix 

M and the vector of fractional abundances f , given R and S. 

As the number of actual endmembers q is much smaller than 

the number p of spectra contained in S, the vector of fractional 

abundances f is sparse. This is a combinatorial problem which 

calls for efficient sparse regression techniques. 

  

3. UNMIXING ALGORITHMS 

 

This section describes the four unmixing algorithms tested in the 

paper. 

 

3.1. Moore-Penrose Pseudoinverse (MPP) 

 

As S is not a square matrix (so it is not invertible), the unmixing 

problem is ill-posed and we can not find an estimate f̂  of f  by 

multiplying the inverse of S with R: RSf 1ˆ −= . Given the 

characteristics of S ( pL >>  and linearly independent columns), 

the product SS T  is square with full rank, thus it is invertible. An 

estimate of f can be found as follows: 
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where ( ) TT
SSSS ⋅⋅=

−1#  is the Moore-Penrose pseudoinverse of 

the matrix S . This solution solves the  minimization 
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and ff =ˆ  only if the measurements are not affected by noise. 

Otherwise, the estimate includes an error term, which strongly 

depends on the condition number of S, becoming more important 

when S is bad-conditioned (the condition number of S is big). 

Moreover, the solution obtained by the MPP is unconstrained and 

it is plausible that it will not satisfy the sum-to-one and the non-

negativity constraints.  

 

3.2. Orthogonal Matching Pursuit (OMP) 

 

OMP was introduced in 1993 in [1] as an alternative to Matching 

Pursuit [4] and it is an iterative technique which searches, at each 

iteration, the spectral signature from S which best explains a 

predetermined residual. 

At the first iteration, the initial residual is equal to the observed 

spectrum of the pixel, the vector of fractional abundances is null 

and the matrix of the indices of selected endmembers is empty. 

Then, at each iteration, the algorithm finds the member of S which 

is best correlated to the actual residual, adds this member to the 

endmembers matrix, updates the residual and computes the 

estimate of f using the selected endmembers. The algorithm stops 

when a stop criterion is satisfied. A member from S can not be 

selected more than once, as the residual is orthogonalized to the 

members already selected. 

 

3.3. Iterative Spectral Mixture Analysis (ISMA) 

 

ISMA is an iterative technique derived from Spectral Mixture 

Analysis [5]. It finds the optimal endmember set by examining the 

change in the root-mean-squared (RMS) error along the iterations.  

ISMA consists in two parts. In the first one, ISMA computes, 

initially, an unconstrained solution of the unmixing problem, using 

all the members of S. Then, removes the member with the lowest 

abundance fraction and repeats the process with the remaining 

endmembers, until one endmember remains. The second part of 

ISMA consists in finding the critical iteration, which is the 

iteration corresponding to the first abrupt change in the RMS error, 

computed as follows: 
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jRMS  is the RMS error corresponding to the jth iteration and it is 

computed as 
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where 'br  and br  are the modeled and image spectrum values at 

band b. 

The critical iteration corresponds to the optimal set of 

endmembers. The idea of recovering the true endmember set by 

analyzing the change in the RMS error is based on the fact that, 

before finding the optimal set of endmembers, the  RMS error 

varies in certain (small) limits and it has a bigger variation when 

one endmember from the optimal set is removed, as the remaining 

endmembers are not enough to model with good accuracy the 

actual observation. ISMA computes, at each iteration, an 

unconstrained solution instead of a constrained one, as it is 

predictable that, when the endmember set approaches the optimal 

one, the abundance fractions will approach the true ones.  

 

3.4. Two-Step Iterative Shrinkage/Thresholding (TwIST) 

algorithm 

 

As shown in section 3.1, the estimate f̂  of f obtained by MPP 

contains an error term, when the observation is affected by noise: 

                                 nSfRSf ⋅+=⇒ ## ˆˆ                     (10) 

If S is bad-conditioned, the error term nS #  becomes more 

significant, as the small eigenvalues in the singular value 

decomposition (SVD) of S lead to the amplification of noise and 

also to loss of sparseness. At this point, enforcing sparseness 

becomes not only a desirable approach, but a necessary one. 

Many approaches to linear inverse problems (as the spectral 

unmixing problem is) define a solution as a minimizer of a convex 

objective function: 
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where y is the observed data, K is the linear operator, λ  is the 

regularization parameter and ( )xΦ  is the regularizer. By 

minimizing the objective function g, we are able to find the best 

compromise between the lack of fitness of a candidate x to the 

observed data (which is given by 
2

xKy ⋅− ) and its degree of 

undesirability (given by ( )xΦ ). The relative weight of the two 

terms is controlled by the regularization parameter λ .  

TwIST is an iterative algorithm with general applicability in 

inverse problems which solves the optimization problem given in 

(11), combining the advantages of iterative shrinkage/thresholding 

(IST) [6] and iterative reweighted shrinkage (IRS) [7] algorithms 

(good accuracy for not very ill-conditioned operators and very fast 

convergence for ill-conditioned operators, respectively). At each 

iteration, TwIST computes a solution that depends on the two 

previous estimates (this being the reason underlying the name 

Two-Step). 

In the spectral unmixing problem described by (11), the regularizer 

Φ  is the 0l  norm of f (denoted by 
0

f ), which gives the number 

of non-zero elements (in order to penalize non-sparse solutions), 

and the objective function becomes: 
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The objective function in (12) is a non-convex one, difficult to 

solve. It is, however, known [8] that, for matrices S with certain 

properties of incoherence and sparse vectors f, the 0l  norm can be 

replaced by the 1l  norm 
1

f : 
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. TwIST solves the unmixing problem by 

minimizing the 12 ll −  objective function given in (13), which has 

the advantage of being convex, by opposite to the one given in 

(12). 

 

4. TEST DATA 

 

The four unmixing algorithms were tested for different 

configurations of the unmixing problem. We considered three 

different spectral libraries differentiated by their condition number: 

1S  having the condition number 101 ≈C (well-conditioned), 2S  

with the condition number 902 ≈C  (medium-conditioned) and 

3C  with its respective condition number 3
3 1045.2 ⋅≈C  (bad-

conditioned). Each spectral library contains 20=p  simulated 

spectral signatures, defined for 220=L  spectral bands. The 

observations are affected by zero-mean Gaussian noise and signal-

to-noise ratios (
22

/ nfSSNR ⋅≡ ) of 20, 40, 60 and 80 dB. We 

generated observations containing 4, 5 or 6 endmembers. The 

algorithms were tested for all possible combinations of these 

simulation conditions. We adopted a Monte Carlo methodology – 

the results presented in section 5 are medium results obtained for 

100 simulations of the respective configurations. 

 

5. RESULTS 

 

The tests showed poor results returned by MPP most of the time. 

Even for medium-conditioned S and not too low SNR 

( dBSNR 40= ), MPP returns dissatisfactory results. MPP can be 

successfully used only in good conditions (well-conditioned S and 

high SNR), as shown in Fig. 1.a. In the other cases, the results are 

physically unrealistic, which means that they do not respect the 

non-negativity and the sum-to-one constraints (Fig. 1.b). 

 

  
a) 4=q ; 1SS = ; dBSNR 60=  b) 4=q ; 2SS = ; dBSNR 20=  

Fig. 1. MPP results 

 

OMP returns, generally, better results than MPP, but it encounters 

difficulties when the spectral library S is bad ( 3SS = ) or medium-

conditioned ( 2SS = ) and/or the SNR is low as shown in Fig. 2, 

for 4=q  (Fig. 2.a) and 5=q  (Fig. 2.b). For the OMP algorithm, 

the stop criteria used was “the residual falls below a preset 

threshold”. If the threshold is too small, the method doesn’t 

converge, as the residual never attends it. 

 

  
a) 4=q ; 3SS = ; dBSNR 40=  b) 5=q ; 2SS = ; dBSNR 20=  

Fig. 2. OMP results 

 

ISMA is a much more powerful method than MPP and OMP. The 

critical iteration is found when the RMS variation is bigger than a 

preset threshold t. By selecting an appropriate threshold, ISMA 

finds the correct set of endmembers, as shown in Fig. 3, for 5=q , 

2SS =  and dBSNR 20= . Although, the fractional abundances 

differ from the true ones, their accuracy being affected by the noise 

and by the condition number of S.  

 

 
Fig. 3. ISMA results by choosing the optimal threshold t 

 



ISMA encounters difficulties when 2SS =  or 3SS =  and 

dBSNR 40< , due to the difficulty of choosing the appropriate 

threshold t. When the spectral library S becomes bad-conditioned 

and the SNR decreases, the change in the RMS error becomes 

smoother and the range in which t can be chosen becomes very 

tight. If the chosen threshold is smaller than the optimal one, the 

critical iteration is found after a smaller number of iterations and 

the number of endmembers found by ISMA can be much larger 

than the true one (Fig. 4.a). This behavior implies unrealistic 

fractional abundances, as ISMA computes, at each iteration, an 

unconstrained solution. On the other hand, if the imposed 

threshold is higher than the optimal one, the computational process 

continues to remove endmembers from the optimal set (the critical 

iteration is found later), which means that the number of 

endmembers is underestimated (Fig. 4.b). In Fig. 4, note the very 

small difference between the values of t.  

 

  
a) 38.2 −= et  b) 33.4 −= et  

Fig. 4. ISMA results for 5=q , 2SS = , dBSNR 20=  

 

TwIST is a more robust method than ISMA and it returns better 

results than any of the previous methods, even in bad conditions 

( 3SS =  and dBSNR 20= ), as shown in Fig. 5 for different 

numbers of endmembers present in the pixel. In our tests, the 

regularization parameter λ  was hand-tuned. An important 

advantage of TwIST is that λ  has a relatively wide range of 

variation which doesn’t influence in a significant way the results, 

which means that it is easier to choose than the ISMA parameter t.   

 

  
a) 4=q  b) 5=q  

 
c) 6=q  

Fig. 5. TwIST results in bad conditions 

   

 

 

 

6. CONCLUSIONS 

 

The tests showed the superiority of TwIST compared to the other 

methods. The good results of TwIST in the unmixing problem are 

in line with the success of the 12 ll −  minimization methods in 

signal processing and, particularly, in the Sparse-Land applications 

[8]. Applied to the unmixing problem, TwIST algorithm is able to 

infer the actual endmembers with a much higher accuracy than the 

other three methods tested. ISMA has difficulties in finding the 

correct set of endmembers when the spectral library is bad-

conditioned and/or the SNR is low, due to the difficulty of finding 

the appropriate stop criteria. MPP has good results only when the 

spectral library is well-conditioned and the SNR is low, but this is 

a rare situation in practice, being almost an ideal situation. OMP 

has better results than MPP, but fails when the spectral library is 

medium or bad-conditioned or the SNR is low. 
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